植物生态学报 ›› 2020, Vol. 44 ›› Issue (12): 1215-1223.DOI: 10.17521/cjpe.2020.0137
罗金环1, 谭照远2,3, 陈斌4, 陈广武4, 姜凯2,3, 何奇芳2,3, 张辉2,3,**()
收稿日期:
2020-05-11
接受日期:
2020-06-17
出版日期:
2020-12-20
发布日期:
2021-04-01
通讯作者:
张辉
作者简介:
**(993781@hainu.edu.cn)* 同等贡献Contributed equally to this work.
LUO Jin-Huan1, TAN Zhao-Yuan2,3, CHEN Bin4, CHEN Guang-Wu4, JIANG Kai2,3, HEI Qi-Fang2,3, ZHANG Hui2,3,**()
Received:
2020-05-11
Accepted:
2020-06-17
Online:
2020-12-20
Published:
2021-04-01
Contact:
ZHANG Hui
About author:
**(993781@hainu.edu.cn)摘要:
由于生长速率高, 耐旱性强, 银合欢(Leucaena leucocephala)被广泛应用于世界各地退化热带亚热带森林的修复, 但它也是一种全球性的外来入侵植物。已经有研究发现高生长速率可以帮助银合欢成功入侵亚热带森林, 但是目前还不清楚高生长速率和强耐旱性是否能帮助银合欢成功入侵热带森林。该研究以位于中国三亚抱坡岭被银合欢入侵的热带雨林先锋群落为研究对象, 通过t检验比较干季和湿季银合欢和8个热带雨林先锋群落的本地优势种与快速生长(光合速率、气孔导度和蒸腾速率)和耐旱性(叶片膨压丧失点)紧密相关的功能性状的差异, 并利用主成分分析(PCA)研究这些功能性状是否能很好地区分银合欢和其他8个本地优势种。结果表明: 银合欢在干湿季均能快速地生长(比本地物种显著更高的光合速率、气孔导度和蒸腾速率), 且在干季拥有更强的耐旱性(比本地物种显著更低的叶片膨压丧失点)。PCA结果表明这些功能性状能够显著区分银合欢和其他8个本地优势种。因此干湿季的稳定的快速生长和干季的强耐旱性使银合欢成功入侵热带雨林先锋群落。未来可利用这些功能性状筛选合适的本地物种对入侵其他热带森林的银合欢进行有效的生物防治。
罗金环, 谭照远, 陈斌, 陈广武, 姜凯, 何奇芳, 张辉. 银合欢成功入侵热带雨林先锋群落的关键因素. 植物生态学报, 2020, 44(12): 1215-1223. DOI: 10.17521/cjpe.2020.0137
LUO Jin-Huan, TAN Zhao-Yuan, CHEN Bin, CHEN Guang-Wu, JIANG Kai, HEI Qi-Fang, ZHANG Hui. Key characteristics for facilitating Leucaena leucocephala to successfully invade pioneer communities of tropical rain forests. Chinese Journal of Plant Ecology, 2020, 44(12): 1215-1223. DOI: 10.17521/cjpe.2020.0137
图1 利用银合欢修复三亚抱坡岭极度退化的热带雨林前后的抱坡岭景观。
Fig. 1 Baopoling landscapes before and after using Leucaena leucocephala to perform reforestation in the extremely degraded tropical rain forest.
图2 银合欢从种植到入侵邻近热带雨林先锋群落的过程。
Fig. 2 Detail processes for describing how Leucaena leucocephala successfully invades the adjacent pioneer community of tropical rain forest.
图3 银合欢和三亚抱坡岭8个本地优势种在干湿季时的4种功能性状之间的差异(平均值+标准误差)。***, p < 0.05; NS, p > 0.05。
Fig. 3 Differences in four functional traits between dry and wet season for Leucaena leucocephala and the eight dominant native species in the Baopoling Mountain, Sanya, China (mean + SE). ***, p < 0.05; NS, p > 0.05.
