植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 45-55.DOI: 10.3724/SP.J.1258.2011.00045
所属专题: 入侵生态学专辑
闫素丽1, 皇甫超河1, 李刚1, 左照江2, 马杰1,3, 杨殿林**()
收稿日期:
2010-05-14
接受日期:
2010-10-20
出版日期:
2011-05-14
发布日期:
2011-01-24
通讯作者:
杨殿林
作者简介:
**E-mail: dianlinyang@yahoo.com.cn* 共同第一作者
YAN Su-Li1, HUANGFU Chao-He1, LI Gang1, ZUO Zhao-Jiang2, MA Jie1,3, YANG Dian-Lin**()
Received:
2010-05-14
Accepted:
2010-10-20
Online:
2011-05-14
Published:
2011-01-24
Contact:
YANG Dian-Lin
About author:
First author contact:* Co-first author
摘要:
土壤微生物群落与植物的生长发育密切相关, 入侵植物可以改变入侵地土壤微生物类群, 使土壤理化性质发生变化, 从而促进其入侵过程。该文通过比较高丹草(Sorghum bicolor × S. sudanense)、向日葵(Helianthus annuus)、紫花苜蓿(Medi- cago sativa)和多年生黑麦草(Lolium perenne)4种替代植物与黄顶菊(Flaveria bidentis)混合种植(以下简称混种)后不同时期的土壤细菌多样性的变化, 揭示土壤细菌群落对黄顶菊入侵及替代管理措施的响应规律。结果表明, 单独种植(以下简称单种)黄顶菊的土壤细菌多样性下降, 并且在整个生长期多样性指数多数情况下低于高丹草、向日葵、紫花苜蓿和多年生黑麦草单种或与黄顶菊混种的土壤。当4种替代植物与黄顶菊混种后, 土壤细菌16S rRNA的变性梯度凝胶电泳(DGGE)图谱与它们分别种植时存在明显差异, 且不同生长期各个混种土壤都有特征细菌群落。4种替代植物单种或与黄顶菊混种的土壤细菌Shannon多样性指数变化规律与植物生长发育趋势相同, 7月份达到高峰, 8月份开始降低。总之, 黄顶菊入侵降低了土壤细菌群落多样性, 4种替代植物与黄顶菊混种后, 又可提高土壤细菌群落多样性, 这种变化对黄顶菊成功入侵和替代防控具有重要作用。
闫素丽, 皇甫超河, 李刚, 左照江, 马杰, 杨殿林. 四种牧草植物替代控制对黄顶菊入侵土壤细菌多样性的影响. 植物生态学报, 2011, 35(1): 45-55. DOI: 10.3724/SP.J.1258.2011.00045
YAN Su-Li, HUANGFU Chao-He, LI Gang, ZUO Zhao-Jiang, MA Jie, YANG Dian-Lin. Effects of replacement control with four forage species on bacterial diversity of soil invaded by Flaveria bidentis. Chinese Journal of Plant Ecology, 2011, 35(1): 45-55. DOI: 10.3724/SP.J.1258.2011.00045
图1 7月份土壤细菌总DNA电泳图。Fb CK, 黄顶菊对照; Ss CK, 高丹草对照; Ss + Fb, 高丹草黄顶菊混种; Ha CK, 向日葵对照; Ha + Fb, 向日葵黄顶菊混种; Ms CK, 紫花苜蓿对照; Ms + Fb, 紫花苜蓿黄顶菊混种; Lp CK, 多年生黑麦草对照; Lp + Fb, 多年生黑麦草黄顶菊混种。
Fig. 1 The gel electrophoresis of total soil bacterial DNA in July. Fb CK, Flaveria bidentis CK; Ss CK, Sorghum bicolor × S. sudanense CK; Ss + Fb, Sorghum bicolor × S. sudanense mixed with Flaveria bidentis; Ha CK, Helianthus annuus CK; Ha + Fb, Helianthus annuus mixed with Flaveria bidentis; Ms CK, Medicago sativa CK; Ms + Fb, Medicago sativa mixed with Flaveria bidentis; Lp CK, Lolium perenne CK; Lp + Fb, Lolium perenne mixed with Flaveria bidentis.
