植物生态学报 ›› 2007, Vol. 31 ›› Issue (4): 645-651.DOI: 10.17521/cjpe.2007.0083
陈琳1, 邓自发1,2, 安树青1,*(), 赵聪蛟1, 周长芳1, 智颖飙1
收稿日期:
2006-07-19
接受日期:
2007-01-05
出版日期:
2007-07-19
发布日期:
2007-07-30
通讯作者:
安树青
作者简介:
* E-mail: anshq@nju.edu.cn基金资助:
CHEN Lin1, DENG Zi-Fa1,2, AN Shu-Qing1,*(), ZHAO Cong-Jiao1, ZHOU Chang-Fang1, ZHI Ying-Biao1
Received:
2006-07-19
Accepted:
2007-01-05
Online:
2007-07-19
Published:
2007-07-30
Contact:
AN Shu-Qing
摘要:
作为典型的盐沼植物,入侵种互花米草(Spartina alterniflora)具有较强的耐盐性,能否以淡水或淡咸水的轮换浇灌扰乱其耐盐机制,降低其生态入侵性,进而寻求其控制对策是一个重要命题。为此,对互花米草进行了6种浇灌处理:单一的淡水(D)或咸水(X)浇灌;1次浇灌转换,即先淡水后咸水(DX)或先咸水后淡水(XD);2次浇灌转换,即由淡水开始转而咸水,再转而淡水(DXD),或由咸水开始转而淡水,再转而咸水(XDX)。结果显示,D处理的总生物量最高,与其它各处理均差异显著(p<0.05),且是X处理的1.67倍;DXD和XDX处理的总生物量最低,与D和X处理的差异显著(p<0.05),两者均约为D处理的50%。浇灌处理对根冠比、茎重比、叶重比和根茎重比的影响不明显,对根重比有较大影响,X处理的根重比最高,与D处理的差异显著(p<0.05),但与DX、XD、DXD和XDX处理之间的差异不显著。D处理的克隆生长新生总株数(Propagule)最多,与其它处理均差异显著(p<0.05),且是X处理的1.34倍;DXD和XDX处理的新生总株数最少,与D和X处理的差异显著(p<0.05),仅为D处理的55%。浇灌处理对分蘖的影响明显,DX和DXD处理的分蘖数分别是D处理的62%和50%;XD和XDX处理的分蘖数分别是X处理的50%和47%。就开花株数而言,X处理显著高于其它处理(p<0.05);DXD和XDX处理的开花株数为0。因此,持续的淡水浇灌可能会促进互花米草的生物量积累,并且采取快速的克隆生长为主的繁殖策略;而在淡水和咸水交替的生境下,互花米草的生物量积累、无性和有性繁殖能力都会受到抑制。
陈琳, 邓自发, 安树青, 赵聪蛟, 周长芳, 智颖飙. 淡咸水轮换浇灌抑制互花米草的克隆生长和繁殖. 植物生态学报, 2007, 31(4): 645-651. DOI: 10.17521/cjpe.2007.0083
CHEN Lin, DENG Zi-Fa, AN Shu-Qing, ZHAO Cong-Jiao, ZHOU Chang-Fang, ZHI Ying-Biao. ALTERNATE IRRIGATION OF FRESH AND SALT WATER RESTRAINS CLONAL GROWTH AND REPRODUCTION OF SPARTINA ALTERNIFLORA. Chinese Journal of Plant Ecology, 2007, 31(4): 645-651. DOI: 10.17521/cjpe.2007.0083
图1 浇灌处理后互花米草的总生物量、地上生物量和地下生物量
Fig.1 Total biomass, above-ground biomass and below-ground biomass of Spartina alterniflora after irrigation treatment D: 3个月淡水Freshwater treatment for 3 months X: 3个月咸水Saltwater treatment for 3 months DX: 前1.5个月淡水,后1.5个月咸水Freshwater treatment for the former one and half months, then saltwater treatment for the latter ones XD: 前1.5个月咸水,后1.5个月淡水 Saltwater treatment for the former one and half months, then freshwater treatment for the latter ones DXD: 先1个月淡水,后1个月咸水,再1个月淡水Freshwater treatment for the first month, and saltwater treatment for the second month, then freshwater treatment for the third month XDX: 先1个月咸水,后1个月淡水,再1个月咸水Saltwater treatment for the first month, and freshwater treatment for the second month, then saltwater treatment for the third month TB: 总生物量Total biomass AGB: 地上生物量Above-ground biomass BGB: 地下生物量Below-ground biomass 不同的字母表示处理间差异显著(p<0.05) The different letters indicate significant differences at p<0.05 level
