植物生态学报 ›› 2013, Vol. 37 ›› Issue (5): 427-435.DOI: 10.3724/SP.J.1258.2013.00044
发布日期:
2013-05-16
通讯作者:
董鸣
基金资助:
YE Xue-Hua1,2,HU Yu-Kun2,LIU Zhi-Lan3,GAO Shu-Qin2,DONG Ming2,*()
Published:
2013-05-16
Contact:
DONG Ming
摘要:
水分在自然系统中呈异质性分布。有关水分异质性对克隆植物生长、形态和生理影响的研究已有大量的工作, 但是水分异质性对克隆植物存储能力, 尤其是水分存储能力影响的研究却十分缺乏。该文将两种根茎型克隆植物赖草(Leymus secalinus)和假苇拂子茅(Calamagrostis pseudophragmites)进行水分异质性和同质性实验处理, 探讨水分异质性对克隆植物水分存储能力、生长和形态的影响。在异质性水分处理下, 两种克隆植物的间隔子、枝和根的含水量均显著增加。两种克隆植物对水分异质性分布的适应策略有所不同, 赖草通过降低单个克隆分株的生长、提高芽的数量以应对水分异质性, 而假苇拂子茅通过增强整个分株种群的地下部分(根状茎、根和芽)生长来应对水分资源的异质性分布。水分储存能力的增强可以提高克隆植物适应水分异质性的能力。
叶学华,胡宇坤,刘志兰,高树琴,董鸣. 水分异质性影响两种根茎型克隆植物赖草和假苇拂子茅的水分存储能力. 植物生态学报, 2013, 37(5): 427-435. DOI: 10.3724/SP.J.1258.2013.00044
YE Xue-Hua,HU Yu-Kun,LIU Zhi-Lan,GAO Shu-Qin,DONG Ming. Water heterogeneity affects water storage in two rhizomatous clonal plants Leymus secalinus and Calamagrostis pseudophragmites. Chinese Journal of Plant Ecology, 2013, 37(5): 427-435. DOI: 10.3724/SP.J.1258.2013.00044
图1 实验中的水分异质性处理(A)和同质性处理(B)。斑块间用薄的白色保鲜膜隔开。其中异质性处理中深色斑块为高水分斑块, 每个斑块每3天施100 mL水; 白色斑块为低水分处理, 每个斑块每3天施50 mL水。同质处理的浅色斑块, 每个斑块每3天施76.3 mL水。异质性处理和同质性处理的施水总量一致, 即每3天施水总量均为1450 mL。
Fig. 1 Heterogeneous water supply (A) and homogeneous water supply (B) of experiment. Patches are separated by white plastic wrap. In the heterogeneous water treatment, the dark grey cells stand for patches with high water supply, providing with 100 mL water to each patch once every three days; the white cells stand for patches with low water supply, providing with 50 mL water to each patch every three days. In the homogeneous treatment, each patch (grey cell) was provided with 76.3 mL every three days. The total water supplied in the heterogeneous treatment was same as that in the homogeneous treatment, i.e. 1450 mL every three days.
