植物生态学报 ›› 2013, Vol. 37 ›› Issue (5): 415-426.DOI: 10.3724/SP.J.1258.2013.00043
黄运峰1,路兴慧1,臧润国1,*(),丁易1,龙文兴2,王进强3,杨民3,黄运天3
发布日期:
2013-05-16
通讯作者:
臧润国
基金资助:
HUANG Yun-Feng1,LU Xing-Hui1,ZANG Run-Guo1,*(),DING Yi1,LONG Wen-Xing2,WANG Jin-Qiang3,YANG Min3,HUANG Yun-Tian3
Published:
2013-05-16
Contact:
ZANG Run-Guo
摘要:
研究群落构建机制是群落生态学的一个重要目标, 群落动态过程中的构建规律对于了解群落演替机理有重要的作用。该文以海南岛刀耕火种干扰后自然恢复的10 hm 2热带低地雨林为研究对象, 通过比较不同恢复阶段的次生林(15年、30年和60年)和老龄林在幼苗、幼树和成年树群落的物种组成, 揭示次生演替过程中的群落构建规律。研究结果表明, 老龄林中不同径级群落的物种多样性及不同径级间的物种相似度显著高于各恢复阶段的次生林, 但优势种在群落中的比例低于各恢复阶段的次生林。随着自然恢复过程的进行, 次生林群落物种组成与老龄林的相似性也逐渐增大, 支持演替平衡理论。所有恢复阶段样地中幼苗的个体、物种丰富度和基于多度涵盖估计量(ACE)都低于幼树和成年树群落, 幼苗层物种组成与幼树、成年树也有较大差异, 说明新增到幼苗群落可能是一个难于预测的过程。研究结果说明了确定过程和随机过程共同决定了次生演替的群落构建。
黄运峰,路兴慧,臧润国,丁易,龙文兴,王进强,杨民,黄运天. 海南岛热带低地雨林刀耕火种弃耕地自然恢复过程中的群落构建. 植物生态学报, 2013, 37(5): 415-426. DOI: 10.3724/SP.J.1258.2013.00043
HUANG Yun-Feng,LU Xing-Hui,ZANG Run-Guo,DING Yi,LONG Wen-Xing,WANG Jin-Qiang,YANG Min,HUANG Yun-Tian. Community assembly during recovery of tropical lowland rain forest from abandoned shifting cultivation lands on Hainan Island, China. Chinese Journal of Plant Ecology, 2013, 37(5): 415-426. DOI: 10.3724/SP.J.1258.2013.00043
图1 霸王岭林区(BFR) 10个1 hm2 (100 m × 100 m)监测样地(■)的位置分布图。LSA1和LSA2是15年森林样地; LSB1和LSB2是30年森林样地; LSC1、LSC2、LSD1和LSD2是60年森林样地; LOG1和LOG2是老龄林森林样地。
Fig. 1 A map showing the locations of ten 1-hm2 (100 m × 100 m) monitoring plots (■) in Bawangling forest region (BFR). LSA1 and LSA2 are 15 year-old forest plots; LSB1 and LSB2 are 30 year-old forest plots; LSC1, LSC2, LSD1 and LSD2 are 60 year-old forest plots; LOG1 and LOG2 are old-growth forest plots.
