植物生态学报 ›› 2013, Vol. 37 ›› Issue (8): 718-727.DOI: 10.3724/SP.J.1258.2013.00075
收稿日期:
2013-03-20
接受日期:
2013-05-16
出版日期:
2013-03-20
发布日期:
2013-08-07
通讯作者:
龚吉蕊
基金资助:
ZHANG Zi-Yu,Gong Ji-Rui(),LIU Min,HUANG Yong-Mei,YAN Xin,QI Yu,WANG Yi-Hui
Received:
2013-03-20
Accepted:
2013-05-16
Online:
2013-03-20
Published:
2013-08-07
Contact:
Gong Ji-Rui
摘要:
在内蒙古温带草原围封、放牧和割草3种处理下的样地内, 对生态系统尺度和大针茅(Stipa grandis)、冷蒿(Artemisia frigida)、羊草(Leymus chinensis) 3种优势种植物叶片尺度上的气体交换和水分关系进行了测定, 对比研究了植物碳水对环境的响应。结果表明, 在优势种单株尺度和生态系统尺度上, 大气-植被CO2交换因草地利用方式的不同而具有不同的表现。在生态系统层面, 放牧样地的群落净CO2气体交换量和总初级生产力都与围封样地和割草样地有差异, 群落总初级生产力受生态系统呼吸的影响。在放牧处理下, 群落净CO2气体交换量日变化表现为生态系统对碳的吸收, 而围封和割草则以碳释放为主。单叶光合速率出现负值并随时间推移而恢复的现象, 应是植物对干旱高温、高光照的特殊反应。生态系统水分利用效率没有明显不同, 但各样地的蒸散能力有趋势上的变化; 对于同种植物, 放牧样地植物单叶水分利用效率的日变化波动幅度最大, 围封样地最小。
张梓瑜,龚吉蕊,刘敏,黄永梅,晏欣,祁瑜,王忆慧. 温带草原不同土地利用方式下优势种植物和生态系统的气体交换. 植物生态学报, 2013, 37(8): 718-727. DOI: 10.3724/SP.J.1258.2013.00075
ZHANG Zi-Yu,Gong Ji-Rui,LIU Min,HUANG Yong-Mei,YAN Xin,QI Yu,WANG Yi-Hui. Dominant species and ecosystem gas exchange in temperate grassland under different land use patterns. Chinese Journal of Plant Ecology, 2013, 37(8): 718-727. DOI: 10.3724/SP.J.1258.2013.00075
优势种 Dominant species | 围封样地 Enclosed plot | 割草样地 Mowed plot | 放牧样地 Grazed plot |
---|---|---|---|
冷蒿 Artemisia frigida | 0.11 ± 0.08 | 0.16 ± 0.07 | 0.06 ± 0.01 |
羊草 Leymus chinensis | 0.08 ± 0.12 | 0.14 ± 0.04 | 0.22 ± 0.05 |
大针茅 Stipa grandis | 0.07 ± 0.08 | 0.10 ± 0.02 | 0.15 ± 0.08 |
表1 3种不同类型样地优势种的重要值(平均值±标准误差, n = 5)
Table 1 Importance value of dominant species in three different types of plots (mean ± SE, n = 5)
优势种 Dominant species | 围封样地 Enclosed plot | 割草样地 Mowed plot | 放牧样地 Grazed plot |
---|---|---|---|
冷蒿 Artemisia frigida | 0.11 ± 0.08 | 0.16 ± 0.07 | 0.06 ± 0.01 |
羊草 Leymus chinensis | 0.08 ± 0.12 | 0.14 ± 0.04 | 0.22 ± 0.05 |
大针茅 Stipa grandis | 0.07 ± 0.08 | 0.10 ± 0.02 | 0.15 ± 0.08 |
图1 生态系统与优势种植物CO2交换的日变化(平均值±标准偏差)。A, 围封样地。B, 割草样地。C, 放牧样地。a, 大针茅。 b, 冷蒿。c, 羊草。
Fig. 1 Diurnal changes of CO2 exchange of dominant plants and ecosystem (mean ± SD). A, Enclosed plot. B, Mowed plot. C, Grazed plot. a, Stipa grandis. b, Artemisia frigida. c, Leymus chinensis.