性状 Trait | 物种 Species | 水分处理 Water treatment | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
生物量 Biomass | |||||||||||
总生物量 Total biomass | 1, 19 | 15.93 | 0.001 | 1, 19 | 0.62 | 0.441 | 1, 19 | 1.30 | 0.269 | ||
间隔子生物量 Spacer biomass | 1, 19 | 7.40 | 0.014 | 1, 19 | 2.88 | 0.106 | 1, 19 | 0.95 | 0.341 | ||
芽生物量 Bud biomass | 1, 19 | 0.03 | 0.866 | 1, 19 | 7.16 | 0.015 | 1, 19 | 0.09 | 0.765 | ||
枝生物量 Shoot biomass | 1, 19 | 42.03 | <0.001 | 1, 19 | 0.10 | 0.752 | 1, 19 | 2.37 | 0.140 | ||
根生物量 Root biomass | 1, 19 | 7.22 | 0.015 | 1, 19 | 0.36 | 0.557 | 1, 19 | 0.74 | 0.401 | ||
生物量分配 Biomass allocation | |||||||||||
根冠比 Root to shoot ratio | 1, 19 | 0.13 | 0.725 | 1, 19 | 0.62 | 0.443 | 1, 19 | 0.02 | 0.879 | ||
分株数量和大小 Number and size of ramets | |||||||||||
分株数 Number of ramets | 1, 19 | 6.89 | 0.017 | 1, 19 | 0.77 | 0.113 | 1, 19 | 0.54 | 0.471 | ||
单个分株生物量 Biomass per ramet | 1, 19 | 8.86 | 0.008 | 1, 19 | 0.02 | 0.890 | 1, 19 | 8.02 | 0.011 | ||
芽数量和大小 Number and size of buds | |||||||||||
芽数 Number of buds | 1, 19 | 2.45 | 0.134 | 1, 19 | 24.60 | <0.001 | 1, 19 | 0.43 | 0.522 | ||
单个芽生物量 Biomass per bud | 1, 19 | 0.54 | 0.472 | 1, 19 | <0.001 | 0.997 | 1, 19 | 0.12 | 0.733 | ||
含水量 Water content | |||||||||||
总含水量 Total water content | 1, 19 | 1.58 | 0.224 | 1, 19 | 94.36 | <0.001 | 1, 19 | 2.81 | 0.110 | ||
芽含水量 Bud water content | 1, 19 | 0.55 | 0.469 | 1, 19 | 3.12 | 0.093 | 1, 19 | 0.004 | 0.951 | ||
间隔子含水量 Spacer water content | 1, 19 | 11.39 | 0.003 | 1, 19 | 35.38 | <0.001 | 1, 19 | 3.01 | 0.099 | ||
根含水量 Root water content | 1, 19 | 1.57 | 0.225 | 1, 19 | 53.71 | <0.001 | 1, 19 | 12.98 | 0.002 | ||
枝含水量 Shoot water content | 1, 19 | 0.30 | 0.591 | 1, 19 | 13.22 | 0.002 | 1, 19 | 0.44 | 0.514 |
表1 物种和水分异质性对植物生长和形态影响的双因素方差分析
Table 1 Effects of species and water heterogeneity on the growth and morphology of plants by two-way ANOVA
性状 Trait | 物种 Species | 水分处理 Water treatment | 交互作用 Interaction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
df | F | p | df | F | p | df | F | p | |||
生物量 Biomass | |||||||||||
总生物量 Total biomass | 1, 19 | 15.93 | 0.001 | 1, 19 | 0.62 | 0.441 | 1, 19 | 1.30 | 0.269 | ||
间隔子生物量 Spacer biomass | 1, 19 | 7.40 | 0.014 | 1, 19 | 2.88 | 0.106 | 1, 19 | 0.95 | 0.341 | ||
芽生物量 Bud biomass | 1, 19 | 0.03 | 0.866 | 1, 19 | 7.16 | 0.015 | 1, 19 | 0.09 | 0.765 | ||
枝生物量 Shoot biomass | 1, 19 | 42.03 | <0.001 | 1, 19 | 0.10 | 0.752 | 1, 19 | 2.37 | 0.140 | ||
根生物量 Root biomass | 1, 19 | 7.22 | 0.015 | 1, 19 | 0.36 | 0.557 | 1, 19 | 0.74 | 0.401 | ||
生物量分配 Biomass allocation | |||||||||||
根冠比 Root to shoot ratio | 1, 19 | 0.13 | 0.725 | 1, 19 | 0.62 | 0.443 | 1, 19 | 0.02 | 0.879 | ||
