植物生态学报 ›› 2020, Vol. 44 ›› Issue (10): 1028-1039.DOI: 10.17521/cjpe.2020.0216
胡慧1,2, 杨雨1,2, 包维楷1, 刘鑫1, 李芳兰1,*()
收稿日期:
2020-06-29
接受日期:
2020-08-26
出版日期:
2020-10-20
发布日期:
2020-10-11
通讯作者:
李芳兰
作者简介:
*E-mail: lifl@cib.ac.cn基金资助:
HU Hui1,2, YANG Yu1,2, BAO Wei-Kai1, LIU Xin1, LI Fang-Lan1,*()
Received:
2020-06-29
Accepted:
2020-08-26
Online:
2020-10-20
Published:
2020-10-11
Contact:
LI Fang-Lan
Supported by:
摘要:
干旱区植被斑块状分布格局引起的微生境差异对植被更新影响显著。气候变化和人类活动扰动下, 干旱区生态系统微生境多样化, 急需揭示乡土植物定植对不同微生境斑块变化的响应及其种间差异性, 并采用微生境调控技术促进退化生态系统植被恢复。该研究选择岷江干旱河谷区自然分布的灌木、半灌木和裸地微生境斑块, 采用移栽鞍叶羊蹄甲(Bauhinia brachycarpa)幼苗的试验方法, 揭示微生境变化对幼苗定植的影响; 进一步以极端退化的道路边坡为案例, 通过6种乡土植物种子直播试验探讨微生境调控技术及其对乡土植物幼苗定植的促进作用。结果显示, 在自然生态系统中, 裸地斑块上幼苗保存率和生物量显著大于植被斑块, 表明裸地微生境有利于幼苗定植; 养分添加仅对裸地斑块中幼苗生物量积累有促进作用。在裸地斑块中, 叶片生物量所占的比例和比叶面积较小, 相反根和茎生物量所占的比例较大。道路边坡上植被恢复试验结果显示, 6种乡土植物均能较好地适应土石混杂的边坡生境, 多数物种出苗率大于60%; 灌木幼苗保存率大于75%, 并且形成镶嵌式乡土灌草群落结构。地表覆盖和养分添加提高了边坡上种子出苗率和幼苗保存率, 促进了幼苗定植和结构稳定。该研究提供了有效促进工程边坡上乡土植物定植的方法, 可为干旱、半干旱生态系统退化荒坡和工程破坏地乡土植被恢复提供理论依据和技术指导。
胡慧, 杨雨, 包维楷, 刘鑫, 李芳兰. 干旱河谷微生境变化对乡土植物幼苗定植的影响. 植物生态学报, 2020, 44(10): 1028-1039. DOI: 10.17521/cjpe.2020.0216
HU Hui, YANG Yu, BAO Wei-Kai, LIU Xin, LI Fang-Lan. Effects of microhabitat changes on seedling establishment of native plants in a dry valley. Chinese Journal of Plant Ecology, 2020, 44(10): 1028-1039. DOI: 10.17521/cjpe.2020.0216
微生境类型 Microhabitat type | 植被特征 Vegetation characteristic | 土壤特征 Soil property | ||||
---|---|---|---|---|---|---|
平均植株高度 Average plant height (cm) | 冠幅 Crown diameter (cm) | 容重 Bulk density (g·cm-3) | 有机碳含量 Organic carbon content (g·kg-1) | 总氮含量 Total nitrogen content (g·kg-1) | 总磷含量 Total phosphorus content (g·kg-1) | |
灌木斑块 Shrub patch | 61.7 ± 10.5 | 1.23 ± 0.78 | 1.28 ± 0.65 | 47.66 ± 4.96 | 2.33 ± 0.11 | 0.76 ± 0.03 |
半灌木斑块 Semi-shrub patch | 38.2 ± 5.9 | 0.55 ± 0.14 | 1.21 ± 0.64 | 44.62 ± 5.32 | 2.51 ± 0.32 | 0.82 ± 0.03 |
裸地斑块 Bare patch | - | - | 1.37 ± 0.74 | 32.50 ± 4.31 | 1.81 ± 0.03 | 0.80 ± 0.07 |
表1 干旱河谷不同斑块微生境特征(平均值±标准误差)
Table 1 Microhabitat characteristics of different patches in the dry valley studied (means ± SE)
微生境类型 Microhabitat type | 植被特征 Vegetation characteristic | 土壤特征 Soil property | ||||
---|---|---|---|---|---|---|