处理 Treatments | D | X | DX | XD | DXD | XDX | p |
---|---|---|---|---|---|---|---|
茎生物量Stem biomass (g) | 6.60(0.48)a | 3.83(0.35)b | 3.20(0.29)b | 3.72(0.17)b | 2.96(0.21)b | 3.19(0.24)b | 0 |
叶生物量Leaf biomass (g) | 14.90(0.86)a | 8.98(0.65)b | 7.56(0.52)bc | 8.09(0.44)bc | 7.06(0.33)c | 6.82(0.48)c | 0 |
根生物量Root biomass (g) | 4.92(0.51)a | 4.35(0.41)ab | 3.43(0.38)bc | 3.19(0.31)c | 3.14(0.32)c | 2.88(0.32)c | 0 |
根茎生物量Rhizome biomass (g) | 5.88(0.43)a | 2.72(0.30)b | 3.06(0.20)b | 2.93(0.19)b | 3.22(0.24)b | 3.06(0.47)b | 0 |
RSR (g·g-1) | 0.48(0.04) | 0.55(0.06) | 0.58(0.04) | 0.49(0.02) | 0.60(0.04) | 0.56(0.06) | 0.32 |
SWR (g·g-1) | 0.19(0.01) | 0.19(0.02) | 0.18(0.01) | 0.20(0.01) | 0.18(0.01) | 0.20(0.01) | 0.44 |
LWR (g·g-1) | 0.44(0.01) | 0.44(0.02) | 0.42(0.02) | 0.44(0.01) | 0.42(0.01) | 0.42(0.02) | 0.86 |
RWR (g·g-1) | 0.14(0.01)b | 0.21(0.02)a | 0.19(0.02)a | 0.17(0.01)ab | 0.18(0.02)ab | 0.17(0.01)ab | 0.04 |
RhWR (g·g-1) | 0.17(0.01) | 0.13(0.02) | 0.17(0.01) | 0.16(0.01) | 0.19(0.01) | 0.18(0.02) | 0.09 |
表1 浇灌处理对互花米草茎、叶、根、根茎生物量及其比例的影响
Table 1 Effects of irrigation treatments on stem biomass, leaf biomass, root biomass and rhizome biomass, and on the allocation of total biomass among these organs
处理 Treatments | D | X | DX | XD | DXD | XDX | p |
---|---|---|---|---|---|---|---|
茎生物量Stem biomass (g) | 6.60(0.48)a | 3.83(0.35)b | 3.20(0.29)b | 3.72(0.17)b | 2.96(0.21)b | 3.19(0.24)b | 0 |
叶生物量Leaf biomass (g) | 14.90(0.86)a | 8.98(0.65)b | 7.56(0.52)bc | 8.09(0.44)bc | 7.06(0.33)c | 6.82(0.48)c | 0 |
根生物量Root biomass (g) | 4.92(0.51)a | 4.35(0.41)ab | 3.43(0.38)bc | 3.19(0.31)c | 3.14(0.32)c | 2.88(0.32)c | 0 |
根茎生物量Rhizome biomass (g) | 5.88(0.43)a | 2.72(0.30)b | 3.06(0.20)b | 2.93(0.19)b | 3.22(0.24)b | 3.06(0.47)b | 0 |
RSR (g·g-1) | 0.48(0.04) | 0.55(0.06) | 0.58(0.04) | 0.49(0.02) | 0.60(0.04) | 0.56(0.06) | 0.32 |
SWR (g·g-1) | 0.19(0.01) | 0.19(0.02) | 0.18(0.01) | 0.20(0.01) | 0.18(0.01) | 0.20(0.01) | 0.44 |
LWR (g·g-1) | 0.44(0.01) | 0.44(0.02) | 0.42(0.02) | 0.44(0.01) | 0.42(0.01) | 0.42(0.02) | 0.86 |
RWR (g·g-1) | 0.14(0.01)b | 0.21(0.02)a | 0.19(0.02)a | 0.17(0.01)ab | 0.18(0.02)ab | 0.17(0.01)ab | 0.04 |
RhWR (g·g-1) | 0.17(0.01) | 0.13(0.02) | 0.17(0.01) | 0.16(0.01) | 0.19(0.01) | 0.18(0.02) | 0.09 |