样地 Plot | 森林年龄 Forest age (a) | 个体数 Number of individuals | 实测物种丰富度 Species richness of observed | 稀疏化的物种数(95%置信区间) Rarefied species number (95% CI) | Fisher’s α | 基于多度涵盖估计量 Abundance-based coverage estimator | Simpson均匀度 Simpson’s evenness | 优势度 Dominance (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | ||||||||
LSA1 | 15 | 1 408 | 7 254 | 1 012 | 39 | 76 | 44 | 36 (32-39) | 55 (47-63) | 35 (27-43) | 3.51 | 6.94 | 4.9 | 44 | 93 | 61 | 0.66 | 0.84 | 0.78 | 80.8 | 52.9 | 64 | ||||||
LSA2 | 15 | 1 709 | 6 773 | 1 150 | 38 | 77 | 39 | 33 (28-38) | 52 (43-61) | 31 (25-36) | 4.60 | 6.30 | 4.4 | 49 | 106 | 44 | 0.73 | 0.82 | 0.76 | 67.9 | 58.8 | 71.8 | ||||||
LSB1 | 30 | 1 439 | 4 294 | 800 | 71 | 95 | 48 | 63 (57-70) | 79 (72-85) | 39 (32-46) | 9.14 | 8.53 | 4.64 | 90 | 109 | 62 | 0.74 | 0.80 | 0.67 | 55.5 | 61.9 | 78 | ||||||
LSB2 | 30 | 2 355 | 8 935 | 863 | 35 | 85 | 41 | 29 (24-34) | 55 (46-63) | 36 (32-41) | 4.55 | 5.95 | 6.89 | 40 | 109 | 48 | 0.76 | 0.84 | 0.81 | 69.7 | 65.1 | 64.9 | ||||||
LSC1 | 60 | 1 444 | 6 757 | 938 | 55 | 83 | 52 | 50 (44-55) | 60 (53-68) | 42 (36-47) | 6.80 | 5.61 | 4.64 | 69 | 110 | 60 | 0.76 | 0.73 | 0.74 | 65.5 | 72.6 | 67.7 | ||||||
LSC2 | 60 | 1 721 | 5 783 | 905 | 54 | 89 | 45 | 46 (38-53) | 66 (58-74) | 36 (29-42) | 6.33 | 6.55 | 5.65 | 78 | 116 | 62 | 0.77 | 0.77 | 0.78 | 65.9 | 68.5 | 76.1 | ||||||
LSD1 | 60 | 1 386 | 4 981 | 802 | 63 | 108 | 53 | 57 (49-65) | 84 (75-93) | 43 (35-51) | 8.90 | 7.89 | 5.31 | 76 | 132 | 75 | 0.79 | 0.77 | 0.76 | 58.2 | 69.7 | 71.6 | ||||||
LSD2 | 60 | 2 447 | 5 245 | 908 | 57 | 99 | 69 | 45 (38-51) | 77 (68-85) | 57 (49-65) | 6.91 | 10.29 | 10.65 | 75 | 124 | 85 | 0.81 | 0.87 | 0.87 | 66.7 | 43.4 | 39.8 | ||||||
LOG1 | OG | 1 246 | 2 783 | 595 | 106 | 127 | 65 | 102 (93-110) | 117 (106-128) | 61 (54-68) | 25.23 | 15.63 | 9.12 | 120 | 158 | 83 | 0.85 | 0.87 | 0.78 | 25.4 | 42.2 | 50.3 | ||||||
LOG2 | OG | 1 216 | 2 440 | 524 | 103 | 123 | 68 | 96 (83-110) | 117 (109-126) | 67 (57-76) | 19.40 | 16.31 | 9.52 | 144 | 139 | 110 | 0.83 | 0.85 | 0.76 | 40.8 | 40.8 | 47.3 |
表1 霸王岭林区10个1 hm2 (100 m × 100 m)监测样中成年树(TR)、幼树(SA)和幼苗(SG)的林龄、物种多度、物种多样性和优势度统计
Table 1 Forest age, species abundance, species diversity and dominance for adult trees (TR), saplings (SA) and seedlings (SG) in ten 1-hm2 (100 m × 100 m) monitoring plots in Bawangling forest region
样地 Plot | 森林年龄 Forest age (a) | 个体数 Number of individuals | 实测物种丰富度 Species richness of observed | 稀疏化的物种数(95%置信区间) Rarefied species number (95% CI) | Fisher’s α | 基于多度涵盖估计量 Abundance-based coverage estimator | Simpson均匀度 Simpson’s evenness | 优势度 Dominance (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | TR | SA | SG | ||||||||
LSA1 | 15 | 1 408 | 7 254 | 1 012 | 39 | 76 | 44 | 36 (32-39) | 55 (47-63) | 35 (27-43) | 3.51 | 6.94 | 4.9 | 44 | 93 | 61 | 0.66 | 0.84 | 0.78 | 80.8 | 52.9 | 64 | ||||||
LSA2 | 15 | 1 709 | 6 773 | 1 150 | 38 | 77 | 39 | 33 (28-38) | 52 (43-61) | 31 (25-36) | 4.60 | 6.30 | 4.4 | 49 | 106 | 44 | 0.73 | 0.82 | 0.76 | 67.9 | 58.8 | 71.8 | ||||||