图2 7月份土壤细菌16S rRNA V3区扩增区片段电泳图。缩写字母注释同图1。
Fig. 2 The gel electrophoresis of amplified 16S rRNA V3 fragments in July. Abbreviations are the same as in Fig.1.
图3 不同时期土壤细菌16S rRNA V3区扩增区片段的DGGE图谱。A、B、C、D分别表示6、7、8、9月不同土壤细菌16S rRNA V3区片段的DGGE图谱。缩写字母同图1。图中数字指割取条带序号。
Fig. 3 DGGE profiles of 16S rRNA V3 fragments in different stage soil bacteria. A, B, C, D, DGGE profiles of 16S rRNA V3 fragments in different soil bacteria in June, July, August and September, respectively. Abbreviations are the same as in Fig. 1. The number in the figure represents serial number for bands cut.
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Fb | 9 17 | FJ152853.1 FJ785824.1 | Uncultured bacterium clone TX5A_145 Uncultured bacterium clone EP9 | 100 94 |
7月 July | Fb | 23 | EF614061.1 | Uncultured bacterium clone NGD40 | 99 |
8月 August | Fb | 1 | GQ410521.1 | Uncultured Candidatus Amoebophilus sp. | 97 |
9月 September | Fb | 1 2 4 5 13 14 | GQ860246.1 EF651068.1 DQ828045.1 AM936427.1 DQ642734.1 DQ444104.1 | Uncultured bacterium clone AR141 Uncultured delta proteobacterium Uncultured proteobacterium Uncultured Rhodospirillaceae Uncultured soil bacterium Uncultured bacterium clone DS3-24 | 100 96 99 100 98 95 |
表1 黄顶菊不同生长时期土壤细菌克隆序列与GenBank最相似序列的比较结果
Table 1 Comparison results of cloned sequences of soil bacteria cultivated with Flaveria bidentis in different growth period and the most similar sequence in GenBank
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Fb | 9 17 | FJ152853.1 FJ785824.1 | Uncultured bacterium clone TX5A_145 Uncultured bacterium clone EP9 | 100 94 |
7月 July | Fb | 23 | EF614061.1 | Uncultured bacterium clone NGD40 | 99 |
8月 August | Fb | 1 | GQ410521.1 | Uncultured Candidatus Amoebophilus sp. | 97 |
9月 September | Fb | 1 2 4 5 13 14 | GQ860246.1 EF651068.1 DQ828045.1 AM936427.1 DQ642734.1 DQ444104.1 | Uncultured bacterium clone AR141 Uncultured delta proteobacterium Uncultured proteobacterium Uncultured Rhodospirillaceae Uncultured soil bacterium Uncultured bacterium clone DS3-24 | 100 96 99 100 98 95 |
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Ss | 16 | GU118711.1 | Uncultured bacterium clone Mfra_M13 | 100 |
Ss + Fb | 11 | FJ870384.1 | Acidobacteria bacterium | 100 | |
7月 July | Ss | 14 17 18 | EU300452.1 EU834798.1 AY154495.1 | Uncultured actinobacterium Uncultured bacterium clone OTUc49 Uncultured earthworm intestine bacterium | 99 95 100 |
Ss + Fb | 3 4 8 | AB531400.1 GQ500847.1 EF651444.1 | Arthrobacter sp. Uncultured bacterium clone MACA- MR 18 Uncultured proteobacterium clone | 100 100 94 | |
8月 August | Ss | 10 13 | GU143709.1 AB451868.1 | Rhizobium sp. MerE-11 Uncultured Firmicutes bacterium | 100 100 |
Ss + Fb | 6 7 9 | GU056305.1 FJ966196.1 FJ930738.1 | Pseudoxanthomonas sp. Sphingobium sp. Uncultured bacterium clone W3-C09 | 98 98 98 | |
9月 September | Ss | - | - | - | - |
Ss + Fb | - | - | - | - |
表2 高丹草单种或与黄顶菊混种后不同时期土壤细菌克隆序列与GenBank的最相似序列的比较结果
Table 2 Comparison results of cloned sequences of soil bacteria cultivated with Sorghum bicolor × S. sudanense or mixed with Flaveria bidentis in different growth period and the most similar sequence in GenBank