分株数量和大小 Number and size of ramets | |||||||||||
分株数 Number of ramets | 1, 19 | 6.89 | 0.017 | 1, 19 | 0.77 | 0.113 | 1, 19 | 0.54 | 0.471 | ||
单个分株生物量 Biomass per ramet | 1, 19 | 8.86 | 0.008 | 1, 19 | 0.02 | 0.890 | 1, 19 | 8.02 | 0.011 | ||
芽数量和大小 Number and size of buds | |||||||||||
芽数 Number of buds | 1, 19 | 2.45 | 0.134 | 1, 19 | 24.60 | <0.001 | 1, 19 | 0.43 | 0.522 | ||
单个芽生物量 Biomass per bud | 1, 19 | 0.54 | 0.472 | 1, 19 | <0.001 | 0.997 | 1, 19 | 0.12 | 0.733 | ||
含水量 Water content | |||||||||||
总含水量 Total water content | 1, 19 | 1.58 | 0.224 | 1, 19 | 94.36 | <0.001 | 1, 19 | 2.81 | 0.110 | ||
芽含水量 Bud water content | 1, 19 | 0.55 | 0.469 | 1, 19 | 3.12 | 0.093 | 1, 19 | 0.004 | 0.951 | ||
间隔子含水量 Spacer water content | 1, 19 | 11.39 | 0.003 | 1, 19 | 35.38 | <0.001 | 1, 19 | 3.01 | 0.099 | ||
根含水量 Root water content | 1, 19 | 1.57 | 0.225 | 1, 19 | 53.71 | <0.001 | 1, 19 | 12.98 | 0.002 | ||
枝含水量 Shoot water content | 1, 19 | 0.30 | 0.591 | 1, 19 | 13.22 | 0.002 | 1, 19 | 0.44 | 0.514 |
物种 Species | 性状 Trait | df | t | p |
---|---|---|---|---|
赖草 Leymus secalinus | 总生物量 Total biomass | 10 | 0.204 | 0.842 |
间隔子生物量 Spacer biomass | 10 | -0.417 | 0.685 | |
芽生物量 Bud biomass | 10 | -1.564 | 0.149 | |
枝生物量 Shoot biomass | 10 | 0.682 | 0.877 | |
根生物量 Root biomass | 10 | 0.159 | 0.511 | |
根冠比 Root to shoot ratio | 10 | -0.581 | 0.574 | |
分株数 Number of ramets | 10 | -1.529 | 0.157 | |
单个分株生物量 Biomass per ramet | 10 | 2.565 | 0.028 | |
芽数 Number of buds | 10 | -2.795 | 0.019 | |
单个芽生物量 Biomass per bud | 10 | 0.206 | 0.841 | |
总含水量 Total water content | 10 | -5.385 | <0.001 | |
芽含水量 Bud water content | 10 | -1.491 | 0.167 | |
间隔子含水量 Spacer water content | 10 | -4.445 | 0.001 | |
根含水量 Root water content | 10 | -3.647 | 0.004 | |
枝含水量 Shoot water content | 10 | -3.307 | 0.008 | |
假苇拂子茅 Calamagrostis pseudophragmites | 总生物量 Total biomass | 10 | -2.171 | 0.055 |
间隔子生物量 Spacer biomass | 10 | -3.313 | 0.008 | |
芽生物量 Bud biomass | 10 | -2.696 | 0.022 | |
枝生物量 Shoot biomass | 10 | -2.664 | 0.209 | |
根生物量 Root biomass | 10 | -1.342 | 0.024 | |
根冠比 Root to shoot ratio | 10 | -0.360 | 0.726 | |
分株数 Number of ramets | 10 | -0.412 | 0.689 | |
单个分株生物量 Biomass per ramet | 5.317 | -1.833 | 0.123 | |
芽数 Number of buds | 10 | -4.982 | 0.001 | |
单个芽生物量 Biomass per bud | 6.323 | -0.085 | 0.935 | |
总含水量 Total water content | 10 | -5.156 | 0.000 | |
芽含水量 Bud water content | 10 | -1.439 | 0.181 | |
间隔子含水量 Spacer water content | 10 | -4.733 | 0.001 | |
根含水量 Root water content | 4.528 | -5.647 | 0.003 | |
枝含水量 Shoot water content | 10 | -2.296 | 0.045 |
表2 水分异质性对赖草和假苇拂子茅生长和形态影响的独立样本t检验
