植物生态学报 ›› 2020, Vol. 44 ›› Issue (4): 318-329.DOI: 10.17521/cjpe.2019.0201
所属专题: 生态学研究的方法和技术; 生态系统碳水能量通量
收稿日期:
2019-08-05
接受日期:
2019-11-14
出版日期:
2020-04-20
发布日期:
2020-03-26
通讯作者:
温学发
基金资助:
WEI Jie1,CHEN Chang-Hua1,WANG Jing-Yuan1,WEN Xue-Fa1,2,*()
Received:
2019-08-05
Accepted:
2019-11-14
Online:
2020-04-20
Published:
2020-03-26
Contact:
WEN Xue-Fa
Supported by:
摘要:
碳(CO2、CH4)、氮(N2O)和水汽(H2O)等温室气体的交换通量是生态系统物质循环的核心, 是地圈-生物圈-大气圈相互作用的纽带。稳定同位素光谱和质谱技术和方法的进步使碳稳定同位素比值(δ 13C)和氧稳定同位素比值(δ 18O)(CO2)、δ 13C (CH4)、氮稳定同位素比值(δ 15N)和δ 18O (N2O)、氢稳定同位素比值(δD)和δ 18O (H2O)的观测成为可能, 与箱式通量观测技术和方法结合可以实现土壤、植物乃至生态系统尺度温室气体及其同位素通量观测研究。该综述以CO2及其δ 13C通量的箱式观测技术和方法为例, 概述了箱式通量观测系统的基本原理及分类, 阐述了系统设计的理论要求和假设, 综述了从野外到室内土壤、植物叶-茎-根以及生态系统尺度箱式通量观测研究的应用进展及问题, 展望了气体分析精度和准确度、观测数据精度和准确度以及观测数据的代表性评价在箱式通量观测研究中的重要性。
魏杰, 陈昌华, 王晶苑, 温学发. 箱式通量观测技术和方法的理论假设及其应用进展. 植物生态学报, 2020, 44(4): 318-329. DOI: 10.17521/cjpe.2019.0201
WEI Jie, CHEN Chang-Hua, WANG Jing-Yuan, WEN Xue-Fa. Theory, hypothesis and application advance in chamber-based technology and methods for flux measurement. Chinese Journal of Plant Ecology, 2020, 44(4): 318-329. DOI: 10.17521/cjpe.2019.0201
图1 非稳态系统(A、B)和稳态系统(C、D)及其气室箱体内CO2浓度变化特征示意图。Cc, Ca分别表示气室内和气室外CO2浓度; Pc, Pa分别表示气室内和气室外大气压; Tc, Wc表示气室内温度和湿度。
Fig. 1 System characteristics and CO2 concentration change inside of chamber at non-steady-state (A, B) and steady-state (C, D). Cc and Ca represent the CO2 concentration inside and outside of the chamber, respectively; Pc and Pa represent the atmosphere pressure inside and outside of the chamber, respectively; Tc and Wc represent the air temperature and moisture inside the chamber, respectively.
图2 土壤和植物CO2碳稳定同位素比值(δ13C)通量协同观测系统(A)及冠层和生态系统CO2 δ13C通量观测系统(B)示意图。A中植物呼吸箱仅以叶片和土壤呼吸箱为例展示气路图(茎干和根呼吸箱气路图与叶片相同)。
Fig. 2 Diagram on cooperative observation system of the CO2 carbon stable isotope composition (δ13C) flux of soil and plant (A) and observation system of the CO2 δ13C flux of canopy and ecosystem (B). In A, we only take leaf and soil chambers as an example to show the flow diagram of gas system (stem and root chambers same as leaf chamber).
[1] |
Albanito F, McAllister JL, Cescatti A, Smith P, Robinson D (2012). Dual-chamber measurements of δ13C of soilrespired CO2 partitioned using a field-based three end-member model. Soil Biology & Biochemistry, 47, 106-115.
DOI URL |
[2] |
Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N (2009). Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist, 182, 451-460.
DOI URL PMID |
[3] |
Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016). Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytologist, 210, 875-889.
URL PMID |
[4] |
Barbour MM, McDowell NG, Tcherkez G, Bickford CP, Hanson DT (2007). A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2. Plant, Cell & Environment, 30, 469-482.
