植物生态学报 ›› 2018, Vol. 42 ›› Issue (11): 1120-1130.DOI: 10.17521/cjpe.2018.0219
所属专题: 入侵生态学专辑
• 研究论文 • 上一篇
收稿日期:
2018-09-11
接受日期:
2018-10-18
出版日期:
2018-11-20
发布日期:
2019-03-13
通讯作者:
刘学炎
基金资助:
XU Hao,HU Chao-Chen,XU Shi-Qi,SUN Xin-Chao,LIU Xue-Yan()
Received:
2018-09-11
Accepted:
2018-10-18
Online:
2018-11-20
Published:
2019-03-13
Contact:
Xue-Yan LIU
Supported by:
摘要:
外来植物入侵对土壤氮循环和氮有效性的影响是入侵成功或进一步加剧的重要原因。通过对比相同研究地点入侵区域和无入侵区域的土壤原位氮状态差异, 探讨了外来植物入侵对土壤氮有效性的影响程度和生理生态学机制。基于107篇相关研究文献数据的整合, 发现植物入侵区域相对于无入侵区域土壤总氮、铵态氮、硝态氮、无机氮、微生物生物量氮含量显著增加, 增幅分别为(50 ± 14)%、(60 ± 24)%、(470 ± 115)%、(69 ± 25)%、(54 ± 20)%。土壤硝态氮含量增幅较大反映硝化作用增强, 这可能增加入侵植物硝态氮利用以及喜硝植物的共存。温带地区植物入侵后土壤的硝态氮含量增幅显著高于亚热带地区。固氮植物入侵后土壤的总氮和无机氮含量增幅均显著高于非固氮植物入侵。木本和常绿植物入侵后土壤的总氮含量增幅分别高于草本和落叶植物入侵; 而土壤铵态氮含量的增幅没有显著差异且与固氮入侵植物占比无明显关系; 然而硝态氮含量的增幅普遍较高且与固氮入侵植物占比显著正相关。外来入侵植物固氮功能以及凋落物质量和数量是影响土壤氮矿化和硝化过程的关键因素。该研究为理解外来植物入侵成功和加剧的机制以及入侵植物功能性状与土壤氮动态之间的关系提供了新的见解。
许浩, 胡朝臣, 许士麒, 孙新超, 刘学炎. 外来植物入侵对土壤氮有效性的影响. 植物生态学报, 2018, 42(11): 1120-1130. DOI: 10.17521/cjpe.2018.0219
XU Hao, HU Chao-Chen, XU Shi-Qi, SUN Xin-Chao, LIU Xue-Yan. Effects of exotic plant invasion on soil nitrogen availability. Chinese Journal of Plant Ecology, 2018, 42(11): 1120-1130. DOI: 10.17521/cjpe.2018.0219
图2 入侵区域与无入侵区域土壤的氮含量(A)和入侵区域相对于无入侵区域土壤氮含量的相对变化(B) (平均值+标准误差)。*表示入侵区域相对于无入侵区域土壤氮含量变化显著(p < 0.05)。
Fig. 2 Soil N contents in invaded and uninvaded areas (A) and relative variation (RV) values of soil N contents in invaded areas compared to uninvaded areas (B) (mean + SE). * indicates significant variation of soil N contents between the two types of areas (p < 0.05).
图3 不同气候带、固氮功能、生活型分类下, 入侵区域和无入侵区域土壤的总氮(A)、铵态氮(B)、硝态氮(C)、无机氮含量(D)和入侵区域相对于无入侵区域土壤总氮(E)、铵态氮(F)、硝态氮(G)、无机氮(H)含量的相对变化(平均值+标准误差)。温带、亚热带、热带分别缩写为WD、YRD、RD; 固氮、非固氮分别缩写为F、NF; 一年生草本、多年生草本、常绿灌木、落叶灌木、常绿乔木、落叶乔木、多年生草质藤本、落叶木质藤本、常绿木质藤本分别缩写为AH、PH、ES、DS、ET、DT、PV、DV、EV。N.A.表示没有数据; 图E-H中不同小写字母表示差异显著性(p < 0.05); *表示入侵区域相对于无入侵区域土壤氮含量变化显著(p < 0.05)。
Fig. 3 Soil total N (A) , NH4+-N (B) , NO3--N (C) , inorganic N (D) contents in invaded and uninvaded areas and relative variation (RV) values of soil total N (E) , NH4+-N (F) , NO3--N (G), inorganic N (H) contents in invaded areas compared to uninvaded areas among different climate zones, invasive plants with different N2-fixing functions and life forms (mean + SE). WD, YRD, and RD represent temperate, subtropical, and tropical zones, respectively; F and NF represent invasive plants with N2-fixing and non-N2-fixing functions, respectively; and AH, PH, ES, DS, ET, DT, PV, DV, and EV represent annual herb, perennial herb, evergreen shrub, deciduous shrub, evergreen tree, deciduous tree, perennial vine, deciduous vine, and evergreen vine, respectively. N.A. denotes data not available, and different letters in panels E-H indicate significant differences (p < 0.05) while * indicates significant variation of soil N contents in invaded areas compared to uninvaded areas (p < 0.05).