图4 银合欢和三亚抱坡岭8个本地优势种在4种功能性状上的差异(平均值+标准误差)。 A, 银合欢; B, 土蜜树; C, 美叶菜豆树; D, 赤才; E, 石斑木; F, 翻白叶树; G, 瓜馥木; H, 九节; I, 葨芝。***, p < 0.05; NS, p > 0.05。
Fig. 4 Differences in four functional traits between Leucaena leucocephala and each of the eight dominant native plant species in the Baopoling Mountain, Sanya, China (mean + SE). A, Leucaena leucocephala; B, Bridelia tomentosa; C, Radermachera frondosa; D, Lepisanthes rubiginosa; E, Rhaphiolepis indica; F, Pterospermum heterophyllum; G, Fissistigma oldhamii; H, Psychotria asiatica; I, Maclura cochinchinensis. ***, p < 0.05; NS, p > 0.05
图5 银合欢和三亚抱坡岭8个本地优势种基于4种功能性状的主成分分析。 A, 干季。B, 湿季。
Fig. 5 Principal component analysis of the four functional traits between Leucaena leucocephala and the eight doimant native plant species in the Baopoling Mountain, Sanya, China. A, Dry season. B, Wet season.
功能性状 Functional trait | 轴1 PC1 | 轴2 PC2 |
---|---|---|
蒸腾速率 Transpiration rate | 0.51 | -0.16 |
最大光合速率 Maximum photosynthesis rate | 0.77 | -0.15 |
气孔导度 Stomatal conductance | 0.58 | -0.19 |
叶片膨压丧失点 Leaf turgor loss point | 0.11 | 0.53 |
表1 银合欢和三亚抱坡岭8个本地优势种基于4种功能性状的主成分分析前两轴
Table 1 The first two axes of a principal component analysis for Leucaena leucocephala and the eight dominant native species in the Baopoling Mountain, Sanya, China, based on four plant functional traits
功能性状 Functional trait | 轴1 PC1 | 轴2 PC2 |
---|---|---|
蒸腾速率 Transpiration rate | 0.51 | -0.16 |
最大光合速率 Maximum photosynthesis rate | 0.77 | -0.15 |
气孔导度 Stomatal conductance | 0.58 | -0.19 |
叶片膨压丧失点 Leaf turgor loss point | 0.11 | 0.53 |
[1] |
Barros V, Melo A, Santos M, Nogueira L, Frosi G, Santos MG (2020). Different resource-use strategies of invasive and native woody species from a seasonally dry tropical forest under drought stress and recovery. Plant Physiology and Biochemistry, 147, 181-190.
URL PMID |
[2] |
Bartlett MK, Scoffoni C, Sack L (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15, 393-405.
URL PMID |
[3] |
Bartlett MK, Zhang Y, Yang J, Kreidler N, Sun SW, Lin L, Hu YH, Cao KF, Sack L (2015). Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes. Ecology, 97,503-514.
DOI URL PMID |
[4] | Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytologist, 188, 1113-1123. |
[5] |
Bucci SJ, Carbonell-Silletta LM, Garré A, Cavallaro A, Efron ST, Arias NS, Goldstein G, Scholz FG (2019). Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Plant, Cell & Environment, 42,1603-1614.
URL PMID |
[6] | Chiou CR, Chen YJ, Wang HH, Grant WE (2016). Predicted range expansion of the invasive plant Leucaena leucocephala in the Hengchun Peninsula, Taiwan. Biological Invasions, 18, 381-394. |
[7] |
dos Santos VAHF, Ferreira MJ, Rodrigues JVFC, Garcia MN, Ceron JVB, Nelson BW, Saleska SR (2018). Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest. Global Change Biology, 24, 4266-4279.
URL PMID |
[8] |
Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008). Restoration through reassembly: plant traits and invasion resistance. Trends in Ecology & Evolution, 23, 695-703.
URL PMID |
[9] | Gibson AH, Dreyfus BL, Dommergues YR (1982). Nitrogen Fixation by Legumes in the Tropics. Microbiology of Tropical Soils and Plant Productivity, Springer, Dordrecht, the Netherlands. |
[10] | Goel VL, Behl HM (2002). Selection of Leucaena species for afforestation and amelioration of sodic soils. Land Degradation & Development, 13, 387-393. |
[11] | Guan K, Pan M, Li H, Wolf A, Wu J, Medvigy D, Caylor KK, Sheffield J, Wood EF, Malhi Y, Liang M, Kimball JS, Saleska SR, Berry J, Joiner J, Lyapustin AI (2015). Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nature Geoscience, 8, 284-289. |
[12] | Hua L, Chen Y, Zhang H, Fu P, Fan Z (2017). Stronger cooling effects of transpiration and morphology of the plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202-2211. |
[13] |
Hulme PE, Pyšek P, Jarošík V, Pergl J, Schaffner U, Vila M (2013). Bias and error in understanding plant invasion impacts. Trends in Ecology & Evolution, 28, 212-218.