平均植株高度 Average plant height (cm) | 冠幅 Crown diameter (cm) | 容重 Bulk density (g·cm-3) | 有机碳含量 Organic carbon content (g·kg-1) | 总氮含量 Total nitrogen content (g·kg-1) | 总磷含量 Total phosphorus content (g·kg-1) | |
灌木斑块 Shrub patch | 61.7 ± 10.5 | 1.23 ± 0.78 | 1.28 ± 0.65 | 47.66 ± 4.96 | 2.33 ± 0.11 | 0.76 ± 0.03 |
半灌木斑块 Semi-shrub patch | 38.2 ± 5.9 | 0.55 ± 0.14 | 1.21 ± 0.64 | 44.62 ± 5.32 | 2.51 ± 0.32 | 0.82 ± 0.03 |
裸地斑块 Bare patch | - | - | 1.37 ± 0.74 | 32.50 ± 4.31 | 1.81 ± 0.03 | 0.80 ± 0.07 |
图1 干旱河谷不同微生境下鞍叶羊蹄甲幼苗存活率、植株高度和比叶面积(平均值±标准误差)。Bare, 裸地微生境; Semi-shrub, 半灌木微生境; Shrub, 灌木微生境。不同小写字母表示不同微生境之间差异显著(n = 15; p < 0.05)。
Fig. 1 Survival rate, plant height and specific leaf area of two-year old Bauhinia brachycarpa seedlings in different microhabitats in the dry valley studied (means ± SE). Bare, bare land microhabitats; Semi-shrub, semi-shrub microhabitats; Shrub, shrub microhabitats. Different lowercase letters indicate significant differences among the microhabitats (n = 15; p < 0.05).
图2 干旱河谷不同微生境条件下二年生鞍叶羊蹄甲幼苗生物量(平均值±标准误差)。Bare, 裸地微生境; Semi-shrub, 半灌木微生境; Shrub, 灌木微生境。相同施肥条件下不同小写字母指示不同微生境之间差异显著(n = 15; p < 0.05)。*, 同一微生境类型中施肥效果显著(n = 15; p < 0.05); ns, 施肥效果不显著(n = 15; p > 0.05)。
Fig. 2 Biomass (means ± SE) of two-year old Bauhinia brachycarpa seedlings in different microhabitats in the dry valley studied. Bare, bare land microhabitats; Semi-shrub, semi-shrub microhabitats; Shrub, shrub microhabitats. Different lowercase letters within a fertile condition indicate significant differences among the microhabitats (n = 15; p < 0.05). *, significant difference between fertilized and unfertilized treatments (n = 15; p < 0.05); ns, non-significant difference between fertilized and unfertilized treatments (n = 15; p > 0.05).
图3 干旱河谷不同微生境条件下二年生鞍叶羊蹄甲幼苗生物量分配(平均值±标准误差)。Bare, 裸地微生境; Semi-shrub, 半灌木微生境; Shrub, 灌木微生境。不同小写字母表示不同微生境之间差异显著(n = 15; p < 0.05)。
Fig. 3 Biomass allocation (means ± SE) of two-year old Bauhinia brachycarpa seedlings in different microhabitats in the dry valley studied. Bare, bare land microhabitats; Semi-shrub, semi-shrub microhabitats; Shrub, shrub microhabitats. Different lowercase letters indicate significant differences among the microhabitats (n = 15; p < 0.05).