图4 不同生活型植物入侵区域相对于无入侵区域土壤铵态氮含量的相对变化与固氮入侵植物占比之间的关系(A)和土壤硝态氮含量的相对变化分别与铵态氮含量(空心符号)的相对变化、固氮入侵植物占比(实心符号)之间的关系(B)。一年生草本、多年生草本、常绿灌木、落叶灌木、常绿乔木、落叶乔木分别缩写为AH、PH、ES、DS、ET、DT。
Fig. 4 Relationship between relative variation (RV) values of soil NH4+-N contents and percentage of N2-fixing invasive plants (A) and relationships between relative variation (RV) values of soil NO3--N contents and those of soil NH4+-N contents (hollow symbol), and percentage of N2-fixing invasive plants (solid symbol) (B) among different groups of invasive plants. AH, PH, ES, DS, ET, and DT represent annual herb, perennial herb, evergreen shrub, deciduous shrub, evergreen tree, and deciduous tree, respectively.
[1] | Allison SD, Nielsen C, Hughes RF ( 2006). Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana. Soil Biology and Biochemistry, 38, 1537-1544. |
[2] |
Baer SG, Church JM, Williard KWJ, Groninger JW ( 2006). Changes in intrasystem N cycling from N2-fixing shrub encroachment in grassland: Multiple positive feedbacks. Agriculture Ecosystems and Environment, 115, 174-182.
DOI URL |
[3] |
Bloom AJ ( 2015). The increasing importance of distinguishing among plant nitrogen sources. Current Opinion in Plant Biology, 25, 10-16.
DOI URL PMID |
[4] |
Booth MS, Stark JM, Caldwell MM ( 2003). Inorganic N turnover and availability in annual- and perennial-dominated soils in a northern Utah shrub-steppe ecosystem. Biogeochemistry, 66, 311-330.
DOI URL |
[5] |
Broadbent A, Stevens CJ, Peltzer DA, Ostle NJ, Orwin KH ( 2017). Belowground competition drives invasive plant impact on native species regardless of nitrogen availability. Oecologia, 186, 577-587.
DOI URL |
[6] |
Caldwell BA ( 2006). Effects of invasive scotch broom on soil properties in a Pacific coastal praire soil. Applied Soil Ecology, 32, 149-152.
DOI URL |
[7] |
Cameron KC, Di HJ, Moir JL ( 2012). Nitrogen losses from the soil-plant system: A review. Annals of Applied Biology, 162, 145-173.
DOI URL |
[8] |
Castro-Díez P, Godoy O, Alonso A, Gallardo A, Saldana A ( 2014). What explains variation in the impacts of exotic plant invasions on the nitrogen cycle? A meta-analysis. Ecology Letters, 17, 1-12.
DOI URL PMID |
[9] | Chapin III FS, Matson PA, Vitousek PM ( 2011). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer, New York. |
[10] |
Chapman SK, Langley JA, Hart SC, Koch GW ( 2006). Plants actively control nitrogen cycling: Uncorking the microbial bottleneck. New Phytologist, 169, 27-34.
DOI URL PMID |
[11] |
Chen BM, Peng SL, Ni GY ( 2009). Effects of the invasive plant Mikania micrantha H.B.K. on soil nitrogen availability through allelopathy in South China. Biological Invasions, 11, 1291-1299.
DOI URL |
[12] |
Cusack DF, Mccleery TL ( 2014). Patterns in understory woody diversity and soil nitrogen across native- and non-native- urban tropical forests. Forest Ecology and Management, 318, 34-43.
DOI URL |
[13] |
Dassonville N, Guillaumaud N, Piola F, Meerts P, Poly F ( 2011). Niche construction by the invasive Asian knotweeds (species complex Fallopia): Impact on activity, abundance and community structure of denitrifiers and nitrifiers. Biological Invasions, 13, 1115-1133.
DOI URL |
[14] |
Ding JQ, Mack RN, Lu P, Ren MX, Huang HW ( 2008). China’s booming economy is sparking and accelerating biological invasions. BioScience, 58, 317-324.