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Ss | 16 | GU118711.1 | Uncultured bacterium clone Mfra_M13 | 100 |
Ss + Fb | 11 | FJ870384.1 | Acidobacteria bacterium | 100 | |
7月 July | Ss | 14 17 18 | EU300452.1 EU834798.1 AY154495.1 | Uncultured actinobacterium Uncultured bacterium clone OTUc49 Uncultured earthworm intestine bacterium | 99 95 100 |
Ss + Fb | 3 4 8 | AB531400.1 GQ500847.1 EF651444.1 | Arthrobacter sp. Uncultured bacterium clone MACA- MR 18 Uncultured proteobacterium clone | 100 100 94 | |
8月 August | Ss | 10 13 | GU143709.1 AB451868.1 | Rhizobium sp. MerE-11 Uncultured Firmicutes bacterium | 100 100 |
Ss + Fb | 6 7 9 | GU056305.1 FJ966196.1 FJ930738.1 | Pseudoxanthomonas sp. Sphingobium sp. Uncultured bacterium clone W3-C09 | 98 98 98 | |
9月 September | Ss | - | - | - | - |
Ss + Fb | - | - | - | - |
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Ha | 1 2 3 7 | GQ487891.1 GU117236.1 GQ500847.1 EU122663.1 | Uncultured bacterium clone T1-11 Uncultured bacterium clone Feb08_07C Uncultured bacterium clone MACA-MR18 Uncultured Acidobacteria bacterium | 100 100 99 100 |
Ha + Fb | - | - | - | - | |
7月 July | Ha | 5 6 9 10 13 20 | EF221451.1 FJ478699.1 EU849335.1 GQ495519.1 FJ946319.1 EU665105.1 | Uncultured Actinobacterium clone SI-1M_C07 Uncultured bacterium clone p9c21ok Uncultured actinobacterium Uncultured bacterium clone VR-12-13 Uncultured alpha proteobacterium Uncultured Gemmatimonadales | 100 99 98 99 100 98 |
Ha + Fb | 1 7 12 16 | AB196109.1 FJ184006.1 GQ468625.1 GQ067089.1 | Uncultured bacterium gene Uncultured alpha proteobacterium Uncultured Dactylosporangium sp. Uncultured bacterium clone nbw1121h01c1 | 95 100 100 98 | |
8月 August | Ha | 2 3 8 15 | AJ538059.1 FJ949425.1 GU201109.1 EU810962.1 | Uncultured Acidobacterium sp. Uncultured Chloroflexi bacterium Uncultured bacterium clone 6123Rh Uncultured actinobacterium | 94 95 100 100 |
Ha + Fb | 14 16 | GU122957.1 AY792291.1 | Agrobacterium sp. DBT2TW2 Uncultured alpha proteobacterium | 100 98 | |
9月 September | Ha | 10 11 16 | GQ859734.1 GU200785.1 GQ994692.1 | Uncultured bacterium clone AA145 Uncultured bacterium clone 1074Rh Uncultured organism clone anti_mic10 | 100 98 100 |
Ha + Fb | 6 7 | EU300503.1 EU300495.1 | Uncultured Firmicutes bacterium Uncultured Chloroflexi bacterium | 100 98 |
表3 向日葵单种或与黄顶菊混种后不同时期土壤细菌克隆序列与GenBank的最相似序列的比较结果
Table 3 Comparison results of cloned sequences of soil bacteria cultivated with Helianthus annuus or mixed with Flaveria bidentis in different growth period and the most similar sequence in GenBank
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Ha | 1 2 3 7 | GQ487891.1 GU117236.1 GQ500847.1 EU122663.1 | Uncultured bacterium clone T1-11 Uncultured bacterium clone Feb08_07C Uncultured bacterium clone MACA-MR18 Uncultured Acidobacteria bacterium | 100 100 99 100 |
Ha + Fb | - | - | - | - | |