Table 2 Effects of water heterogeneity on the growth and morphology of Leymus secalinus and Calamagrostis pseudophragmites by independent samples t-test
物种 Species | 性状 Trait | df | t | p |
---|---|---|---|---|
赖草 Leymus secalinus | 总生物量 Total biomass | 10 | 0.204 | 0.842 |
间隔子生物量 Spacer biomass | 10 | -0.417 | 0.685 | |
芽生物量 Bud biomass | 10 | -1.564 | 0.149 | |
枝生物量 Shoot biomass | 10 | 0.682 | 0.877 | |
根生物量 Root biomass | 10 | 0.159 | 0.511 | |
根冠比 Root to shoot ratio | 10 | -0.581 | 0.574 | |
分株数 Number of ramets | 10 | -1.529 | 0.157 | |
单个分株生物量 Biomass per ramet | 10 | 2.565 | 0.028 | |
芽数 Number of buds | 10 | -2.795 | 0.019 | |
单个芽生物量 Biomass per bud | 10 | 0.206 | 0.841 | |
总含水量 Total water content | 10 | -5.385 | <0.001 | |
芽含水量 Bud water content | 10 | -1.491 | 0.167 | |
间隔子含水量 Spacer water content | 10 | -4.445 | 0.001 | |
根含水量 Root water content | 10 | -3.647 | 0.004 | |
枝含水量 Shoot water content | 10 | -3.307 | 0.008 | |
假苇拂子茅 Calamagrostis pseudophragmites | 总生物量 Total biomass | 10 | -2.171 | 0.055 |
间隔子生物量 Spacer biomass | 10 | -3.313 | 0.008 | |
芽生物量 Bud biomass | 10 | -2.696 | 0.022 | |
枝生物量 Shoot biomass | 10 | -2.664 | 0.209 | |
根生物量 Root biomass | 10 | -1.342 | 0.024 | |
根冠比 Root to shoot ratio | 10 | -0.360 | 0.726 | |
分株数 Number of ramets | 10 | -0.412 | 0.689 | |
单个分株生物量 Biomass per ramet | 5.317 | -1.833 | 0.123 | |
芽数 Number of buds | 10 | -4.982 | 0.001 | |
单个芽生物量 Biomass per bud | 6.323 | -0.085 | 0.935 | |
总含水量 Total water content | 10 | -5.156 | 0.000 | |
芽含水量 Bud water content | 10 | -1.439 | 0.181 | |
间隔子含水量 Spacer water content | 10 | -4.733 | 0.001 | |
根含水量 Root water content | 4.528 | -5.647 | 0.003 | |
枝含水量 Shoot water content | 10 | -2.296 | 0.045 |
图2 水分同质和异质处理下赖草和假苇拂子茅的生物量及其分配(平均值±标准误差)。
Fig. 2 Biomasses of Leymus secalinus and Calamagrostis pseudophragmites and their allocation in homogeneous and heterogeneous water treatments (mean ± SE).
图3 水分同质和异质处理下赖草和假苇拂子茅植株器官的含水量(平均值±标准误差)。ns, p > 0.05; *, p < 0.05; **, p < 0.01。
Fig. 3 Water content in the organs of Leymus secalinus and Calamagrostis pseudophragmites in homogeneous and heterogeneous water treatments (mean ± SE). ns, p > 0.05; *, p < 0.05; **, p < 0.01.
图4 水分同质和异质条件下赖草和假苇拂子茅的芽数(A)、单个芽生物量(B)、分株数(C)和单个分株生物量(D) (平均值±标准误差)。ns, p > 0.05; *, p < 0.05; **, p < 0.01。
Fig. 4 Number of buds (A), biomass per bud (B), number of ramets (C) and biomass per ramet (D) of Leymus secalinus and Calamagrostis pseudophragmites in homogeneous and heterogeneous water treatments (mean ± SE). ns, p > 0.05; *, p < 0.05; **, p < 0.01.
[1] |
Alpert P ( 1999a). Clonal integration in Fragaria chiloensis differs between populations: ramets from grassland are selfish. Oecologia, 120, 69-76.