DOI URL |
[15] |
Dreiss L, Volin JC ( 2013). Influence of leaf phenology and site nitrogen on invasive species establishment in temperate deciduous forest understories. Forest Ecology and Management, 296, 1-8.
DOI URL |
[16] |
Ehrenfeld JG ( 2003). Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503-523.
DOI URL |
[17] |
Feng YL, Lei YB, Wang RF, Callaway RM, Valiente-Banuet A, Inderjit, Li YP, Zheng YL ( 2009). Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America, 106, 1853-1856.
DOI URL |
[18] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ ( 2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
[19] |
Godoy O, Valladares F, Castrodíez P ( 2011). Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology, 25, 1248-1259.
DOI URL |
[20] | González-Muñoz N, Costa-Tenorio N, Espigares T ( 2012). Invasion of alien Acacia dealbata on Spanish Quercus robur forests: Impact on soils and vegetation. Forest Ecology and Management, 269, 214-221. |
[21] |
Gurevitch J, Koricheva J, Nakagawa S, Stewart G ( 2018). Meta-analysis and the science of research synthesis. Nature, 555, 175-182.
DOI URL |
[22] |
Hawkes CV, Wren IF, Herman DJ, Firestone MK ( 2005). Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 8, 976-985.
DOI URL |
[23] | Hu CC, Lei YB, Tan YH, Sun XC, Xu H, Liu CQ, Liu XY ( 2018). Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China. Journal of Ecology, DOI: 10.1111/1365-2745. 13008. |
[24] |
Jiang J, Li YK, Wang MZ, Zhou CP, Cao GM, Shi PL, Song MH ( 2013). Litter species traits, but not richness, contribute to carbon and nitrogen dynamics in an alpine meadow on the Tibetan Plateau. Plant and Soil, 373, 931-941.
DOI URL |
[25] |
Keser LH, Visser EJW, Dawson W, Song YB, Yu FH, Fischer M, Dong M, van Kleunen M ( 2015). Herbaceous plant species invading natural areas tend to have stronger adaptive root foraging than other naturalized species. Frontiers in Plant Science, 6, 273. DOI: 10.3389/fpls.2015.00273
DOI URL PMID |
[26] |
Knops JMH, Bradley KL, Wedin DA ( 2002). Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5, 454-466.
DOI URL |
[27] |
Kourtev PS, Huang WZ, Ehrenfeld JG ( 1999). Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biological Invasions, 1(2-3), 237-245.
DOI URL |
[28] |
Lee MR, Bernhardt ES, Bodegom PM, Cornelissen JHC, Kattge J, Laughlin DC, Niinemets U, Penuelas J, Reich PB, Yguel B, Wright JP ( 2016). Invasive species’ leaf traits and dissimilarity from natives shape their impact on nitrogen cycling: A meta-analysis. New Phytologist, 213, 128-139.
DOI URL PMID |
[29] | Lei YB, Xiao HF, Feng YL ( 2010). Impacts of alien plant invasions on biodiversity and evolutionary responses of native species. Biodiversity Science, 18, 622-630. |
[ 类延宝, 肖海峰, 冯玉龙 ( 2010). 外来植物入侵对生物多样性的影响及本地生物的进化响应. 生物多样性, 18, 622-630.] | |
[30] | Li B, Ma KP ( 2010). Biological invasions: Opportunities and challenges facing Chinese ecologists in the era of translational ecology. Biodiversity Science, 18, 529-532. |
[ 李博, 马克平 ( 2010). 生物入侵: 中国学者面临的转化生态学机遇与挑战. 生物多样性, 18, 529-532.] | |
[31] |
Li WH, Zhang CB, Gao GJ, Zan QJ, Yang ZY ( 2007). Relationship between Mikania micrantha invasion and soil microbial biomass, respiration and functional diversity. Plant and Soil, 296, 197-207.
DOI URL |
[32] |
Liao CZ, Peng R, Luo Y, Zhou XH, Wu XW, Fang CM, Chen JK, Li B ( 2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytologist, 177, 706-714.
DOI URL |
[33] |
Liao JD, Boutton TW, Jastrow JD ( 2006). Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N . Soil Biology and Biochemistry, 38, 3197-3210.
DOI URL |
[34] |
Lu X, Bottomley PJ, Myrold DD ( 2015). Contributions of ammonia-oxidizing archaea and bacteria to nitrification in Oregon forest soils. Soil Biology and Biochemistry, 85, 54-62.