7月 July | Ha | 5 6 9 10 13 20 | EF221451.1 FJ478699.1 EU849335.1 GQ495519.1 FJ946319.1 EU665105.1 | Uncultured Actinobacterium clone SI-1M_C07 Uncultured bacterium clone p9c21ok Uncultured actinobacterium Uncultured bacterium clone VR-12-13 Uncultured alpha proteobacterium Uncultured Gemmatimonadales | 100 99 98 99 100 98 |
Ha + Fb | 1 7 12 16 | AB196109.1 FJ184006.1 GQ468625.1 GQ067089.1 | Uncultured bacterium gene Uncultured alpha proteobacterium Uncultured Dactylosporangium sp. Uncultured bacterium clone nbw1121h01c1 | 95 100 100 98 | |
8月 August | Ha | 2 3 8 15 | AJ538059.1 FJ949425.1 GU201109.1 EU810962.1 | Uncultured Acidobacterium sp. Uncultured Chloroflexi bacterium Uncultured bacterium clone 6123Rh Uncultured actinobacterium | 94 95 100 100 |
Ha + Fb | 14 16 | GU122957.1 AY792291.1 | Agrobacterium sp. DBT2TW2 Uncultured alpha proteobacterium | 100 98 | |
9月 September | Ha | 10 11 16 | GQ859734.1 GU200785.1 GQ994692.1 | Uncultured bacterium clone AA145 Uncultured bacterium clone 1074Rh Uncultured organism clone anti_mic10 | 100 98 100 |
Ha + Fb | 6 7 | EU300503.1 EU300495.1 | Uncultured Firmicutes bacterium Uncultured Chloroflexi bacterium | 100 98 |
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Ms | 4 6 8 10 12 | EU300518.1 FJ898299.1 GQ302567.1 EU097123.1 EU300282.1 | Uncultured beta proteobacterium Lysobacter sp. Uncultured Acidobacterium bacterium Uncultured Acidobacteria bacterium Uncultured Firmicutes bacterium | 100 100 98 100 94 |
Ms + Fb | 15 | FJ439172.1 | Uncultured alpha proteobacterium | 98 | |
7月 July | Ms | 2 21 | GU171380.1 GU097375.1 | Arthrobacter aurescens Uncultured Nitrosospira sp. | 100 99 |
Ms + Fb | - | - | - | - | |
8月 August | Ms | - | - | - | - |
Ms + Fb | 4 | AM935033.1 | Uncultured Bacteroidetes bacterium | 100 | |
9月 September | Ms | 8 9 13 | GU143703.1 GQ397012.1 DQ642734.1 | Sinorhizobium medicae strain MerF-1 Uncultured bacterium clone AK1DE2_04C Uncultured soil bacterium | 100 95 98 |
Ms + Fb | - | - | - | - |
表4 紫花苜蓿单种或与黄顶菊混种各个生长时期土壤细菌克隆序列与GenBank的最相似序列的比较结果
Table 4 Comparison results of cloned sequences of soil bacteria cultivated with Medicago sativa or mixed with Flaveria bidentis in different growth period and the most similar sequence in GenBank
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
---|---|---|---|---|---|
6月 June | Ms | 4 6 8 10 12 | EU300518.1 FJ898299.1 GQ302567.1 EU097123.1 EU300282.1 | Uncultured beta proteobacterium Lysobacter sp. Uncultured Acidobacterium bacterium Uncultured Acidobacteria bacterium Uncultured Firmicutes bacterium | 100 100 98 100 94 |
Ms + Fb | 15 | FJ439172.1 | Uncultured alpha proteobacterium | 98 | |
7月 July | Ms | 2 21 | GU171380.1 GU097375.1 | Arthrobacter aurescens Uncultured Nitrosospira sp. | 100 99 |
Ms + Fb | - | - | - | - | |
8月 August | Ms | - | - | - | - |
Ms + Fb | 4 | AM935033.1 | Uncultured Bacteroidetes bacterium | 100 | |
9月 September | Ms | 8 9 13 | GU143703.1 GQ397012.1 DQ642734.1 | Sinorhizobium medicae strain MerF-1 Uncultured bacterium clone AK1DE2_04C Uncultured soil bacterium | 100 95 98 |
Ms + Fb | - | - | - | - |
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
6月 June | Lp | - | - | - | - |