图2 浇灌处理后互花米草的克隆生长新生分株数、分蘖数和分株数 D、X、DX、XD、DXD、XDX: 见图1 不同的字母表示处理间差异显著(p<0.05)
Fig.2 Numbers of propagule, tiller and ramet of Spartina alterniflora after irrigation treatment D、X、DX、XD、DXD、XDX: See Fig. 1 The different letters indicate significant differences at p<0.05 level
[1] |
Adams JB, Bate GC (1995). Ecological implications of tolerance of salinity and inundation by Spartina maritima. Aquatic Botany, 52, 183-191.
DOI URL |
[2] |
Bradley PM, Morris JT (1991). Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. Journal of Experimental Botany, 42, 1525-1532.
DOI URL |
[3] |
Cavalieri AJ (1983). Proline and glycine betaine accumulation by Spartina alterniflora Loisel in response to NaCl and nitrogen in a controlled environment. Oecologia, 57, 20-24.
DOI URL PMID |
[4] | Chen ZY (陈中义), Li B (李博), Chen JK (陈家宽) (2005). Effects of salt stress and elevation of tideland on the growth of introduced Spartina alterniflora at Dongtan of Chongming, the Yangtze River estuary. Journal of Yangtze University (Natural Science Edition) (长江大学学报(自然科学版)), 2(2), 6-9. (in Chinese with English abstract) |
[5] |
Chung CH, Zhuo RZ, Xu GW (2004). Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecological Engineering, 23, 135-150.
DOI URL |
[6] |
Daehler CC, Strong DR (1996). tatus, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation, 78, 51-58.
DOI URL |
[7] | Deng ZF (邓自发), An SQ (安树青), Zhi YB (智颖飙), Zhou CF (周长芳), Chen L (陈琳), Zhao CJ (赵聪蛟), Fang SB (方淑波), Li HL (李红丽) (2006). Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alterniflora Loisel. Acta Ecologica Sinica (生态学报), 26, 2678-2686. (in Chinese with English abstract) |
[8] |
El-Haddad ESH, Noaman MM (2001). Leaching requirement and salinity threshold for the yield and agronomic characteristics of halophytes under salt stress. Journal of Arid Environments, 49, 865-874.
DOI URL |
[9] |
Flowers TJ, Troke PF, Yeo AR (1977). The mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology, 28, 89-121.
DOI URL |
[10] |
Hester MW, Mendelssohn IA, McKee KL (2001). Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany, 46, 277-297.
DOI URL |
[11] |
Hester MW, McKee KL, Burdick DM, Koch MS, Flynn KM, Patterson S, Mendelssohn IA (1994). Clonal integration in Spartina patens across a nitrogen and salinity gradient. Canadian Journal of Botany, 72, 767-770.