DOI URL PMID |
[5] | Bowling DR, Egan JE, Hall SJ, Risk DA (2015). Environmental forcing does not induce diel or synoptic variation in carbon isotope content of forest soil respiration. Biogeosciences, 12, 5143-5160. |
[6] |
Bowling DR, Pataki DE, Randerson JT (2008). Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist, 178, 24-40.
URL PMID |
[7] |
Buchmann N, Ehleringer JR (1998). CO2 concentration profiles, and carbon and oxygen isotopes in C3 and C4 crop canopies. Agricultural and Forest Meteorology, 89, 45-58.
DOI URL |
[8] | Chen CH, Pang JP, Wei J, Wen XF, Sun XM (2017). Intercomparison of three models for δ13C of respiration with four regression approaches. Agricultural and Forest Meteorology, 247, 229-239. |
[9] | Chen CH, Wei J, Wen XF, Sun XM, Guo QJ (2019). Photosynthetic carbon isotope discrimination and effects on daytime NEE partitioning in a subtropical mixed conifer plantation. Agricultural and Forest Meteorology, 272-273, 143-155. |
[10] | Davidson EA, Savage K, Verchot LV, Navarro R (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113, 21-37. |
[11] |
Douthe C, Dreyer E, Epron D, Warren CR (2011). Mesophyll conductance to CO2, assessed from online TDL-AS records of 13CO2 discrimination, displays small but significant short-term responses to CO2 and irradiance in Eucalyptus seedlings. Journal of Experimental Botany, 62, 5335-5346.
DOI URL PMID |
[12] |
Dubbert M, Cuntz M, Piayda A, Werner C (2014). Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist, 203, 1242-1252.
URL PMID |
[13] |
Ekblad A, Högberg P (2001). Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127, 305-308.
DOI URL PMID |
[14] |
Epron D, Cabral OMR, Laclau JP, Dannoura M, Packer AP, Plain C, Battie-Laclau P, Moreira MZ, Trivelin PCO, Bouillet JP, Gérant D, Nouvellon Y (2016). In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiology, 36, 6-21.
DOI URL PMID |
[15] | Gao J, Han GL, Huang BX, Shi SJ, Jia CR, Ren YF (2011). Integration and performance test of an automatic multi- channel long-term soil respiration measurement system. Scientia Silvae Sinicae, 47(9), 153-157. |
[ 高峻, 韩光鲁, 黄彬香, 施生锦, 贾长荣, 任迎丰 (2011). 多通道土壤呼吸长期自动测量系统的集成与性能测试. 林业科学, 47(9), 153-157.] | |
[16] | Griffis TJ (2013). Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: a review of optical isotope techniques and their application. Agricultural and Forest Meteorology, 174-175, 85-109. |
[17] | Griffis TJ, Baker JM, Sargent SD, Tanner BD, Zhang J (2004). Measuring field-scale isotopic CO2 fluxes with tunable diode laser absorption spectroscopy and micrometeorological techniques. Agricultural and Forest Meteorology, 124, 15-29. |
[18] | Hafner S, Unteregelsbacher S, Seeber E, Lena B, Xu XL, Li XG, Guggenberger G, Miehe G, Kuzyakov Y (2012). Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Global Change Biology, 18, 528-538. |
[19] |
Hanson PJ, Gunderson CA (2009). Root carbon flux: measurements versus mechanisms. New Phytologist, 184, 4-6.
URL PMID |
[20] |
He NP, Wang RM, Gao Y, Dai JZ, Wen XF, Yu GR (2013). Changes in the temperature sensitivity of SOM decomposition with grassland succession: implications for soil C sequestration. Ecology and Evolution, 3, 5045-5054.
URL PMID |
[21] |
Hilman B, Angert A (2016). Measuring the ratio of CO2 efflux to O2 influx in tree stem respiration. Tree Physiology, 36, 1422-1431.
URL PMID |
[22] |
Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang JW, Subke JA (2013). Ecosystem-level controls on root-rhizosphere respiration. New Phytologist, 199, 339-351.
DOI URL PMID |
[23] | Hutchinson GL, Livingston GP (2001). Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. European Journal of Soil Science, 52, 675-682. |
[24] | Imer D, Merbold L, Eugster W, Buchmann N (2013). Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at three differently managed grasslands. Biogeosciences, 10, 5931-5945. |
[25] |
Jia SX, McLaughlin NB, Gu JC, Li XP, Wang ZQ (2013). Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 33, 579-589.