LSB1 | 30 | 1 439 | 4 294 | 800 | 71 | 95 | 48 | 63 (57-70) | 79 (72-85) | 39 (32-46) | 9.14 | 8.53 | 4.64 | 90 | 109 | 62 | 0.74 | 0.80 | 0.67 | 55.5 | 61.9 | 78 | ||||||
LSB2 | 30 | 2 355 | 8 935 | 863 | 35 | 85 | 41 | 29 (24-34) | 55 (46-63) | 36 (32-41) | 4.55 | 5.95 | 6.89 | 40 | 109 | 48 | 0.76 | 0.84 | 0.81 | 69.7 | 65.1 | 64.9 | ||||||
LSC1 | 60 | 1 444 | 6 757 | 938 | 55 | 83 | 52 | 50 (44-55) | 60 (53-68) | 42 (36-47) | 6.80 | 5.61 | 4.64 | 69 | 110 | 60 | 0.76 | 0.73 | 0.74 | 65.5 | 72.6 | 67.7 | ||||||
LSC2 | 60 | 1 721 | 5 783 | 905 | 54 | 89 | 45 | 46 (38-53) | 66 (58-74) | 36 (29-42) | 6.33 | 6.55 | 5.65 | 78 | 116 | 62 | 0.77 | 0.77 | 0.78 | 65.9 | 68.5 | 76.1 | ||||||
LSD1 | 60 | 1 386 | 4 981 | 802 | 63 | 108 | 53 | 57 (49-65) | 84 (75-93) | 43 (35-51) | 8.90 | 7.89 | 5.31 | 76 | 132 | 75 | 0.79 | 0.77 | 0.76 | 58.2 | 69.7 | 71.6 | ||||||
LSD2 | 60 | 2 447 | 5 245 | 908 | 57 | 99 | 69 | 45 (38-51) | 77 (68-85) | 57 (49-65) | 6.91 | 10.29 | 10.65 | 75 | 124 | 85 | 0.81 | 0.87 | 0.87 | 66.7 | 43.4 | 39.8 | ||||||
LOG1 | OG | 1 246 | 2 783 | 595 | 106 | 127 | 65 | 102 (93-110) | 117 (106-128) | 61 (54-68) | 25.23 | 15.63 | 9.12 | 120 | 158 | 83 | 0.85 | 0.87 | 0.78 | 25.4 | 42.2 | 50.3 | ||||||
LOG2 | OG | 1 216 | 2 440 | 524 | 103 | 123 | 68 | 96 (83-110) | 117 (109-126) | 67 (57-76) | 19.40 | 16.31 | 9.52 | 144 | 139 | 110 | 0.83 | 0.85 | 0.76 | 40.8 | 40.8 | 47.3 |
图2 不同林龄(15年、30年、60年次生林和老龄林(OG))成年树(A, B)、幼树(C, D)和幼苗(E, F)的种多度累积曲线和种多度等级分布曲线。
Fig. 2 Species-abundance accumulation curves and species rank-abundance distribution curves for adult trees (A, B), saplings (C, D) and seedlings (E, F) in each forest age category: 15, 30 and 60 year-old secondary forest and old-growth forest (OG).
图3 不同林龄(15年、30年、60年次生林和老龄林)中成年树(■)、幼树(□)、幼苗(○)的无度量多维标定图。无度量多维标定图分别基于Chao-Jaccard相似性指数(A)和S?rensen指数(B)产生。LSA1和LSA2是15年森林样地; LSB1和LSB2是30年森林样地; LSC1、LSC2、LSD1和LSD2是60年森林样地; LOG1和LOG2是老龄林森林样地。SG、SA和TR分别表示幼苗、幼树和成年树。
Fig. 3 Non-metric dimensional scaling (NMDS) plots of adult trees (■), saplings (□) and seedlings (○) in each forest age category: 15, 30 and 60 year-old secondary forest and old-growth forest. NMDS was calculated using the Chao-Jaccard similarity index (A) and S?rensen index (B). LSA1 and LSA2 are 15 year-old forest plots; LSB1 and LSB2 are 30 year-old forest plots; LSC1, LSC2, LSD1 and LSD2 are 60 year-old forest plots; LOG1 and LOG2 are old-growth forest plots. SG, SA and TR represent seedling, sapling and adult tree, respectively.
图4 不同林龄(15年、30年、60年次生林和老龄林(OG))中由成年树、幼树和幼苗计算的多元群落相似性指数。相似性测度分别基于对3个群落的两两相似性的比较(□)或3个群落的共有信息(○)。
Fig. 4 Species similarity indices calculated across the three size classes (adult trees, saplings, seedlings) for each forest category: 15, 30 and 60 year-old secondary forest and old-growth forest (OG). The similarity measure was calculated among three communities based on shared information between any two communities (□) or using all shared information (○).