生活型 Life form | 物种 Species | 种子发芽率 Seed germination rate (%) | 出苗率 Seedling emergence rate (%) | 保存率 Seedling survival rate (%) |
---|---|---|---|---|
草本和半灌木 Herb and semi-shrub | 早熟禾 Poa annua | 61.6 ± 5.5a | 56.8 ± 12.40a | - |
狗尾草 Setaria viridis | 72.3 ± 12.6ab | 68.2 ± 8.11a | - | |
毛莲蒿 Artemisia vestit | 80.2 ± 9.1b | 23.9 ± 6.52b | - | |
灌木 Shrub | 白刺花 Sophora davidii | 61.2 ± 5.4a | 43.8 ± 5.49a | 77.0 ± 6.2a |
鞍叶羊蹄甲 Bauhinia brachycarpa | 98.0 ± 0.3b | 68.1 ± 9.53a | 75.7 ± 7.5a | |
四川黄栌 Cotinus szechuanensis | 34.6 ± 2.6c | 10.3 ± 2.34b | 79.9 ± 8.2a | |
小叶杭子梢 Campylotropis wilsonii | 76.7 ± 3.8ab | 58.5 ± 13.20a | 76.4 ± 5.5a |
表2 干旱河谷道路边坡不同乡土植物种子发芽率、萌发率和幼苗保存率(平均值±标准误差)
Table 2 Seed germination rate, seedling emergence and seedling survival rate (means ± SE) of different native plants on roadside slope of the dry valley studied
生活型 Life form | 物种 Species | 种子发芽率 Seed germination rate (%) | 出苗率 Seedling emergence rate (%) | 保存率 Seedling survival rate (%) |
---|---|---|---|---|
草本和半灌木 Herb and semi-shrub | 早熟禾 Poa annua | 61.6 ± 5.5a | 56.8 ± 12.40a | - |
狗尾草 Setaria viridis | 72.3 ± 12.6ab | 68.2 ± 8.11a | - | |
毛莲蒿 Artemisia vestit | 80.2 ± 9.1b | 23.9 ± 6.52b | - | |
灌木 Shrub | 白刺花 Sophora davidii | 61.2 ± 5.4a | 43.8 ± 5.49a | 77.0 ± 6.2a |
鞍叶羊蹄甲 Bauhinia brachycarpa | 98.0 ± 0.3b | 68.1 ± 9.53a | 75.7 ± 7.5a | |
四川黄栌 Cotinus szechuanensis | 34.6 ± 2.6c | 10.3 ± 2.34b | 79.9 ± 8.2a | |
小叶杭子梢 Campylotropis wilsonii | 76.7 ± 3.8ab | 58.5 ± 13.20a | 76.4 ± 5.5a |
图4 干旱河谷道路边坡不同微生境处理下群落结构参数(平均值±标准误差)。Bare, 裸露播种; Bare + N, 播种+施加养分; Cov + N, 播种+施加养分+纤维毯覆盖; Control, 裸露不播种。不同小写字母表示不同处理之间差异显著(n = 3; p < 0.05)。
Fig. 4 Community structures (means ± SE) under varying microhabitat treatments on roadside slope of the dry valley studied. Bare, bare land only with seedling; Bare + N, bare land with seedling and nutrient; Cov + N, covered with seedling and nutrient; Control, bare land without seedling. Different lowercase letters indicate significant differences among treatments (n = 3; p < 0.05).
图5 干旱河谷道路边坡不同微生境处理下群落密度和根系分布深度(平均值±标准误差)。Bare, 裸露播种; Bare + N, 播种+施加养分; Cov + N, 播种+施加养分+纤维毯覆盖; Control, 裸露不播种。不同小写字母表示不同处理之间差异显著(n = 3; p < 0.05)。
Fig. 5 Community density and rooting depth (means ± SE) under varying microhabitat treatments on roadside slope of the dry valley studied. Control, bare land without seedling; Bare, bare land only with seedling; Bare + N, bare land with seedling and nutrient; Cov + N, covered with seedling and nutrient. Different lowercase letters indicate significant differences among treatments (n = 3; p < 0.05).
图6 干旱河谷道路边坡不同微生境处理下群落密度的动态变化(平均值±标准误差)。Bare, 裸露播种; Bare + N, 播种+施加养分; Cov + N, 播种+施加养分+纤维毯覆盖。
Fig. 6 Dynamics of community density (means ± SE) under varying microhabitat treatments on roadside slope of the dry valley studied. Bare, bare land only with seedling; Bare + N, bare land with seedling and nutrient; Cov + N, covered with seedling and nutrient.