图2 生态系统总初级生产力(GPP)和呼吸(Reco)的日变化(平均值±标准偏差)。A, 围封样地。B, 割草样地。C, 放牧样地。
Fig. 2 Diurnal changes of gross primary productivity (GPP) and respiration (Reco) of ecosystem (mean ± SD). A, Enclosed plot. B, Mowed plot. C, Grazed plot.
图3 生态系统水分利用效率(A)和蒸散量(B)的日变化(平均值±标准偏差)。a, 围封样地。b, 割草样地。c, 放牧样地。
Fig. 3 Diurnal changes of water use efficiency (A) and evapotranspiration (B) in ecosystem (mean ± SD). a, Enclosed plot. b, Mowed plot. c, Grazed plot.
图4 优势种植物单叶水分利用效率的日变化(平均值±标准偏差)。A, 围封样地。B, 割草样地。C, 放牧样地。a, 大针茅。b, 冷蒿。c, 羊草。
Fig. 4 Diurnal change of water use efficiency per leaf of dominant plant species (mean ± SD). A, Enclosed plot. B, Mowed plot. C, Grazed plot. a, Stipa grandis. b, Artemisia frigida. c, Leymus chinensis.
样地类型 Plot type | 植物 Plant | 叶片CO2贡献值 Contribution of CO2 in leaves | 叶片H2O贡献值 Contribution of H2O in leaves |
---|---|---|---|
围封 Enclosed plot | 大针茅 Stipa grandis | 0.27 | 2.31 |
冷蒿 Artemisia frigida | 1.14 | 0.73 | |
羊草 Leymus chinensis | 0.40 | 2.15 | |
割草 Mowed plot | 大针茅 Stipa grandis | 0.94 | 1.09 |
冷蒿 Artemisia frigida | 1.57 | 0.17 | |
羊草 Leymus chinensis | 0.28 | 2.19 | |
放牧 Grazed plot | 大针茅 Stipa grandis | 1.18 | 0.58 |
冷蒿 Artemisia frigida | 1.20 | 0.28 | |
羊草 Leymus chinensis | 1.22 | 0.21 |
表2 优势种CO2和H2O在生态系统水分利用效率为最小值时的差异
Table 2 Difference of CO2 and H2O of dominant species at minimum water use efficiency of ecosystem
样地类型 Plot type | 植物 Plant | 叶片CO2贡献值 Contribution of CO2 in leaves | 叶片H2O贡献值 Contribution of H2O in leaves |
---|---|---|---|
围封 Enclosed plot | 大针茅 Stipa grandis | 0.27 | 2.31 |
冷蒿 Artemisia frigida | 1.14 | 0.73 | |
羊草 Leymus chinensis | 0.40 | 2.15 | |
割草 Mowed plot | 大针茅 Stipa grandis | 0.94 | 1.09 |
冷蒿 Artemisia frigida | 1.57 | 0.17 | |
羊草 Leymus chinensis | 0.28 | 2.19 | |
放牧 Grazed plot | 大针茅 Stipa grandis | 1.18 | 0.58 |
冷蒿 Artemisia frigida | 1.20 | 0.28 | |
羊草 Leymus chinensis | 1.22 | 0.21 |
[1] |
Akiyama T, Kawamura K (2007). Grassland degradation in China: methods of monitoring, management and restoration. Grassland Science, 53, 1-17.
DOI URL |
[2] | Allahverdiyeva Y, Aro EM (2012). Photosynthetic responses of plants to excess light: mechanisms and conditions for photoinhibition, excess energy dissipation and repair. Photosynthesis, 34, 275-297. |
[3] |
Anderson TM, Dong Y, McNaughton SJ (2006). Nutrient acquisition and physiological responses of dominant Serengeti grasses to variation in soil texture and grazing. Journal of Ecology, 94, 1164-1175.