图5 不同林龄的次生林和老龄林(OG)中不同径级群落的Horn相似性指数。Horn相似指数的计算分别是: A, 次生林成年树与OG成年树。B, 次生林幼树与OG成年树。C, 次生林幼苗与OG成年树。D, 次生林幼树与OG幼树。E, 次生林幼苗与OG幼苗。图中的空心小方格表示次生林每个林龄与OG比较的所有平均值(±标准误差)。图A、D、E中OG的空心小方格为两个老龄林样地间的比较。SG、SA和TR分别表示幼苗、幼树和成年树。
Fig. 5 Horn similarity indices across size classes for between secondary forest and old-growth forest (OG). The Horn similarity indices were calculated between secondary forest (SF) adult trees and OG adult tress (A), SF saplings and OG adult trees (B), SF seedlings and OG adult trees (C), SF saplings and OG saplings (D), and SF seedlings and OG seedlings (E), respectively. Each open square represents the mean (± SE) similarity index of all possible comparisons between the SF plots in each age category (15, 30 and 60 year-old) and two OG plots. The OG open squares in the figure of A, D, and E represent comparisons between the two OG plots. SG, SA and TR represent seedling, sapling and adult tree, respectively.
[1] |
Adler PB, Ellner SP, Levine JM ( 2010). Coexistence of perennial plants: an embarrassment of niches. Ecology Letters, 13, 1019-1029.
DOI URL PMID |
[2] | Brook BW, Bradshaw CJA, Koh LP, Sodhi NS ( 2006). Momentum drives the crash: mass extinction in the tropics. Biotropica, 38, 302-305. |
[3] | Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Fischer M, Geißler C, Guo DL, Guo LD, Härdtle W, He JS, Hector A, Kröber W, Kühn P, Lang A, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Shi XZ, Scholten T, Schuldt A, Trogisch S, von Oheimb G, Welk E, Wirth C, Wu YT, Yang XF, Zeng XQ, Zhang SR, Zhou HZ, Ma KP, Schmid B ( 2011). Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 81, 25-41. |
[4] | Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM ( 2011). Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends in Ecology & Evolution, 26, 541-549. |
[5] | Bustamante-Sánchez MA, Armesto JJ ( 2012). Seed limitation during early forest succession in a rural landscape on Chiloé Island, Chile: implications for temperate forest restoration. Journal of Applied Ecology, 49, 1103-1112. |
[6] | Bustamante-Sánchez MA, Armesto JJ, Halpern CB ( 2011). Biotic and abiotic controls on tree colonization in three early successional communities of Chiloé Island, Chile. Journal of Ecology, 99, 288-299. |
[7] |
Cale WG, Henebry GM, Yeakley JA ( 1989). Inferring process from pattern in natural communities. BioScience, 39, 600-605.
DOI URL |
[8] | Capers RS, Chazdon RL, Brenes AR, Alvarado BV ( 2005). Successional dynamics of woody seedling communities in wet tropical secondary forests. Journal of Ecology, 93, 1071-1084. |
[9] | Chao A, Chazdon RL, Colwell RK, Shen TJ ( 2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8, 148-159. |
[10] |
Chao A, Jost L, Chiang SC, Jiang YH, Chazdon RL ( 2008). A two-stage probabilistic approach to multiple-community similarity indices. Biometrics, 64, 1178-1186.
URL PMID |
[11] | Chave J ( 2004). Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[12] | Chazdon RL (2008). Chance and determinism in tropical forest succession. In: Carson WP, Schnitzer SA eds. Tropical Forest Community Ecology. Wiley-Blackwell, Chichester, UK. 384-408. |
[13] | Chazdon RL, Letcher SG, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B ( 2007). Rates of change in tree communities of secondary neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B-Biological Sciences, 362, 273-289. |
[14] | Comita LS, Aguilar S, Pérez R, Lao S, Hubbell SP ( 2007). Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest. Journal of Vegetation Science, 18, 163-174. |
[15] |
Dalling JW, Hubbell SP, Silvera K ( 1998). Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. Journal of Ecology, 86, 674-689.