URL PMID |
[14] | Ishihara KL, Honda MD, Bageel A, Borthakur D (2018). Leucaena leucocephala: a leguminous tree suitable for eroded habitats of Hawaiian islands. Ravine Lands: Greening for Livelihood and Environmental Security, 413-431. |
[15] | Ji ZH, Fang HD, Yang YX, Pan ZX, Yue XW, Li JZ (2010). Mechanism research of gully controlling with Leucaena leucocephala in the Yuanmou Arid Hot Valley. Journal of Soil and Water Conservation, 24, 19-22, 26. |
[ 纪中华, 方海东, 杨艳鲜, 潘志贤, 岳学文, 李建增 (2010). 银合欢对元谋干热河谷冲沟治理的机理研究. 水土保持学报, 24, 19-22, 26.] | |
[16] |
Kirschbaum MU (2011). Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiology, 155, 117-124.
URL PMID |
[17] | Küster EC, Kühn I, Bruelheide H, Klotz S (2008). Trait interactions help explain plant invasion success in the German flora. Journal of Ecology, 96, 860-868. |
[18] |
Laughlin DC (2014). Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 17, 771-784.
DOI URL PMID |
[19] | Lawson T, Vialet-Chabrand S (2019). Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 221, 93-98. |
[20] | Li HS, Cai HJ, Li JM, Deng HY, Zhong BL (2015). A preliminary study on the alien invasive plant species in Huangshanlu Forest Park, Guangzhou. Journal of Guangdong University of Education, 35(5), 73-77. |
[ 李海生, 蔡惠娟, 李济明, 邓华源, 钟碧玲 (2015). 广州南沙黄山鲁森林公园外来入侵植物初步研究. 广东第二师范学院学报, 35(5), 73-77.] | |
[21] | Liu F, Gao C, Chen M, Li K (2018). Above- and below-ground biomass relationships of Leucaena leucocephala(Lam.) de Wit in different plant stands. PLOS ONE, 13, e0207059. DOI: 10.1371/journal.pone.0207059. |
[22] | Luo HX, Dai SP, Li MF, Xie ZH (2018). Analysis on climate change characteristics of Hainan Island from 1959 to 2015. Jiangsu Agricultural Sciences, 46, 261-268. |
[ 罗红霞, 戴声佩, 李茂芬, 谢铮辉 (2018). 海南岛1959-2015年气候变化特征分析. 江苏农业科学, 46, 261-268.] | |
[23] | MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385. |
[24] | Maherali H, Sherrard ME, Clifford MH, Latta RG (2008). Leaf hydraulic conductance and photosynthesis are genetically correlated in an annual grass. New Phytologist, 180, 240-247. |
[25] | McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T (2016). Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist, 211, 1209-1220. |
[26] |
Mitchell PJ, Veneklaas EJ, Lambers H, Burgess SS (2008). Leaf water relations during summer water deficit: differential responses in turgor maintenance and variation in leaf structure among different plant communities in south- western Australia. Plant, Cell & Environment, 31, 1791-1802.
