植物生态学报 ›› 2008, Vol. 32 ›› Issue (5): 1007-1014.DOI: 10.3773/j.issn.1005-264x.2008.05.005
蔡妙珍1,3,*(), 邢承华2, 刘鹏1, 徐根娣1, 吴韶辉1, 何璠1
收稿日期:
2007-12-07
接受日期:
2008-03-30
出版日期:
2008-12-07
发布日期:
2008-09-30
通讯作者:
蔡妙珍
作者简介:
*(sky120@zjnu.cn)基金资助:
CAI Miao-Zhen1,3,*(), XING Cheng-Hua2, LIU Peng1, XU Gen-Di1, WU Shao-Hui1, HE Fan1
Received:
2007-12-07
Accepted:
2008-03-30
Online:
2008-12-07
Published:
2008-09-30
Contact:
CAI Miao-Zhen
摘要:
以耐铝性明显差异的两个大豆(Glycine max)基因型‘浙秋2号’(耐性)和‘浙春3号’(敏感)为材料, 研究根尖边缘细胞比活度、粘液分泌和根长对铝胁迫和解除胁迫的反应, 明确边缘细胞的粘液分泌对策在铝毒环境中的生态学意义。结果表明, ‘浙秋2号’在100~400 µmol·L-1Al3+处理的3~12 h, 边缘细胞比活率呈递减趋势, 12 h后比活率又略有上升。‘浙春3号’在300和400 µmol·L-1Al3+处理的变化与前者一致。两个大豆基因型的粘液层随着Al3+浓度增加和时间延长而增厚, 并于400 µmol·L -1Al3+处理24 h时达到最大(>17 µm)。‘浙秋2号’在低浓度Al3+(100和200 µmol·L -1)处理3~6 h后就会分泌大量粘液, ‘浙春3号’则在300 µmol·L -1Al3+处理12 h后才有类似的变化。‘浙秋2号’在400 µmol·L-1Al3+处理下的根相对伸长率均高于100~300 µmol·L -1Al3+处理, ‘浙春3号’则表现为Al 3+浓度越高, 根伸长受抑越明显。Al3+胁迫解除后, ‘浙秋2号’的粘液分泌速度和分泌量急剧下降, ‘浙春3号’在胁迫解除后的24 h, 仍会持续、大量地分泌粘液(>19 µm)。可见, 耐性大豆通过在铝胁迫初期快速、大量地分泌粘液以维持较高的边缘细胞活性和解除胁迫后迅速降低粘液的分泌速度及分泌量来适应铝毒害环境。
蔡妙珍, 邢承华, 刘鹏, 徐根娣, 吴韶辉, 何璠. 大豆根尖边缘细胞和粘液分泌对铝胁迫解除的响应. 植物生态学报, 2008, 32(5): 1007-1014. DOI: 10.3773/j.issn.1005-264x.2008.05.005
CAI Miao-Zhen, XING Cheng-Hua, LIU Peng, XU Gen-Di, WU Shao-Hui, HE Fan. DYNAMIC RESPONSE OF ROOT BORDER CELLS AND THEIR ASSOCIATED MUCILAGE EXUDATION IN SOYBEAN TO Al STRESS AND RECOVERY. Chinese Journal of Plant Ecology, 2008, 32(5): 1007-1014. DOI: 10.3773/j.issn.1005-264x.2008.05.005
图2 不同浓度Al3+胁迫下大豆根尖边缘细胞粘液层厚度的动态变化 不同字母表示差异达显著水平(p<0.05) Means associated with different letters are significantly different at p<0.05
Fig. 2 Dynamic change of mucilage thickness around detached root cap border cells of soybean exposed to five Al3+levels
图4 Al3+胁迫解除后大豆根尖边缘细胞粘液层厚度的动态变化 图注同图2 Note see Fig. 2
Fig. 4 Dynamic change of mucilage thickness around detached root cap border cells of soybean at Al3+recovery treatment
[1] |
Archambault DJ, Zhang G, Taylor GJ (1996). Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat. Plant Physiology, 112,1471-1478.
DOI URL PMID |
[2] |
Bacic A, Moody SF, Clarke AE (1986). Structural analysis of secreted root slime from maize ( Zea mays L.). Plant Physiology, 80,771-777.
URL PMID |
[3] |
Bengough AG, Bransby MF, Hans J, McKenna SJ, Robers TJ, Valentine TA (2006). Root responses to soil physical conditions; growth dynamics from field to cell. Journal of Experimental Botany, 57,437-447.