Lp + Fb | 14 15 | FM200957.1 FJ439172.1 | Uncultured bacterium partial Uncultured alpha proteobacterium | 100 98 | |
7月 July | Lp | 19 | EF651365.1 | Uncultured Actinobacterium clone | 97 |
Lp + Fb | 22 | EF614061.1 | Uncultured bacterium clone AR012 | 99 | |
8月 August | Lp | - | - | - | - |
Lp + Fb | 5 11 | EU305587.1 AJ519658.1 | Uncultured Mesorhizobium Uncultured gamma proteobacterium | 98 95 | |
9月 September | Lp | - | - | - | - |
Lp + Fb | 15 | EF018599.1 | Uncultured bacterium clone Amb_16S_871 | 100 |
表5 多年生黑麦草单种或与黄顶菊混种后不同时期土壤细菌克隆序列与GenBank的最相似序列的比较结果
Table 5 Comparison results of cloned sequences of soil bacteria cultivated with Lolium perenne or mixed with Flaveria bidentis in different growth period and the most similar sequence in GenBank
割取条带位置 Band cut site | 条带号 No. of the band | 登陆号 Accession No. in GenBank | 近缘菌群 Closest bacteria | 相似度 Similarity (%) | |
6月 June | Lp | - | - | - | - |
Lp + Fb | 14 15 | FM200957.1 FJ439172.1 | Uncultured bacterium partial Uncultured alpha proteobacterium | 100 98 | |
7月 July | Lp | 19 | EF651365.1 | Uncultured Actinobacterium clone | 97 |
Lp + Fb | 22 | EF614061.1 | Uncultured bacterium clone AR012 | 99 | |
8月 August | Lp | - | - | - | - |
Lp + Fb | 5 11 | EU305587.1 AJ519658.1 | Uncultured Mesorhizobium Uncultured gamma proteobacterium | 98 95 | |
9月 September | Lp | - | - | - | - |
Lp + Fb | 15 | EF018599.1 | Uncultured bacterium clone Amb_16S_871 | 100 |
图4 替代植物不同生长时期的土壤细菌Shannon多样性指数的变化(平均值±标准误差)。A、B、C、D依次为高丹草、向日葵、紫花苜蓿和多年生黑麦草不同替代时期的土壤细菌Shannon多样性指数。缩写字母同图1。
Fig. 4 Changes of the Shannon diversity index of soil bacteria cultivated with replacement plants during the different growth periods (mean ± SE). A, B, C, D, showing the Shannon diversity index of soil bacteria cultivated with Sorghum bicolor × S. sudanense, Helianthus annuus, Medicago sativa and Lolium perenne in different growth periods, respectively. Abbreviations are the same as in Fig. 1.
[1] | Bai YZ (白艺珍), Cao XF (曹向锋), Hu BS (胡白石), Liu FQ (刘凤权) (2009). Potential distribution areas of alien invasive plant Flaveria bidentis. Chinese Journal of Applied Ecology (应用生态学报), 10, 2377-2383. (in Chinese with English abstract) |
[2] | Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473. |
[3] |
Burke DJ, Hamerlynck EP, Hahn D (2002). Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology, 68, 1157-1164.
URL PMID |
[4] |
Callaway RM, Asehehoug ET (2000). Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290, 521-523.
URL PMID |
[5] |
Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004). Soil biota and exotic plant invasion. Nature, 427, 731-733.
DOI URL PMID |
[6] | Christian JM, Wilson SD (1999). Long-term ecosystem impacts of an introduced grass in the northern Great Plains. Ecology, 80, 397-407. |
[7] |
Copley J (2000). Ecology goes underground. Nature, 406, 452-454.
DOI URL |
[8] |
Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiology Ecology, 56, 236-249.
URL PMID |
[9] |
Ehrenfeld JG, Kourtev P, Huang WZ (2001). Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecological Applications, 11, 1287-1300.