DOI URL |
[12] | Jiang XM (江香梅), Huang MR (黄敏仁), Wang MX (王明庥) (2001). A review on salt and drought resistance gene engineering in plants. Journal of Nanjing Forestry University (Natural Science Edition) (南京林业大学学报(自然科学版)), 25, 57-62. (in Chinese with English abstract) |
[13] |
Lewis MA, Weber DE (2002). Effects of substrate salinity on early seedling survival and growth of Scirpus robustus Pursh and Spartina alterniflora Loisel. Ecotoxicology, 11, 19-26.
DOI URL PMID |
[14] |
Linthurst RA, Seneca ED (1980). The effects of standing water and drainage potential on the Spartina alterniflora-substrate complex in a North Carolina salt marsh. Estuarine and Coastal Marine Science, 11, 41-52.
DOI URL |
[15] | Liu YX (刘永学), Li MC (李满春), Zhang RS (张忍顺) (2004). Approach on the dynamic change and influence factors of Spartina alterniflora Loisel salt-marsh along the coast of the Jiangsu Province. Wetland Science (湿地科学), 2(2), 116-121. (in Chinese with English abstract) |
[16] |
Nieva FJJ, Castellanos EM, Figueroa ME, Gil F (1999). Gas exchange and chlorophyll fluorescence of C3 and C4 saltmarsh species. Photosynthetica, 36, 397-406.
DOI URL |
[17] | Nieva FJJ, Castillo JM, Luque CJ, Figueroa ME (2003). Ecophysiology of tidal and non-tidal populations of the invading cordgrass Spartina densiflora: seasonal and diurnal patterns in a Mediterranean climate. Estuarine, Coastal and Shelf Science, 57, 919-928. |
[18] |
Portnoy JW, Valiela I (1997). Short-term effects of salinity reduction and drainage on salt-marsh biogeochemical cycling and Spartina (cordgrass) production. Estuaries, 20, 569-578.
DOI URL |
[19] |
Seliskar DM, Gallagher JL, Burdick DM, Mutz LA (2002). The regulation of ecosystem functions by ecotypic variation in the dominant plant: a Spartina alterniflora salt-marsh case study. Journal of Ecology, 90, 1-11.
DOI URL |
[20] |
Shumway SW, Bertness MD (1992). Salt stress limitation of seedling recruitment in a salt marsh plant community. Oecologia, 92, 490-497.
DOI URL PMID |
[21] |
Smart RM, Barko JW (1980). Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora. Ecology, 61, 630-638.
DOI URL |
[22] |
Smekens MJ, van Tienderen PH (2001). Genetic variation and plasticity of Plantago coronopus under saline conditions. Acta Oecologia, 22, 187-200.
DOI URL |
[23] |
van Zandt PA, Tobler MA, Mouton E, Hasenstein KH, Mopper S (2003). Positive and negative consequences of salinity stress for the growth and reproduction of the clonal plant, Iris hexagona. Journal of Ecology, 91, 837-846.
DOI URL |
[24] | Wang Q (王卿), An SQ (安树青), Ma ZJ (马志军), Zhao B (赵斌), Chen JK (陈家宽), Li B (李博) (2006). Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 44, 559-588. (in Chinese with English abstract) |
[25] | Xiao Q (肖强), Zheng HL (郑海雷), Chen Y (陈瑶), Huang WB (黄伟滨), Zhu Z (朱珠) (2005). Effects of salinity on the growth and proline, soluble sugar and protein contents of Spartina alterniflora. Chinese Journal of Ecology (生态学杂志), 24, 373-376. (in Chinese with English abstract) |
[26] | Yu HW (于海武), Li Y (李莹) (2004). Research progress on salt tolerance of plant. Journal of Beihua University (Natural Science Edition) (北华大学学报(自然科学版)), 5, 257-263. (in Chinese with English abstract) |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[11] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[12] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[13] | 张琦, 叶尔江·拜克吐尔汉, 王娟. 雌雄异株树种东北鼠李营养资源需求性别二态性[J]. 植物生态学报, 2023, 47(12): 1708-1717. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19