DOI URL |
[35] |
Marchante E, Kjøller A, Struwe S, Freitas H ( 2008). Short- and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Applied Soil Ecology, 40, 210-217.
DOI URL |
[36] |
Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, Mcdowell W, Robertson GP, Santos OC, Treseder K ( 1999). Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry, 46(1-3), 45-65.
DOI URL |
[37] |
McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, Callaway RM ( 2016). Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. Journal of Ecology, 104, 994-1002.
DOI URL |
[38] |
Milbau A, Nijs I, Peer LV, Reheul D, Cauwer BD ( 2003). Disentangling invasiveness and invasibility during invasion in synthesized grassland communities. New Phytologist, 159, 657-667.
DOI URL |
[39] | Niu HB, Liu WX, Wan FH, Liu B ( 2007). An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant and Soil, 294, 73-85. |
[40] | Peña EDL, Clercq ND, Bonte D, Roiloa S, Rodríguez- Echeverría S, Freitas H ( 2010). Plant-soil feedback as a mechanism of invasion by Carpobrotus edulis. Biological Invasions, 12, 3637-3648. |
[41] |
Perakis SS, Hibbs DE ( 2014). N2-fixing red alder indirectly accelerates ecosystem nitrogen cycling. Ecosystems, 15, 1182-1193.
DOI URL |
[42] |
Pimentel D, Zuniga R, Morrison D ( 2005). Update on the environmental and economic costs associated with alien- invasive species in the United States. Ecological Economics, 52, 273-288.
DOI URL |
[43] |
Polyakova O, Billor N ( 2008). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253, 11-18.
DOI URL |
[44] |
Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL |
[45] | Rossiter-Rachor NA, Setterfield SA, Douglas MM, Hutley LB, Cook GD, Schmidt S ( 2009). Invasive Andropogon gayanus(gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecological Applications, 19, 1546-1560. |
[46] |
Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Sigurdsson BD, Chen HH, Penuelas J ( 2016). Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biology, 23, 1282-1291.
DOI URL PMID |
[47] |
Schittko C, Runge C, Strupp M, Wolff S, Wurst S ( 2016). No evidence that plant-soil feedback effects of native and invasive plant species under glasshouse conditions are reflected in the field. Journal of Ecology, 104, 1243-1249.
DOI URL |
[48] |
Shannon-Firestone S, Reynolds HL, Phillips RP, Flory SL, Yanarell A ( 2015). The role of ammonium oxidizing communities in mediating effects of an invasive plant on soil nitrification. Soil Biology and Biochemistry, 90, 266-274.
DOI URL |
[49] |
Solly EF, Schöning I, Boch S, Kandeler E, Marhan S, Michalzik B, Müller J, Zscheischler J, Trumbore SE, Schrumpf M ( 2014). Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil, 382, 203-218.
DOI URL |
[50] |
Souza-Alonso P, Novoa A, González L ( 2014). Soil biochemical alterations and microbial community responses under Acacia dealbata Link invasion. Soil Biology and Biochemistry, 79, 100-108.
DOI URL |
[51] |
Strickland MS, Devore JL, Maerz JC, Bradford MA ( 2010). Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Global Change Biology, 16, 1338-1350.
DOI URL |
[52] |
Sun X, Gao C, Guo LD ( 2013). Changes in soil microbial community and enzyme activity along an exotic plant Eupatorium adenophorum invasion in a Chinese secondary forest. Science Bulletin, 58, 4101-4108.
DOI URL |
[53] | Tang YQ, Yu GR, Zhang XY, Wang QF, Ge JP, Liu S ( 2017). Changes in nitrogen-cycling microbial communities with depth in temperate and subtropical forest soils. Applied Soil Ecology, 124, 218-228. |
[54] |
Theoharides KA, Dukes JS ( 2007). Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273.
DOI URL PMID |
[55] |
van Kleunen M, Weber E, Fischer M ( 2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI URL PMID |
[56] |
Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P ( 2011). Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
DOI URL PMID |
[57] |
Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI ( 2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57, 1-45.
DOI URL |
[58] |
Vitousek PM, Matson PA ( 1984). Mechanisms of nitrogen retention in forest ecosystems: A field experiment. Science, 225, 51-52.
DOI URL PMID |
[59] |
Wang CH, Wan SQ, Xing XR, Zhang L, Han XG ( 2006). Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology and Biochemistry, 38, 1101-1110.
DOI URL |
[60] |
Wei H, Xu JL, Quan GM, Zhang JE, Qin Z ( 2017). Effects of Praxelis clematidea invasion on soil nitrogen fractions and transformation rates in a tropical savanna. Environmental Science and Pollution Research, 24, 1-10.