DOI URL |
[16] | de Steven D, Wright SJ ( 2002). Consequences of variable reproduction for seedling recruitment in three neotropical tree species. Ecology, 83, 2315-2327. |
[17] | Dent DH, DeWalt SJ, Denslow JS ( 2013). Secondary forests of central Panama increase in similarity to old-growth forest over time in shade tolerance but not species composition. Journal of Vegetation Science, 24, 530-542. |
[18] | Ding Y, Zang RG ( 2008). Changes in deciduous trees during recovery of tropical lowland rain forests on abandoned shifting cultivation lands in Hainan Island, South China. Biodiversity Science, 16, 103-109. (in Chinese with English abstract) |
[ 丁易, 臧润国 ( 2008). 海南岛热带低地雨林刀耕火种弃耕地恢复过程中落叶树种的变化. 生物多样性, 16, 103-109.] | |
[19] | Ding Y, Zang RG ( 2011). Vegetation recovery dynamics of tropical lowland rain forest in Bawangling of Hainan Island, South China. Chinese Journal of Plant Ecology, 35, 577-586. (in Chinese with English abstract) |
[ 丁易, 臧润国 ( 2011). 海南岛霸王岭热带低地雨林植被恢复动态. 植物生态学报, 35, 577-586.] | |
[20] | Ding Y, Zang RG, Liu SR, He FL, Letcher SG ( 2012). Recovery of woody plant diversity in tropical rain forests in southern China after logging and shifting cultivation. Biological Conservation, 145, 225-233. |
[21] | Ewel J ( 1980). Tropical succession: manifold routes to maturity. Biotropica, 12(Suppl.), 2-7. |
[22] | Ewel J, Berish C, Brown B, Price N, Raich J ( 1981). Slash and burn impacts on a Costa Rican wet forest site. Ecology, 62, 816-829. |
[23] | Finegan B ( 1996). Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trends in Ecology & Evolution, 11, 119-124. |
[24] | Götzenberger L, de Bello F, Anne Bråthen K, Davison J, Dubuis A, Guisan A, Lepš J, Lindborg R, Moora M, Pärtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M ( 2012). Ecological assembly rules in plant communities— approaches, patterns and prospects. Biological Reviews of the Cambridge Philosophical Society, 87, 111-127. |
[25] | Guariguata MR, Ostertag R ( 2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185-206. |
[26] | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM ( 2012). Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227-248. |
[27] | Huang YF, Ding Y, Zang RG, Li XC, Zou ZC, Han WT ( 2012). Spatial pattern of trees in tropical lowland rain forest in Bawangling of Hainan Island, China. Chinese Journal of Plant Ecology, 36, 269-280. (in Chinese with English abstract) |
[ 黄运峰, 丁易, 臧润国, 李小成, 邹正冲, 韩文涛 ( 2012). 海南岛霸王岭热带低地雨林树木的空间格局. 植物生态学报, 36, 269-280.] | |
[28] | Hubbell SP (2001). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. |
[29] |
Johnson EA, Miyanishi K ( 2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431.
DOI URL PMID |
[30] | Jost L ( 2006). Entropy and diversity. Oikos, 113, 363-375. |
[31] | Kennard DK ( 2002). Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. Journal of Tropical Ecology, 18, 53-66. |
[32] |
Laurance WF ( 2007). Have we overstated the tropical biodiversity crisis? Trends in Ecology & Evolution, 22, 65-70.
URL PMID |
[33] | Lawrence D, Suma V, Mogea JP ( 2005). Change in species composition with repeated shifting cultivation: limited role of soil nutrients. Ecological Applications, 15, 1952-1967. |
[34] | Letcher SG, Chazdon RL ( 2009). Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica, 41, 608-617. |
[35] | Lozada T, de Koning GHJ, Marché R, Klein AM, Tscharntke T ( 2007). Tree recovery and seed dispersal by birds: comparing forest, agroforestry and abandoned agroforestry in coastal Ecuador. Perspectives in Plant Ecology, Evolution and Systematics, 8, 131-140. |
[36] |
Marín-Spiotta E, Silver WL, Ostertag R ( 2007). Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecological Applications, 17, 828-839.
DOI URL PMID |
[37] | Mascaro J, Asner GP, Dent DH, DeWalt SJ, Denslow JS ( 2012). Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: a test of the intermediate peak hypothesis. Forest Ecology and Management, 276, 62-70. |
[38] |
Montoya D, Rogers L, Memmott J ( 2012). Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends in Ecology & Evolution, 27, 666-672.
URL PMID |
[39] |
Nathan R, Muller-Landau HC ( 2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15, 278-285.