变量 Variable | 生物量 Biomass (g·m-2) | 盖度 Coverage (%) | ||
---|---|---|---|---|
F | p | F | p | |
生长年份 Growing duration (Gd) | 46.874 | <0.001 | 16.971 | 0.001 |
微生境处理 Microhabitat treatments (Mt) | 12.191 | 0.001 | 8.276 | 0.006 |
Gd × Mt | 3.926 | 0.049 | 0.062 | 0.941 |
R2 | 0.868 | 0.737 |
表3 生长周期与微生境处理两因素对道路边坡上群落生物量及盖度的交互作用
Table 3 Responses of community coverage and biomass to growing duration and varying microhabitat treatments and their interaction
变量 Variable | 生物量 Biomass (g·m-2) | 盖度 Coverage (%) | ||
---|---|---|---|---|
F | p | F | p | |
生长年份 Growing duration (Gd) | 46.874 | <0.001 | 16.971 | 0.001 |
微生境处理 Microhabitat treatments (Mt) | 12.191 | 0.001 | 8.276 | 0.006 |
Gd × Mt | 3.926 | 0.049 | 0.062 | 0.941 |
R2 | 0.868 | 0.737 |
图7 干旱河谷道路边坡上不同微生境处理下群落盖度和生物量的年际间变化(平均值±标准误差)。Bare, 裸露播种; Bare + N, 播种+施加养分; Cov + N, 播种+施加养分+纤维毯覆盖; Control, 裸露不播种。**和*表示同一微生境类型年份之间差异显著(n = 15; 分别为p < 0.01 和p < 0.05), ns表示年份之间差异不显著(n = 15; p > 0.05)。
Fig. 7 Inter-annual dynamics of community density and biomass (means ± SE) under varying microhabitat treatments on roadside slope of the dry valley studied. Bare, bare land only with seedling; Bare + N, bare land with seedling and nutrient; Cov + N, covered with seedling and nutrient; Control, bare land without seedling. ** and * indicate significant differences between the two observational years at p < 0.01 and p < 0.05 levels, respectively (n = 15); ns indicate non-significant differences between the two observational years (n = 15; p > 0.05).
[1] | Bao WK, Pang XY, Li FL, Zhou ZQ (2012). A Study of Ecological Restoration and Sustainable Management of the Arid Minjiang River Valley, China. Science Press, Beijing. |
[ 包维楷, 庞学勇, 李芳兰, 周志琼 (2012). 干旱河谷生态恢复与持续管理的科学基础. 科学出版社, 北京.] | |
[2] | Castro-Díez P, Puyravaud JP, Cornelissen JHC (2000). Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 124, 476-486. |
[3] | Certini G, Campbell CD, Edwards AC (2004). Rock fragments in soil support a different microbial community from the fine earth. Soil Biology & Biochemistry, 36, 1119-1128. |
[4] | Chartzoulakis K, Noitsakis B, Therios I (1993). Photosynthesis, plant growth and dry matter distribution in kiwifruit as influenced by water deficits. Irrigation Science, 14, 1-5. |
[5] | de Kroon H, Visser EJW (2003). Root Ecology. Springer-Verlag, New York |
[6] | Engelbrecht BMJ, Kursar TA, Tyree MT (2005). Drought effects on seedling survival in a tropical moist forest. Trees, 19, 312-321. |
[7] | Estrada-Medina H, Graham RC, Allen MF, Jiménez-Osornio JJ, Robles-Casolco S (2013). The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán, México. Plant and Soil, 362, 37-50. |
[8] | Gindaba J, Rozanov A, Negash L (2004). Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. Forest Ecology and Management, 201, 119-129. |
[9] | Han AR, Kim HJ, Jung JB, Park PS (2018). Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. Forest Ecology and Management, 429, 579-588. |
[10] | Leck MA, Parker VT, Simpson RL (2008). Seedling Ecology and Evolution. Cambridge University Press, Cambridge. |