DOI URL PMID |
[61] |
Xiao HF, Feng YL, Schaefer DA, Xiao DY ( 2014). Soil fungi rather than bacteria were modified by invasive plants, and that benefited invasive plant growth. Plant and Soil, 378, 253-264.
DOI URL |
[62] |
Xu CW, Yang MZ, Chen YJ, Chen LM, Zhang DZ, Mei L, Shi YT, Zhang HB ( 2012). Changes in non-symbiotic nitrogen-fixing bacteria inhabiting rhizosphere soils of an invasive plant Ageratina adenophora. Applied Soil Ecology, 54, 32-38.
DOI URL |
[63] |
Yan XL, Shou HY, Ma JS ( 2012). The problem and status of the alien invasive plants in China. Plant Diversity and Resources, 34, 287-313.
DOI URL |
[ 闫小玲, 寿海洋, 马金双 ( 2012). 中国外来入侵植物研究现状及存在的问题. 植物分类与资源学报, 34, 287-313.]
DOI URL |
|
[64] |
Yang O, Norton JM, Stark JM ( 2017). Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biology and Biochemistry, 113, 161-172.
DOI URL |
[65] |
Yé L, Lata JC, Masse D, Nacro HB, Kissou R, Diallo NH, Barot S ( 2017). Contrasted effects of annual and perennial grasses on soil chemical and biological characteristics of a grazed Sudanian savanna. Applied Soil Ecology, 113, 155-165.
DOI URL |
[66] |
Yu XJ, Yu D, Lu ZJ, Ma KP ( 2005). A new mechanism of invader success: Exotic plant inhibits natural vegetation restoration by changing soil microbe community. Chinese Science Bulletin, 50, 896-903.
DOI URL |
[ 于兴军, 于丹, 卢志军, 马克平 ( 2005). 一个可能的植物入侵机制: 入侵种通过改变入侵地土壤微生物群落影响本地种的生长. 科学通报, 50, 896-903. ]
DOI URL |
|
[67] |
Zhang YH, Ding WX, Luo JF, Donnison A ( 2010). Changes in soil organic carbon dynamics in an eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology and Biochemistry, 42, 1712-1720.
DOI URL |
[68] |
Zheng YL, Burns JH, Liao ZY, Li YP, Yang J, Chen YJ, Zhang JL, Zheng YG ( 2018). Species composition, functional and phylogenetic distances correlate with success of invasive Chromolaena odorata in an experimental test. Ecology Letters, 21, 1211-1220.
DOI URL |
[1] | 林秦文, 于胜祥, 唐赛春, 崔夏, 高信芬, 王焕冲, 刘全儒, 马金双. 中国外来归化植物的编目现状及有关问题[J]. 植物生态学报, 2021, 45(11): 1275-1280. |
[2] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[3] | 许光耀, 李洪远, 莫训强, 孟伟庆. 中国归化植物组成特征及其时空分布格局分析[J]. 植物生态学报, 2019, 43(7): 601-610. |
[4] | 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响[J]. 植物生态学报, 2019, 43(1): 77-84. |
[5] | 马志良, 赵文强, 赵春章, 刘美, 朱攀, 刘庆. 青藏高原东缘窄叶鲜卑花灌丛生长季土壤无机氮对增温和植物去除的响应[J]. 植物生态学报, 2018, 42(1): 86-94. |
[6] | 王薪琪, 王传宽, 张泰东. 森林土壤碳氮循环过程的新视角: 丛枝与外生菌根树种的作用[J]. 植物生态学报, 2017, 41(10): 1113-1125. |
[7] | 王华田, 杨阳, 王延平, 姜岳忠, 王宗芹. 外源酚酸对欧美杨‘I-107’水培幼苗硝态氮吸收利用的影响[J]. 植物生态学报, 2011, 35(2): 214-222. |
[8] | 闫素丽, 皇甫超河, 李刚, 左照江, 马杰, 杨殿林. 四种牧草植物替代控制对黄顶菊入侵土壤细菌多样性的影响[J]. 植物生态学报, 2011, 35(1): 45-55. |
[9] | 孟盈, 薛敬意, 沙丽清, 唐建维. 西双版纳不同热带森林下土壤铵态氮和硝态氮动态研究[J]. 植物生态学报, 2001, 25(1): 99-104. |
[10] | 莫江明, 郁梦德, 孔国辉. 鼎湖山马尾松人工林土壤硝态氮和铵态氨动态研究[J]. 植物生态学报, 1997, 21(4): 335-341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19