URL PMID |
[27] | Moran VC, Hoffmann JH, Zimmermann HG (2005). Biological control of invasive alien plants in South Africa: necessity, circumspection, and success. Frontiers in Ecology and the Environment, 3, 71-77. |
[28] | Ostertag R, Warman L, Cordell S, Vitousek PM (2015). Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, 52, 805-809. |
[29] | Peng SH, Wang HH, Kuo YL (2019). Methods for preventing the invasion of Leucaena leucocephala in coastal forests of the Hengchun Peninsula, Taiwan. Taiwan Journal of Forest Science, 34, 99-112. |
[30] | Peng Y (2008). Study on Diversity and Invasion in Plantation of Alien Tree Species—Take Eucalyptus spp. Acacia dealbata, Leucaena leucocephala for Example. Master degree dissertation, Southwest Forestry University, Kunming. |
[ 彭芸 (2008). 外来树种人工林下植物多样性及其入侵性研究——以桉树、银荆、银合欢为例. 硕士学位论文, 西南林业大学, 昆明.] | |
[31] | Richardson DM, Rejmánek M (2011). Trees and shrubs as invasive alien species—A global review. Diversity and Distributions, 17, 788-809. |
[32] | Rowland L, da Costa ACL, Oliveira AAR, Almeida SS, Meir P (2018). Shock and stabilisation following long-term drought in tropical forest from 15 years of litterfall dynamics. Journal of Ecology, 106, 1673-1682. |
[33] | Sack L, Cowan P, Jaikumar N, Holbrook N (2003). The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[34] | Schulte P, Hinckley T (1985). A comparison of pressure-volume curve data analysis techniques. Journal of Experimental Botany, 36, 1590-1602. |
[35] | Seastedt TR (2015). Biological control of invasive plant species: a reassessment for the Anthropocene. New Phytologist, 205, 490-502. |
[36] |
van Kleunen M, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
URL PMID |
[37] | Wang C, Zhang H, Liu H, Jian S, Yan J, Liu N (2020). Application of a trait-based species screening framework for vegetation restoration in a tropical coral island of China. Functional Ecology, 267, 25-34. |
[38] | Wang W, Zhang XM, Sha LH Cheng LS (2007). Roster of alien: invasive perilous species of animals and plants in Hainan Island (one). Chinese Journal of Tropical Agriculture, 27, 58-64. |
[ 王伟, 张先敏, 沙林华, 程立生 (2007). 海南岛外来入侵危险性动植物名录(一). 热带农业科学, 27, 58-64.] | |
[39] | Wolfe BT, van Bloem SJ (2012). Subtropical dry forest regeneration in grass-invaded areas of Puerto Rico: understanding why Leucaena leucocephala dominates and native species fail. Forest Ecology and Management, 267, 253-261. |
[40] | Yang XB, Chen ZZ, Li DH (2019). Vegetation of Hainan. Science Press, Beijing. |
[ 杨小波, 陈宗铸, 李东海(2019). 海南植被志. 科学出版社, 北京.] | |
[41] | Zhang H, Chen HYH, Lian J, Chandran RJ, Li RH, Liu H, Ye W, Berninger F, Ye Q (2018a). Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Functional Ecology, 32, 1379-1389. |
[42] |
Zhang H, Chandran RJ, Zhu S, Liu H, Xu Q, Qi W, Liu K, Chen HYH, Ye Q (2018b). Shifts in functional trait-species abundance relationships over secondary subalpine meadow succession in the Qinghai-Tibetan Plateau. Oecologia, 188, 547-557.
URL PMID |
[43] | Zhou LP, He YJ, Ma HC, Zhu CF, Gao Z, Li W, Li FX (2010). Effects of fertilization treatment on seedlings drought tolerance of Leucaena leucephala under different water conditions. Jiangxi Science, 28, 311-319, 358. |
[ 周利平, 和亚珺, 马焕成, 朱存福, 高柱, 李伟, 李福秀 (2010). 不同水分条件下施肥对新银合欢苗木抗旱性的影响. 江西科学, 28, 311-319, 358.] | |
[44] |
Zhu SD, Song JJ, Li RH, Ye Q (2013). Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant, Cell & Environment, 36, 879-891.
URL PMID |
[45] | Zou HP, Zhang JH, Chen XM, Liu SJ, Li WG (2015). Spatiotemporal change characteristics of agricultural climate resources in Hainan Island. Chinese Journal of Agrometeorology, 36, 417-427. |
[ 邹海平, 张京红, 陈小敏, 刘少军, 李伟光 (2015). 海南岛农业气候资源的时空变化特征. 中国农业气象, 36, 417-427.] |
[1] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 王文伟 韩伟鹏 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位梯度的短期响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[4] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[5] | 王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析[J]. 植物生态学报, 2022, 46(8): 961-970. |
[6] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[7] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[8] | 祁鲁玉 陈浩楠 库丽洪·赛热别力 籍天宇 孟高德 秦慧颖 王宁 宋逸欣 刘春雨 杜宁 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略分析[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[9] | 罗源林 马文红 张芯毓 苏闯 史亚博 赵利清. 内蒙古锦鸡儿属植物地理替代分布种的功能性状沿环境梯度的变化[J]. 植物生态学报, 2022, 46(11): 1364-1375. |
[10] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[11] | 范敏, 卢奕曈, 王照华, 黄颖琪, 彭羽, 尚佳欣, 张杨. 浑善达克沙地中部斑块格局影响植物多样性及功能性状[J]. 植物生态学报, 2022, 46(1): 51-61. |
[12] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[13] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[14] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[15] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19