DOI URL |
[10] | Feng JY (冯建永), Tao B (陶晡), Pang MH (庞民好), Liu YC (刘颖超) (2009). Study on allelopathic substances releasing mode of Flaveria bidentis. Journal of Agricultural University of Hebei (河北农业大学学报), 32, 72-77. (in Chinese with English abstract) |
[11] | Gao XM (高贤明), Tang TG (唐廷贵), Zheng TX (郑天翔), Sang WG (桑卫国), Chen YL (陈艺林) (2004). An alert regarding biological invasion of by a new exotic plant, Flaveria bidentis and strategies for its control. Biodiversity Science (生物多样性), 12, 274-279. (in Chinese with English abstract) |
[12] | Guan GQ (关广清), Han YG (韩亚光), Yin R (尹睿) (1995). Studies on displacing and controlling of the ragweeds with economic plants. Journal of Shenyang Agricultural University (沈阳农业大学学报), 26, 277-283. (in Chinese with English abstract) |
[13] | Hawkes CV, Belnap J, Antonio CD, Firestone MK (2006). Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant and Soil, 281, 369-380. |
[14] | Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders LR (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
[15] |
Hiddink GA, Termorshuizen AJ, Raaijmakers JM, Bruggen AHC (2005). Effect of mixed and single crops on disease suppressiveness of soils. Phytopathology, 95, 1325-1332.
URL PMID |
[16] | Hu YS (胡元森), Wu K (吴坤), Liu N (刘娜), Chen HG (陈红歌), Jia XC (贾新成) (2004). Studies on microbial population dynamics in the cucumber rhizospheres at different developmental stages. Scientia Agricultura Sinica (中国农业科学), 37, 1521-1526. (in Chinese with English abstract) |
[17] | Huangfu CH (皇甫超河), Wang ZY (王志勇), Yang DL (杨殿林) (2009). Basic photosynthetic characteristics of exotic invasive weed Flaveria bidentis and its companion species. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 9, 781-788. (in Chinese with English abstract) |
[18] | Huangfu CH (皇甫超河), Chen DQ (陈冬青), Wang NN (王楠楠), Yang DL (杨殿林) (2010a). The mutual allelopathic effect between invasive plant Flaveria bidentis and four forgage species. Acta Prataculturae Sinica (草业学报), 19(4), 22-32. (in Chinese with English abstract) |
[19] | Huangfu CH (皇甫超河), Zhang TR (张天瑞), Liu HM (刘红梅), Li G (李刚), Lai X (赖欣), Yang DL (杨殿林). (2010b). Replacement control of Flaveria bidentis with three forage species in field. Chinese Journal of Ecology (生态学杂志), 29, 1511-1518. (in Chinese with English abstract) |
[20] |
Levine JM, Antonio CMD (1999). Elton revisited: a review of evidence linking diversity and invasibility. Oikos, 87, 15-26.
DOI URL |
[21] |
HLevine JMH, HVilà MH, HAntonio CMHHD, HDukes JS, HGrigulis KH, Lavorel SH (2003). Mechanisms underlying the impacts of exotic plant invasions. Proceedings Biological Sciences, 270, 775-781.
DOI URL PMID |
[22] | Li HN (李会娜) (2009). Interactions Between Three Invasive Composite Plants (Ageratina adenophora, Ambrosia artemisiifolia, Flaveria bidentis) and Soil Biota (三种入侵菊科植物(紫茎泽兰、豚草、黄顶菊)与土壤微生物的互作关系). PhD dissertation, Shenyang Agricultural University, Shenyang. 93-109. (in Chinese) |
[23] | Ma J (马杰), Yi J (易津), Huangfu CH (皇甫超河), Yang DL (杨殿林) (2010). Competitive effects between invasive plant Flaveria bidentis and three pasture species. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 30, 1020-1028. (in Chinese with English abstract) |
[24] |
Marler MJ, Zabinski CA, Callaway RM (1999). Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology, 80, 1180-1186.
DOI URL |
[25] |
Marschner P, Yang CH, Lieberei R, Crowley DE (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33, 1437-1445.
DOI URL |
[26] |
Muyzer G, De Waal EC, Uitterinden AG (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695-700.
DOI URL PMID |
[27] | Niu HB (牛红榜), Liu WX (刘万学), Wan FH (万方浩) (2007). Invasive effects of Ageratina adenophora Sprengel (Asteraceae) on soil microbial community and physical and chemical properties. Acta Ecologica Sinica (生态学报), 27, 3051-3060. (in Chinese with English abstract) |
[28] |
Reinhart KO, Callaway RM (2006). Soil biota and invasive plants. New Phytologist, 170, 445-457.