DOI URL |
[4] | Bao JJ, Liu F (2005). Research on the water-consuming values of evapotranspiration of plant communities. Inner Mongolia Environmental Protection, 17(1), 58-60. (in Chinese with English abstract) |
[ 包俊江, 刘芳 (2005). 植物群落蒸散耗水量研究进展. 内蒙古环境保护, 17(1), 58-60.] | |
[5] |
Battle M, Bender ML, Tans JWC, White JT, Ellis T, Conway RJ, Francey RJ (2000). Global carbon sinks and their variability inferred from atmospheric O2 and C13. Science, 287, 2467-2470.
DOI URL PMID |
[6] |
Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005). Effects of grazing on photosynthetic characteristics of major steppe species in the Xinlin River Basin, Inner Mongolia, China. Photosynthetica, 43, 559-565
DOI URL |
[7] | Chen ZF, Jia PY, Yang Y, Zhang J, Xi JL, Zhu SS, Zhao ML, Han GD, Wang CJ (2012). Effects of grazing intensity on ecosystem gas exchange of different grassland types in Inner Mongolia. Acta Agrestia Sinica, 20, 464-470. (in Chinese with English abstract) |
[ 陈志芳, 贾平洋, 杨阳, 张健, 希吉勒, 朱树声, 赵萌莉, 韩国栋, 王成杰 (2012). 放牧强度对不同草地类型生态系统气体交换影响的研究. 草地学报, 20, 464-470.] | |
[8] | Chen ZZ, Wang SP, Wang YF (2000). Typical Grassland Ecosystem of China. Science Press, Beijing. (in Chinese) |
[ 陈佐忠, 汪诗平, 王艳芬 (2000). 中国典型草原生态系统. 科学出版社, 北京.] | |
[9] |
Chimner RA, Welker JM (2011). Influence of grazing and precipitation on ecosystem carbon cycling in a mixed-grass prairie. Pastoralism, 1, 20.
DOI URL |
[10] |
Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Buchmann N, Aubinet M, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend A, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005). Europe- wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529-533.
DOI URL PMID |
[11] |
Dhital D, Muraoka H, Yashiro Y, Shizu Y, Koizumi H (2010). Measurement of net ecosystem production and ecosystem respiration in a Zoysia japonica grassland, central Japan, by the chamber method. Ecological Research, 25, 483-493.
DOI URL |
[12] |
Eronen JT, Polly PD, Fred M, Damuth J, Frank DC, Mosbrugger V, Scheidegger C, Stenseth NC, Frotelius M (2010). Ecometrics: the traits that bind the past and present together. Integrative Zoology, 5, 88-101.
DOI URL PMID |
[13] | Fan GY, Zhang JN, Zhang YS, Li G, Wang Q, Yang DL (2010). Effects of grazing on plant root distribution and soil physicochemical properties in Stipa baicalensis grassland. Chinese Journal of Ecology, 29, 1715-1721. (in Chinese with English abstract) |
[ 范国艳, 张静妮, 张永生, 李刚, 王琦, 杨殿林 (2010). 放牧对贝加尔针茅草原植被根系分布和土壤理化特征的影响. 生态学杂志, 29, 1715-1721.] | |
[14] |
Flerchinger GN, Sauerb TJ, Aikenc RA (2004). Effects of crop residue cover and architecture on heat and water transfer at the soil surface. Geoderma, 116, 217-223.
DOI URL |
[15] |
Grünzweig JM, Sparrow SD, Yakir D, Chapin FS III (2004). Impact of agricultural land-use change on carbon storage in Boreal Alaska. Global Change Biology, 10, 452-472.