DOI URL PMID |
[2] | Alpert P ( 1999b). Effects of clonal integration on plant plasticity in Fragaria chiloensis. Plant Ecology, 141, 99-106. |
[3] | Chen YF, Yu FH, Zhang CY, Dong M ( 2001). Role of clonal growth of the rehizomatous grass Psammochloa villosa in patch dynamics of Mu US sandy land. Acta Ecologica Sinica, 21, 1745-1750. (in Chinese with English abstract) |
[ 陈玉福, 于飞海, 张称意, 董鸣 ( 2001). 根茎禾草沙鞭的克隆生长在毛乌素沙地斑块动态中的作用. 生态学报, 21, 1745-1750.] | |
[4] |
Coelho FF, Capelo C, Ribeiro LC, Figueira JEC ( 2008). Reproductive modes in Leiothrix(Eriocaulaceae) in South- eastern Brazil: the role of microenvironmental heterogeneity. Annals of Botany, 101, 353-360.
URL PMID |
[5] |
de Kroon H, Fransen B, van Rheenen JWA, van Dijk A, Kreulen R ( 1996). High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia, 106, 73-84.
URL PMID |
[6] | Dong BC, Yu GL, Guo W, Zhang MX, Dong M, Yu FH ( 2010a). How internode length, position and presence of leaves affect survival and growth of Alternanthera philoxeroides after fragmentation? Evolutionary Ecology, 24, 1447-1461. |
[7] |
Dong BC, Zhang MX, Alpert P, Lei GC, Yu FH ( 2010b). Effects of orientation on survival and growth of small fragments of the invasive, clonal plant Alternanthera philoxeroides. PloS One, 5, e13631.
DOI URL PMID |
[8] | Dong M ( 1996a). Plant clonal growth in heterogeneous habitats: risk-spreading. Acta Phytoecologica Sinica, 20, 543-548. (in Chinese with English abstract) |
[ 董鸣 ( 1996a). 异质性生境中的植物克隆生长: 风险分摊. 植物生态学报, 20, 543-548.] | |
[9] | Dong M ( 1996b). Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica, 38, 828-835. (in Chinese with English abstract) |
[ 董鸣 ( 1996b). 资源异质性环境中的植物克隆生长: 觅食行为. 植物学报, 38, 828-835.] | |
[10] | Dong M ( 1999). Effects of severing rhizome on clonal growth in rhizomatoua grass species Psammochloa villosa and Leymus secalinus. Acta Botanica Sinica, 41, 194-198. (in Chinese with English abstract) |
[ 董鸣 ( 1999). 切断根茎对根茎禾草沙鞭和赖草克隆生长的影响. 植物学报, 41, 194-198.] | |
[11] | Dong M (2011). Clonal Plant Ecology. Sciences Press, Beijing. (in Chinese) |
[ 董鸣 (2011). 克隆植物生态学. 科学出版社, 北京.] | |
[12] | Dong M, Alaten B ( 1999). Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune, China. Plant Ecology, 141, 53-58. |
[13] | Dong M, de Kroon H ( 1994). Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes. Oikos, 70, 99-106. |
[14] | Huang CX ( 1991). The changes of the physical environment of the southern Maowushu Sandy Land during Holocene. Geographical Research, 10(2), 52-59. (in Chinese with English abstract) |
[ 黄赐璇 ( 1991). 毛乌素沙地南缘全新世自然环境. 地理研究, 10(2), 52-59.] | |
[15] | Hutchings MJ, de Kroon H ( 1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[16] | Jackson RB, Caldwell MM ( 1993). The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology, 74, 612-614. |
[17] | Kotliar NB, Wiens JA ( 1990). Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos, 59, 253-260. |
[18] | Li R ( 1998). Clonal Growth in the Giant Bamboo Phyllostachys pubescens. PhD dissertation, Utrecht University, Utrecht. |
[19] | Liu F, Chen JM, Wang QF ( 2009). Trade-offs between sexual and asexual reproduction in a monoecious species Sagittaria pygmaea(Alismataceae): the effect of different nutrient levels. Plant Systematics and Evolution, 277, 61-65. |
[20] |
Liu FH, Yu FH, Liu WS, Krüsi BO, Cai XH, Schneller JJ, Dong M ( 2007). Large clones on cliff faces: expanding by rhizomes through crevices. Annals of Botany, 100, 51-54.