DOI URL PMID |
[4] | Bengough AG, McKenzie BM (1997). Sloughing of root cap cells decreases the frictional resistance to maize ( Zea mays L.) root growth. Journal of Experimental Botany, 48,885-893. |
[5] | Cai MZ (蔡妙珍), Liu P (刘鹏), Xu GD (徐根娣), Liu WX (刘文秀), Gong CF (龚春风) (2007). Response of root border cells to Al 3+toxicity in soybean. Scientia Agricultura Sinica (中国农业科学), 40,271-276. (in Chinese with English abstract) |
[6] | Chaboud A (1983). Isolation, purification and chemical composition of maize root cap slime. Plant and Soil, 73,395-402. |
[7] |
Chaboud A, Rougier M (1984). Identification and localization of sugar components of rice ( Oryza sativa L.) root cap mucilage. Journal of Plant Physiology, 116,323-330.
DOI URL PMID |
[8] |
Driouich A, Durand C, Vicré-Gibouin M (2007). Formation and separation of root border cells. Trends in Plant Science, 12,14-19.
URL PMID |
[9] | Feng YM (冯英明), Yu M (喻敏), Wen HX (温海祥), Zhang YH (张英慧), Xiao HD (萧洪东), Wang HZ (王惠珍), He LL (何丽烂), Liang HD (梁火娣) (2005). Influence of Al on cell viability and mucilage of root border cells of pea (Pisum sativum). Ecology and Environment(生态环境), 14,695-699. (in Chinese with English abstract) |
[10] | Hawes MC, Brigham LA (1992). Impact of root border cells on microbial populations in the rhizosphere. Advances in Plant Pathology, 8,119-148. |
[11] |
Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y (1998). Function of root border cells in plant health: pioneers in the rhizosphere. Annual Review of Phytopathology, 36,311-27.
DOI URL PMID |
[12] |
Hawes MC, Gunawardena U, Miyasaka SC, Zhao X (2000). The role of root border cells in plant defense. Trends in Plant Science, 5,128-133.
DOI URL PMID |
[13] |
Horst WJ, Wagner A, Marschner H (1982). Mucilage protects roots from aluminum injury. Zeitschrift für Pflanzenphysiologie, 105,435-444.
DOI URL |
[14] |
Iijima M, Barlow PW, Bengough AG (2003a). Root cap structure and cell production rates of maize ( Zea mays) roots in compacted sand. New Phytologist, 160,127-134.
DOI URL |
[15] |
Iijima M, Higuchi T, Barlow PW, Bengough AG (2003b). Root cap removal increases root penetration resistance in maize ( Zea mays L.), Journal of Experimental Botany, 54,2105-2109.
DOI URL PMID |
[16] |
Knee EM, Gong FC, Gao MS, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001). Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Molecular Plant-Microbe Interactions, 14,775-784.
DOI URL PMID |
[17] | Li RF (李荣峰), Cai MZ (蔡妙珍), Liu P (刘鹏), Liang H (梁和), Xu GD (徐根娣) (2007a). The stress response and resistance of root border cells in plants. Guihaia (广西植物), 27,497-502. (in Chinese with English abstract) |
[18] | Li RF (李荣峰), Cai MZ (蔡妙珍), Liu P (刘鹏), Xu GD (徐根娣), Liang H (梁和), Zhang YQ (章月琴) (2007b). Physiological and ecological response of the root border cells to aluminum toxicity in soybean. Acta Ecologica Sinica (生态学报), 27,4182-4190. (in Chinese with English abstract) |
[19] | Li XF (黎晓峰), Ma JF (马建锋), Matsumoto H (2002). Root-cap mucilage binds aluminum and accumulates organic acids in Zea mays L.. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 28,121-126. (in Chinese with English abstract) |
[20] |
Li XF, Ma JF, Hiradate S, Matsumoto H (2000). Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays. Physiologia Plantarum, 108,152-160.
DOI URL |
[21] | Liu Q (刘强), Zheng SJ (郑绍建), Lin XY (林咸永) (2004). Plant physiological and molecular biological mechanism in response to aluminium toxicity. Chinese Journal of Applied Ecology (应用生态学报), 15,1641-164. (in Chinese with English abstract) |
[22] |
Ma JF (2007). Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. International Review of Cytology, 264,225-252.
DOI URL PMID |
[23] | Mench M, Morel JL, Guckert A (1987). Metal binding properties of high molecular weight soluble exudates from maize ( Zea mays L.) roots. Biology and Fertility of Soils, 3,165-169. |
[24] |
Miyasaka SC, Hawes MC (2001). Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant Physiology, 125,1978-1987.
DOI URL PMID |
[25] |
Moore R, Evans ML, Fondren WM (1990). Inducing gravitropic curvature of primary roots of Zea mays cv. Ageotropic. Plant Physiology, 92,310-315.