DOI URL |
[16] | Huang XZ, Hao YB, Wang YF, Zhou XQ, Han X, He JJ (2006). Impact of extreme drought on net ecosystem exchange from Leymus chinensis steppe in Xilin River Basin, China. Journal of Plant Ecology (Chinese Version), 30, 894-900. (in Chinese with English abstract) |
[ 黄祥忠, 郝彦宾, 王艳芬, 周小奇, 韩喜, 贺俊杰 (2006). 极端干旱条件下锡林河流域羊草草原净生态系统碳交换特征. 植物生态学报, 30, 894-900.] | |
[17] | Jiang GM, Zhu GJ (2001). Different patterns of gas exchange and photochemical efficiency in three desert shrub species under two natural temperatures and irradiances in Mu Us Sandy Area of China. Photosynthetic, 39, 257-262. |
[18] | Knapp AK, Conrad SL, Blair JM (1998). Determinants of soil CO2 flux from a sub-humid grassland: effect of fire and fire history. Ecological Applications, 8, 760-770. |
[19] | Li B, Zhao B, Peng RH (2005). Principles of Terrestrial Ecosystem Ecology. China Higher Education Press, Beijing. 125. (in Chinese) |
[ 李博, 赵斌, 彭容豪 (2005). 陆地生态系统生态学原理. 高等教育出版社, 北京. 125.] | |
[20] | Li CL, Hao XY, Zhao ML, Han GD, Willms WD (2008). Influence of historic sheep grazing on vegetation and soil properties of a desert steppe in Inner Mongolia. Agriculture, Ecosystems & Environment, 128, 109-116. |
[21] | Li XB, Yang YS, Zeng HD, Xie JS, Zhang J, Zhu N (2008). Comparison of CO2 net exchange rate by different methods in subtropical Manila grass lawn ecosystem. Journal of Subtropical Resources and Environment, 3, 16-22. (in Chinese with English abstract) |
[ 李熙波, 杨玉盛, 曾宏达, 谢锦升, 张静, 朱宁 (2008). 亚热带马尼拉草坪生态系统CO2净交换量测定方法比较. 亚热带资源与环境学报, 3, 16-22.] | |
[22] | Makhnev AK, Makhneva NE (2010). Landscape-ecological and population aspects of the strategy of restoration of disturbed lands. Contemporary Problems of Ecology, 3, 318-322. |
[23] | Nagy Z, Pintéra K, Czóbela S, Baloghc J, Horváthd L, Fótia S, Barczab Z, Weidingerb T, Csintalana Z, Dinhe NQ, Groszf B, Tubaa Z (2010). The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agriculture, Ecosystem & Environment, 121, 21-29. |
[24] | Neff JC, Reynolds RL, Belnap J, Lamothe P (2005). Multi-decadal impacts of grazing on soil physical and biogeochemical properties in Southeast Utah. Ecological Applications, 15, 87-95. |
[25] | Niu SL, Wan SQ (2008). Warming changes plant competitive hierarchy in a temperate steppe in northern China. Journal of Plant Ecology, 1, 103-110. |
[26] |
Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science, 292, 2316-2320.
URL PMID |
[27] | Piao SL, Fang JY, He JS, Xiao Y (2004). Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 28, 491-498. (in Chinese with English abstract) |
[ 朴世龙, 方精云, 贺金生, 肖玉 (2004). 中国草地植被生物量及其空间分布格局. 植物生态学报, 28, 491-498.] | |
[28] | Soussana JF, Lüscher A (2007). Temperate grasslands and global atmospheric change: a review. Grass and Forage Science, 62, 127-134. |
[29] | Sun LN, Yan JX, Zeng ZX, Li HJ (2012). Response of diurnal variation of CO2 and H2O fluxes to different soil moisture treatments on alfalfa grassland ecosystems. Journal of Shanxi Agricultural Sciences, 40(3), 201-206. (in Chinese with English abstract) |
[ 孙丽娜, 严俊霞, 曾朝旭, 李洪建 (2012). 紫花苜蓿碳水通量日变化对土壤水分处理的响应. 山西农业科学, 40(3), 201-206.] | |
[30] | Tong WY, Chen YJ, Li SL, Li LM (2000). Effect of vegetation destruction by pasturing on soil moisture of typical grassland. Journal of Arid Land Resources and Environment, 14(4), 55-60. (in Chinese with English abstract) |
[ 佟乌云, 陈有君, 李绍良, 李立民 (2000). 放牧破坏地表植被对典型草原地区土壤湿度的影响. 干旱区资源与环境, 14(4), 55-60.] | |
[31] |
Wang CT, Wang QL, Jing ZC, Feng BF, Du YG, Long RJ, Cao GM (2008). Vegetation roots and soil physical and chemical characteristic changes in Kobresia pygmaca meadow under different grazing gradients. Acta Prataculturae Sinica, 17(5), 9-15. (in Chinese with English abstract)
DOI URL |
[ 王长庭, 王启兰, 景增春, 冯秉福, 杜岩功, 龙瑞军, 曹广民 (2008). 不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化. 草业学报, 17(5), 9-15.]