DOI URL PMID |
[21] | Liu J, Zhu XW, Yu FH, Dong M, Zhang SM, Wang RQ ( 2003). Spatial heterogeneity of Ulmus pumila open forest ecosystem in Otindag Sandy Land. Environmental Science, 24, 29-34. (in Chinese with English abstract) |
[ 刘建, 朱选伟, 于飞海, 董鸣, 张淑敏, 王仁卿 ( 2003). 浑善达克沙地榆树疏林生态系统的空间异质性. 环境科学, 24, 29-34.] | |
[22] | Mutoh N, Yoshida KH, Yokoi Y, Kimura M, Hogetsu K ( 1968). Studies on the production processes and net production of Miscanthus sacchariflorus community. Japanese Journal of Botany, 20, 67-92. |
[23] |
Oborny B, Czárán T, Kun Á ( 2001). Exploration and exploitation of resource patches by clonal growth: a spatial model on the effect of transport between modules. Ecological Modelling, 141, 151-169.
DOI URL |
[24] |
Roiloa SR, Retuerto R ( 2005). Presence of developing ramets of Fragaria vesca L. increases photochemical efficiency in parent ramets. International Journal of Plant Sciences, 166, 795-803.
DOI URL |
[25] |
Roiloa SR, Retuerto R ( 2006a). Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil. Functional Plant Biology, 33, 961-971.
DOI URL PMID |
[26] |
Roiloa SR, Retuerto R ( 2006b). Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Annals of Botany, 98, 1043-1052.
URL PMID |
[27] | Stuefer JF (1997). Division of Labour in Clonal Plants? On the Response of Stoloniferous Herbs to Environmental Heterogeneity. PhD dissertation, Utrecht University Press, Utrecht, The Netherlands. |
[28] |
Stuefer JF, During HJ, de Kroon H ( 1994). High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. Journal of Ecology, 82, 511-518.
DOI URL |
[29] | Suzuki JI, Hutchings MJ (1997). Interactions between shoots in clonal plants and the effects of stored resources on the structure of shoot populations. In: de Kroon H, van Groenendael J eds. The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden. 311-329. |
[30] |
Suzuki JI, Stuefer JF ( 1999). On the ecological and evolutionary significance of storage in clonal plants. Plant Species Biology, 14, 11-17.
DOI URL |
[31] |
Thompson FL, Eckert CG ( 2004). Trade-offs between sexual and clonal reproduction in an aquatic plant: experimental manipulations vs. phenotypic correlations. Journal of Evolutionary Biology, 17, 581-592.
DOI URL PMID |
[32] |
Watson MA ( 2008). Resource storage and the expression of clonal plant life histories. Evolutionary Ecology, 22, 471-475.
DOI URL |
[33] |
Wijesinghe DK, Hutchings MJ ( 1997). The effects of spatial scale of environmental heterogeneity on the growth of a clonal plant: an experimental study with Glechoma hederacea. Journal of Ecology, 85, 17-28.
DOI URL |
[34] |
Winkler E, Fischer M ( 1999). Two fitness measures for clonal plants and the importance of spatial aspects. Plant Ecology, 141, 191-199.
DOI URL |
[35] |
Xiao KY, Yu D, Xu XW, Xiong W ( 2007). Benefits of clonal integration between interconnected ramets of Vallisneria spiralis in heterogeneous light environments. Aquatic Botany, 86, 76-82.
DOI URL |
[36] |
Yang YF, Zhang BT (2004). Clone growth and its age structure of Leymus secalimus modules in the Songnen Plain of China. Chinese Journal of Applied Ecology, 15, 2109-2112. (in Chinese with English abstract)
URL PMID |
[ 杨允菲, 张宝田 ( 2004). 松嫩平原赖草无性系生长及其构件的年龄结构. 应用生态学报, 15, 2109-2112.]