[11] | Lehouck V, Spanhove T, Gonsamo A, Cordeiro NJ, Lens L (2009). Spatial and temporal effects on recruitment of an Afromontane forest tree in a threatened fragmented ecosystem. Biological Conservation, 142, 518-528. |
[12] | Li FL, Bao WK, Pang XY, Leng L (2009). Seedling emergence, survival and growth of five endemic species in the dry valley of Minjiang River. Acta Ecologica Sinica, 29, 2219-2230. |
[ 李芳兰, 包维楷, 庞学勇, 冷俐 (2009). 岷江干旱河谷5种乡土植物的出苗、存活和生长. 生态学报, 29, 2219-2230.] | |
[13] | Li FL, Bao WK, Wu N (2009). Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii. Agroforestry Systems, 77, 193-201. |
[14] | Li J, Zhao CY, Zhu H, Wang F (2007). Species effect of Tamarix spp. and Haloxylon ammodendronon shrub “fertile island”. Acta Ecologica Sinica, 27, 5138-5348. |
[ 李君, 赵成义, 朱宏, 王锋 (2007). 柽柳(Tamarix spp.)和梭梭(Haloxylon ammodendron)的“肥岛”效应. 生态学报, 27, 5138-5348.] | |
[15] | Li PX, Wang N, He WM, Krüsi BO, Gao SQ, Zhang SM, Yu FH, Dong M (2008). Fertile islands under Artemisia ordosica in inland dunes of northern China: effects of habitats and plant developmental stages. Journal of Arid Environments, 72, 953-963. |
[16] | Li WH (2013). Contemporary Chinese Ecological Research: Ecosystem Recovery Volume. Beijing: Science Press, 183-193. |
[ 李文华 (2013). 中国当代生态学研究: 生态系统恢复卷. 科学出版社, 北京. 183-193.] | |
[17] | Li Y, Bao WK, Wu N (2011). Spatial patterns of the soil seed bank and extant vegetation across the dry Minjiang River valley in southwest China. Journal of Arid Environments, 75, 1083-1089. |
[18] | Liu CX, Han LB (2007). Review of researches in vegetation restoration of freeway slopes. Acta Ecologica Sinica, 27, 2090-2098. |
[ 刘春霞, 韩烈保 (2007). 高速公路边坡植被恢复研究进展. 生态学报, 27, 2090-2098.] | |
[19] | Luo H, Zhao TY, Peng XF, Guo Y, Liang C (2013). Effectiveness of soil and water conservation of greening mulch of roadside slope. Transactions of the Chinese Society of Agricultural Engineering, 29(5), 63-70. |
[ 骆汉, 赵廷宁, 彭贤锋, 郭宇, 梁超 (2013). 公路边坡绿化覆盖物水土保持效果试验研究. 农业工程学报, 29(5), 63-70.] | |
[20] | Lynch JP (2019). Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytologist, 223, 548-564. |
[21] | Ma WB, Ji HJ, Su YM, Liu XL, He JS, Zhang L (2013). Characteristics and research application of vegetation blanket slope protection. Soil and Water Conservation in China, 1(9), 30-33. |
[ 马文宝, 姬慧娟, 宿以明, 刘兴良, 何建社, 张利 (2013). 植被毯边坡防护特点及其研究应用. 中国水土保持, 1(9), 30-33.] | |
[22] | Mi MX, Shao MG, Liu BX (2016). Effect of rock fragments content on water consumption, biomass and water-use efficiency of plants under different water conditions. Ecological Engineering, 94, 574-582. |
[23] | Milbau A, Scheerlinck L, Reheul D, de Cauwer B, Nijs I (2005). Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event. Physiologia Plantarum, 125, 500-512. |
[24] | Paquette A, Bouchard A, Cogliastro A (2006). Survival and growth of under-planted trees: a meta-analysis across four biomes. Ecological Applications, 16, 1575-1589. |
[25] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[26] | Qu LY, Wang ZB, Huang YY, Zhang YX, Song CJ, Ma KM (2017). Effects of plant coverage on shrub fertile islands in the Upper Minjiang River Valley. Science China: Life Sciences, 61, 340-347. |