DOI URL PMID |
[40] | Norden N, Chave J, Caubère A, Châtelet P, Ferroni N, Forget PM, Thébaud C ( 2007). Is temporal variation of seedling communities determined by environment or by seed arrival? A test in a neotropical forest. Journal of Ecology, 95, 507-516. |
[41] |
Norden N, Chazdon RL, Chao A, Jiang YH, Vílchez-Alvarado B ( 2009). Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters, 12, 385-394.
DOI URL PMID |
[42] | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012). vegan: Community Ecology Package. R package version 2.0-4. http://cran.r-project.org/web/ packages/vegan/index.html. Cited Dec. 2012. |
[43] | Pakeman RJ ( 2011). Functional diversity indices reveal the impacts of land use intensification on plant community assembly. Journal of Ecology, 99, 1143-1151. |
[44] | Peña-Claros M ( 2003). Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon. Biotropica, 35, 450-461. |
[45] | R Development Core Team ( 2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[46] |
Rees M, Condit R, Crawley M, Pacala S, Tilman D ( 2001). Long-term studies of vegetation dynamics. Science, 293, 650-655.
DOI URL PMID |
[47] | Schechtman E, Wang SJ ( 2004). Jackknifing two-sample statistics. Journal of Statistical Planning and Inference, 119, 329-340. |
[48] | Schlawin JR, Zahawi RA ( 2008). “Nucleating” succession in recovering neotropical wet forests: the legacy of remnant trees. Journal of Vegetation Science, 19, 485-492. |
[49] |
Seidler TG, Plotkin JB ( 2006). Seed dispersal and spatial pattern in tropical trees. PLoS Biology, 4, e344.
DOI URL PMID |
[50] |
Suding KN ( 2011). Toward an era of restoration in ecology: successes, failures, and opportunities ahead. Annual Review of Ecology, Evolution, and Systematics, 42, 465-487.
DOI URL |
[51] |
Turner BL, Wells A, Andersen KM, Condron LM ( 2012). Patterns of tree community composition along a coastal dune chronosequence in lowland temperate rain forest in New Zealand. Plant Ecology, 213, 1525-1541.
DOI URL |
[52] |
Wright SJ, Muller-Landau HC ( 2006). The future of tropical forest species. Biotropica, 38, 287-301.
DOI URL |
[53] | Zang RG, Ding Y, Zhang ZD, Deng FY, Mao PL (2010). Ecological Foundation of Conservation and Restoration for the Major Functional Groups in Tropical Natural Forests on Hainan Island. Science Press, Beijing. (in Chinese) |
[ 臧润国, 丁易, 张志东, 邓福英, 毛培利 (2010). 海南岛热带天然林主要功能群保护与恢复的生态学基础. 科学出版社, 北京.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[4] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[5] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[6] | 左永令, 杨小波, 李东海, 吴二焕, 杨宁, 李龙, 张培春, 陈琳, 李晨笛. 环境因子对海南岛野生兰科植物物种组成与分布格局的影响[J]. 植物生态学报, 2021, 45(12): 1341-1349. |
[7] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[8] | 罗金环, 谭照远, 陈斌, 陈广武, 姜凯, 何奇芳, 张辉. 银合欢成功入侵热带雨林先锋群落的关键因素[J]. 植物生态学报, 2020, 44(12): 1215-1223. |
[9] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[10] | 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. 华北区域环境梯度上阔叶林构建模式及分布成因[J]. 植物生态学报, 2019, 43(9): 732-741. |
[11] | 柴永福, 许金石, 刘鸿雁, 刘全儒, 郑成洋, 康慕谊, 梁存柱, 王仁卿, 高贤明, 张峰, 福臣, 刘晓, 岳明. 华北地区主要灌丛群落物种组成及系统发育结构特征[J]. 植物生态学报, 2019, 43(9): 793-805. |
[12] | 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. 黄土高原腹地人工林下草本层群落构建机制[J]. 植物生态学报, 2019, 43(9): 834-842. |
[13] | 唐丽丽, 张梅, 赵香林, 康慕谊, 刘鸿雁, 高贤明, 杨彤, 郑璞帆, 石福臣. 华北地区胡桃楸林分布规律及群落构建机制分析[J]. 植物生态学报, 2019, 43(9): 753-761. |
[14] | 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208-216. |
[15] | 程毅康, 张辉, 王旭, 龙文兴, 李超, 方燕山, 符明期, 朱孔新. 功能多样性和谱系多样性对热带云雾林群落构建的影响[J]. 植物生态学报, 2019, 43(3): 217-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19