URL PMID |
|
[37] | Yang YF, Zheng HY ( 2000). Age structure of clone population of Calamagrostis pseudophragmites in Songnen Plain of China. Acta Prataculturae Sinica, 9(3), 8-13. (in Chinese with English abstract) |
[ 杨允菲, 郑慧莹 ( 2000). 松嫩平原假苇拂子茅无性系种群的年龄结构. 草业学报, 9(3), 8-13.] | |
[38] |
Ye XH, Yu FH, Dong M ( 2006). A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Annals of Botany, 98, 187-191.
DOI URL PMID |
[39] |
Yu FH, Dong M, Krüsi B ( 2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162, 697-704.
DOI URL |
[40] | Yu FH, Dong M, Zhang CY ( 2002). Intraclonal resource sharing and functional specialization of ramets in response to resource heterogeneity in three stoloniferous herbs. Acta Botanica Sinica, 44, 468-473. |
[41] | Yu FH, Dong M, Zhang CY, Zhang SM ( 2002). Phenotypic plasticity in response to salinity gradient in a stoloniferous herb Halerpestes ruthenica. Acta Phytoecologica Sinica, 26, 140-148. (in Chinese with English abstract) |
[ 于飞海, 董鸣, 张称意, 张淑敏 ( 2002). 匍匐茎草本金戴戴对基质盐分含量的表型可塑性. 植物生态学报, 26, 140-148.] | |
[42] | Zhang XS (张新时) ( 1994). Principles and optimal models for development of Maowusu sandy grassland. Acta Phytoevologica Sinica, 18, 1-16. (in Chinese with English abstract) |
[ 张新时 ( 1994). 毛乌素沙地的生态背景及其草地建设的原则与优化模式. 植物生态学报, 18, 1-16.] | |
[43] | Zhu LY (1993). Site Quality Evaluation of Trees and Shrubs in Mu Us Sandy Land. China Forestry Publishing House, Beijing. (in Chinese) |
[ 朱灵益 (1993). 毛乌素沙地乔灌木立地质量评价. 中国林业出版社, 北京.] |
[1] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[2] | 王雪梅, 闫帮国, 史亮涛, 刘刚才. 车桑子幼苗生物量分配与叶性状对氮磷浓度的响应差异[J]. 植物生态学报, 2020, 44(12): 1247-1261. |
[3] | 周玮, 李洪波, 曾辉. 西藏高寒草原群落植物根系属性在降水梯度下的变异格局[J]. 植物生态学报, 2018, 42(11): 1094-1102. |
[4] | 颉洪涛, 虞木奎, 成向荣. 光照强度变化对5种耐阴植物氮磷养分含量、分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5): 559-569. |
[5] | 郭京衡, 曾凡江, 李尝君, 张波. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1): 36-44. |
[6] | 魏宇航,周晓波,陈劲松,谌利民,李娇,刘庆. 模拟采食干扰下克隆整合对两种箭竹分株种群更新的影响[J]. 植物生态学报, 2013, 37(8): 699-708. |
[7] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[8] | 刘富俊, 黎云祥, 廖咏梅, 陈劲松, 权秋梅, 龚新越. 异质性重金属镉胁迫下克隆整合对匍匐茎草本植物积雪草生长的影响[J]. 植物生态学报, 2011, 35(8): 864-871. |
[9] | 刘长成, 刘玉国, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报, 2011, 35(10): 1070-1082. |
[10] | 杨小林, 张希明, 李义玲, 李绍才, 孙海龙. 塔克拉玛干沙漠腹地3种植物根系构型 及其生境适应策略[J]. 植物生态学报, 2008, 32(6): 1268-1276. |
[11] | 梁士楚, 张淑敏, 于飞海, 董鸣. 绢毛匍匐委陵菜与土壤有效磷的小尺度空间相关分析[J]. 植物生态学报, 2007, 31(4): 613-618. |
[12] | 张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6): 844-852. |
[13] | 陈玉福, 董鸣. 毛乌素沙地根茎灌木羊柴的基株表现特征和不同生境中的分株种群表现特征[J]. 植物生态学报, 2000, 24(1): 40-45. |
[14] | 董鸣, 阿拉腾宝, 邢雪荣, 王其兵. 根茎禾草沙鞭的克隆基株及分株种群特征[J]. 植物生态学报, 1999, 23(4): 302-310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19