[27] | Qu WL, Yang XP, Zhang CT, Wei B (2015). Shrub-mediated “fertile island” effects in arid and semi-arid grassland. Acta Prataculturae Sinica, 24, 201-207. |
[ 瞿王龙, 杨小鹏, 张存涛, 魏冰 (2015). 干旱、半干旱地区天然草原灌木及其肥岛效应研究进展. 草业学报, 24, 201-207.] | |
[28] | Sack L, Grubb PJ, Marañón T (2003). The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain. Plant Ecology, 168, 139-163. |
[29] | Sun H, Tang Y, Huang XJ, Huang CM (2005). Present situations and its R & D of dry valleys in the Hengduan Mountains of SW China. World Sci-Tech R & D, 27, 54-61. |
[ 孙辉, 唐亚, 黄雪菊, 黄成敏 (2005). 横断山区干旱河谷研究现状和发展方向. 世界科技研究与发展, 27, 54-61.] | |
[30] | Tetegan M, de Forges ACR, Verbeque B, Nicoullaud B, Desbourdes C, Bouthier A, Arrouays D, Cousin I (2015). The effect of soil stoniness on the estimation of water retention properties of soils: a case study from central France. Catena, 129, 95-102. |
[31] | Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921. |
[32] | Wu FZ, Bao WK, Zhou ZQ, Li FL (2012). Appropriate nitrogen supply could improve soil microbial and chemical characteristics with Sophora davidii seedlings cultivated in water stress conditions. Acta Agriculturae Scandinavica, Section B: Soil & Plant Science, 62, 49-58. |
[33] | Xu XL, Ma KM, Fu BJ, Song CJ, Liu W (2008). Influence of three plant species with different morphologies on water runoff and soil loss in a dry-warm river valley, SW China. Forest Ecology and Management, 256, 656-663. |
[34] | Zhang RZ (1992). The Dry Valleys of the Hengduan Mountains Region. Science Press, Beijing. 1-211. |
[ 张荣祖(1992). 横断山区干旱河谷. 科学出版社, 北京. 1-211.] | |
[35] | Zhou ZQ, Bao WK (2011). Levels of physiological dormancy and methods for improving seed germination of four rose species. Scientia Horticulturae, 129, 818-824. |
[36] | Zhu LH, Bao WK, He BH (2009). Assessment on ecological restoration effect of afforestation with Cupressus chengiana seedlings in the dry Minjiang River valley, southwestern China. Chinese Journal of Applied and Environmental Biology, 15, 774-780. |
[ 朱林海, 包维楷, 何丙辉 (2009). 岷江干旱河谷典型地段整地造林效果评估. 应用与环境生物学报, 15, 774-780.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[3] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[4] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[5] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 谢育杭, 贾璞, 郑修坛, 李金天, 束文圣, 王宇涛. 驯化对作物微生物组多样性和群落结构的影响及作用途径[J]. 植物生态学报, 2022, 46(3): 249-266. |
[8] | 周亮, 杨君珑, 杨虎, 窦建德, 黄维, 李小伟. 宁夏蒙古扁桃群落特征与分类[J]. 植物生态学报, 2022, 46(2): 243-248. |
[9] | 黄侩侩, 胡刚, 庞庆玲, 张贝, 何业涌, 胡聪, 徐超昊, 张忠华. 放牧对中国亚热带喀斯特山地灌草丛物种组成与群落结构的影响[J]. 植物生态学报, 2022, 46(11): 1350-1363. |
[10] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[11] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[12] | 贺忠权, 刘长成, 蔡先立, 郭柯. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征[J]. 植物生态学报, 2021, 45(6): 670-680. |
[13] | 韩大勇, 张维, 努尔买买提•依力亚斯, 杨允菲. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
[14] | 于燕妹, 黄林娟, 薛跃规. 广西大石围天坑群不同植物群落的特征[J]. 植物生态学报, 2021, 45(1): 96-103. |
[15] | 裴广廷, 孙建飞, 贺同鑫, 胡宝清. 长期人为干扰对桂西北喀斯特草地土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2021, 45(1): 74-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19