DOI URL PMID |
[29] | Ren YP (任艳萍), Jiang S (江莎), Gu S (古松), Zheng SX (郑书馨), Zhao N (赵娜) (2009). Preliminary studies on allelopathy of the aqueous extracts of an alien plant, Flaveria bidentis. Plant Protection (植物保护), 35(3), 36-40. (in Chinese with English abstract) |
[30] |
Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001). Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 67, 4742-4751.
DOI URL PMID |
[31] |
Stylinski CD, Allen EB (1999). Lack of native species recovery following severe exotic disturbance in southern Californian shrublands. Journal of Applied Ecology, 36, 544-554.
DOI URL |
[32] | Wan FH (万方浩), Guo JY (郭建英), Wang DH (王德辉) (2002). Alien invasive species in China: their damages and management strategies. Biodiversity Science (生物多样性), 10, 119-125. (in Chinese with English abstract) |
[33] | Xie QQ, Wei Y, Zhang GL (2010). Separation of flavonol glycosides from Flaveria bidentis (L.) Kuntze by high-speed counter-current chromatography. Separation and Purification Technology, 72, 229-233. |
[34] | Yu L (于亮), Li SJ (李世吉), Gui FR (桂富荣), Li ZY (李正跃) (2009). Study on competitive effects of Lolium perenne and Medicago sativa on Ageratina adenophora. Journal of Yunnan Agricultural University (云南农业大学学报), 2(24), 164-169. (in Chinese with English abstract) |
[35] | Yu XJ (于兴军), Yu D (于丹), Lu ZG (卢志国), Ma KP (马克平) (2005). A possible plant invasion mechanism: invasive species influence the growth of native species through changing the soil microbial community. Chinese Science Bulletin (科学通报), 50, 896-903. (in Chinese with English abstract) |
[36] | Zhang FH (张凤华), Ma FY (马富裕), Zheng Z (郑重), Jin T (金涛), Ma X (马旭) (2000). A study of cotton growth and rhizospheric microorganism on the different water and fertilizer under mulch drip irrigation. Journal of Xinjiang Agricultural University (新疆农业大学学报), 3(4), 56-58. (in Chinese with English abstract) |
[37] | Zhang FJ (张风娟), Xu XY (徐兴友), Chen FM (陈凤敏), Guo AY (郭艾英), Long R (龙茹) (2008). Allelopathic effect of aqueous extract of Flaveria bidentis (L.) Kuntze on Chinese cabbage and rice seedlings growth. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 1669-1674. (in Chinese with English abstract) |
[38] | Zhang TR (张天瑞), Huangfu CH (皇甫超河), Bai XM (白小明), Yang DL (杨殿林), Li G (李刚), Lai X (赖欣), Zhao JN (赵建宁) (2010). Effects of Flaveria bidentis invasion on soil nutrient contents and enzyme activities. Chinese Journal of Ecology (生态学杂志), 29, 1353-1358. (in Chinese with English abstract) |
[39] | Zhou K (周凯), Guo WM (郭维明), Xu YC (徐迎春) (2004). Advances of research on allelopathic potential in Compositae. Acta Ecologica Sinica (生态学报), 8, 1780-1788. (in Chinese with English abstract) |
[40] | Zhu HW (朱宏伟), Meng L (孟玲), Li BP (李保平) (2007). Relative competitive ability of Lolium perenne and the alien invasive weed, Eupatorium adenophorum (Compositae) at seedling stage. Chinese Journal of Applied and Environmental Biology (应用与环境生物学报), 13, 29-32. (in Chinese with English abstract) |
[1] | 杨佳绒 戴冬 陈俊芳 刘娟 吴宪 刘啸林 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 李耀琪 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[4] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[5] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[6] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[7] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[8] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[9] | 陈天翌, 娄安如. 青藏高原东侧白桦种群的遗传多样性与遗传结构[J]. 植物生态学报, 2022, 46(5): 561-568. |
[10] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[11] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[12] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[13] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[14] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[15] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19