URL PMID |
[26] | Morel JL, Andreuz F, Habib L, Guckert A (1987). Comparison of the adsorption of maize root mucilage and polygalacturonic acid on montmorillonite monoionic to divalent lead and cadmium. Biology and Fertility of Soils, 5,13-17. |
[27] | Morel JL, Habib L, Plantureaux S, Guckert A (1991). Influence of maize root mucilage on soil aggregate stability. Plant and Soil, 136,111-119. |
[28] | Morel JL, Mench M, Guckert A (1986). Measurement of Pb 2+, Cu 2+and Cd 2+binding with mucilage exudates from maize ( Zea mays L.) roots. Biology and Fertility of Soils, 2,29-34. |
[29] |
Pan JW, Ye D, Wang LL, Hua J, Zhao F, Pan WH, Han N, Zhu MY (2004). Root border cell development is a temperature-insensitive and Al-sensitive process in barley. Plant and Cell Physiology, 45,751-760.
URL PMID |
[30] | Ying XF (应小芳), Liu P (刘鹏), Xu GD (徐根娣), Lü QD (吕群丹), Zhu SL (朱申龙) (2005). Screening of soybean genotypes with tolerance to aluminum toxicity and study of the screening indices. Chinese Journal of Oil Crop Sciences (中国油料作物学报), 27,46-51. (in Chinese with English abstract) |
[31] | Yu M, Feng YM, Goldbach HE (2006). Mist culture for mass harvesting of root border cells: aluminum effects. Journal of Plant Nutrition and Soil Science, 169,670-674. |
[32] | Zhu MY, Ahn S, Matsumoto (2003). Inhibition of growth and development of root border cells in wheat by Al. Physiologia Plantarum, 117,35-367. |
[33] | Zhu Y, Wen F, Zhao X, Hawes MC (2004). Isolation of the promoter of a root cap expressed pectinmethylesterase gene from Pisum sativum L. (rcpme1)and its use in the study of gene activity. Plant and Soil, 265,47-59. |
[1] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[2] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[3] | 郭数进,李玮瑜,马艳芸,赵恒,乔玲,李贵全. 山西不同生态型大豆品种苗期耐低温性综合评价[J]. 植物生态学报, 2014, 38(9): 990-1000. |
[4] | 彭东海,杨建波,李健,邢永秀,覃刘东,杨丽涛,李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响[J]. 植物生态学报, 2014, 38(9): 959-969. |
[5] | 王芳妹, 蔡妙珍, 张淑娜, 王宁, 李华飞, 胡雪娜, 虞舒航. NO和H2O2诱导大豆根尖和边缘细胞耐铝反应的 作用[J]. 植物生态学报, 2011, 35(9): 981-989. |
[6] | 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950. |
[7] | 李荣峰, 蔡妙珍, 刘鹏, 徐根娣, 陈敏燕, 梁和. Al3+对大豆根边缘细胞程序性死亡诱导的生理生态作用[J]. 植物生态学报, 2008, 32(3): 690-697. |
[8] | 苗保河, 李向东, 刘波, 何启平, 朱陶, 刘兴坦, 朱启玉, 乔广法, 樊廷安, 陈成君, 董庆裕, 余松烈. 波浪冠层栽培模式对高油大豆叶片活性氧代谢和膜脂过氧化的影响[J]. 植物生态学报, 2008, 32(3): 673-680. |
[9] | 宋开山, 张柏, 王宗明, 刘殿伟, 刘焕军. 基于小波分析的大豆叶绿素a含量高光谱反演模型[J]. 植物生态学报, 2008, 32(1): 152-160. |
[10] | 周三, 周明, 张硕, 刘占涛, 赵永娟, 余天真, 岳旺. 盐生野大豆的异黄酮积累及其生态学意义[J]. 植物生态学报, 2007, 31(5): 930-936. |
[11] | 胡志昂, 姜国强, 邓馨, 王洪新. 野大豆种群转座子和转录因子的多样性和分子适应[J]. 植物生态学报, 2007, 31(5): 952-959. |
[12] | 汲逢源, 王戈亮, 许亦农. 抗氧化剂对农杆菌介导的大豆下胚轴GUS基因瞬时表达的影响[J]. 植物生态学报, 2006, 30(2): 330-334. |
[13] | 杨晓杰, 孙志琳. 阿司匹林和复方新诺明对大豆种子萌发及活力的影响[J]. 植物生态学报, 2003, 27(5): 667-671. |
[14] | 强维亚, 陈拓, 汤红官, 冯虎元, 安黎哲, 王勋陵. Cd胁迫和增强UV-B辐射对大豆根系分泌物的影响[J]. 植物生态学报, 2003, 27(3): 293-298. |
[15] | 陈有鑑, 黄艺, 陶澍. 玉米和大豆根际土壤性质的动态变化[J]. 植物生态学报, 2002, 26(3): 283-287. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2561
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 5075
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La