DOI URL |
|
[32] | White R, Murray S, Rohweder M (2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington, D.C. |
[33] | Wu DT, Song JP, Sun JW, Li YJ, Qin CL (2009). Regional Economics 2nd edn. Science Press, Beijing. 10. (in Chinese) |
[ 吴殿廷, 宋金平, 孙久文, 李玉江, 覃成林 (2009). 区域经济学. 第二版. 科学出版社, 北京. 10.] | |
[34] | Yepez EA, Scott RL, Cable WL, Williams DG (2007). Intrapersonal variation in water and carbon dioxide flux components in a semiarid riparian woodland. Ecosystems, 10, 1100-1115. |
[35] | Yu GR, Wang QF, Liu YC, Liu YH (2011). Conceptual framework of carbon sequestration rate and potential increment of carbon sink of regional terrestrial ecosystem and scientific basis for quantitative carbon authentification. Progress in Geography, 30, 771-787. (in Chinese with English abstract) |
[ 于贵瑞, 王秋凤, 刘迎春, 刘颖慧 (2011). 区域尺度陆地生态系统固碳速率和增汇潜力概念框架及其定量认证科学基础. 地理科学进展, 30, 771-787.] | |
[36] | Zhang WL, Chen SP, Miao HX, Lin GH (2008). Effects on carbon flux of conversion of grassland steppe to cropland in China. Journal of Plant Ecology (Chinese Version), 32, 1301-1311. (in Chinese with English abstract) |
[ 张文丽, 陈世苹, 苗海霞, 林光辉 (2008). 开垦对克氏针茅草地生态系统碳通量的影响. 植物生态学报, 32, 1301-1311.] | |
[37] | Zhao L, Li YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ (2006). Diurnal, seasonal and annual variation in net eco- system CO2 exchange of an alpine shrubland on Qinghai- Tibetan Plateau, Global Change Biology, 12, 1940-1953. |
[38] | Zhao L, Li YN, Zhao XQ, Xu SX, Tang YH, Yu GR, Gu S, Du MY, Wang QX (2005). Variation in net ecosystem CO2 exchange of 3 plants on Tibetan Plateau. Chinese Science Bulletin, 50, 926-932. (in Chinese) |
[ 赵亮, 李英年, 赵新全, 徐世晓, 唐艳鸿, 于贵瑞, 古松, 杜明远, 王勤学 (2005). 青藏高原3种植被类型净生态系统CO2交换量的比较. 科学通报, 50, 926-932.] | |
[39] |
Zhao MS, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943.
DOI URL PMID |
[40] | Zhao W, Chen SP, Han XG, Lin GH (2009). Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecological Research, 24, 99-108. |
[41] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
[1] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[4] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[5] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[6] | 张景慧, 王铮, 黄永梅, 陈慧颖, 李智勇, 梁存柱. 草地利用方式对温性典型草原优势种植物功能性状的影响[J]. 植物生态学报, 2021, 45(8): 818-833. |
[7] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[8] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[9] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[10] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[11] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[12] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[13] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[14] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[15] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19