URL PMID |
[26] | Kammer A, Tuzson B, Emmenegger L, Knohl A, Mohn J, Hagedorn F (2011). Application of a quantum cascade laser- based spectrometer in a closed chamber system for real- time δ13C and δ18O measurements of soil-respired CO2. Agricultural and Forest Meteorology, 151, 39-48. |
[27] | Keeling CD (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 13, 322-334. |
[28] |
Kuptz D, Fleischmann F, Matyssek R, Grams TEE (2011a). Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytologist, 191, 160-172.
URL PMID |
[29] |
Kuptz D, Matyssek R, Grams TEE (2011b). Seasonal dynamics in the stable carbon isotope composition δ¹³C from non-leafy branch, trunk and coarse root CO2 efflux of adult deciduous (Fagus sylvatica) and evergreen (Picea abies) trees. Plant, Cell & Environment, 34, 363-373.
URL PMID |
[30] | Lai ZR, Lu S, Zhang YQ, Wu B, Qin SG, Feng W, Liu JB, Fa KY (2016). Diel patterns of fine root respiration in a dryland shrub, measured in situ over different phenological stages. Journal of Forest Research, 21, 31-42. |
[31] | Lai ZR, Zhang YQ, Wu B, Qin SG, Feng W, Liu JB (2015). Impacts of morphological traits and temperature on fine root respiration during dormancy of Caragana korshinskii. Ecological Research, 30, 337-345. |
[32] | Li JJ, Liu L, Chen DM, Xu FW, Cheng JH, Bai YF (2019). Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe. Chinese Journal of Plant Ecology, 43, 152-164. |
[ 李建军, 刘恋, 陈迪马, 许丰伟, 程军回, 白永飞 (2019). 底座入土深度和面积对典型草原土壤呼吸测定结果的影响. 植物生态学报, 43, 152-164.] | |
[33] |
Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP (2018). Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of the Total Environment, 635, 423-431.
URL PMID |
[34] | Livingston GP, Hutchinson GL, Spartalian K (2006). Trace gas emission in chambers: a non-steady-state diffusion model. Soil Science Society of America Journal, 70, 1459-1469. |
[35] | Lundegårdh H (1927). Carbon dioxide evolution of soil and crop growth. Soil Science, 23, 417-453. |
[36] | Maier M, Schack-Kirchner H (2014). Using the gradient method to determine soil gas flux: a review. Agricultural and Forest Meteorology, 192-193, 78-95. |
[37] |
Maier M, Schack-Kirchner H, Hildebrand EE, Schindler D (2011). Soil CO2 efflux vs. soil respiration: implications for flux models. Agricultural and Forest Meteorology, 151, 1723-1730.
DOI URL |
[38] |
Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiology, 29, 579-585.
URL PMID |
[39] |
Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, Nik AR (2012). Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. Tree Physiology, 32, 303-312.
URL PMID |
[40] |
Makita N, Yaku R, Ohashi M, Fukuda K, Ikeno H, Hirano Y (2013). Effects of excising and washing treatments on the root respiration rates of Japanese cedar (Cryptomeria japonica) seedlings. Journal of Forest Research, 18, 379-383.
DOI URL |
[41] |
Marron N, Plain C, Longdoz B, Epron D (2009). Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant and Soil, 318, 137-151.
DOI URL |
[42] |
Marsden C, Nouvellon Y, MʼBou AT, Saint-Andre L, Jourdan C, Kinana A, Epron D (2008). Two independent estimations of stand-level root respiration on clonal Eucalyptus stands in Congo: up scaling of direct measurements on roots versus the trenched-plot technique. New Phytologist, 177, 676-687.
DOI URL PMID |
[43] | Matter JM, Kelemen PB (2009). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nature Geoscience, 2, 837-841. |
[44] |
Mencuccini M, Hölttä T (2010). The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytologist, 185, 189-203.
URL PMID |
[45] |
Merbold L, Steinlin C, Hagedorn F (2013). Winter greenhouse gas emissions (CO2, CH4 and N2O) from a sub-alpine grassland. Biogeosciences, 10, 3185-3203.
DOI URL |
[46] |
Midwood AJ, Gebbing T, Wendler R, Sommerkorn M, Hunt JE, Millard P (2006). Collection and storage of CO2 for 13C analysis: an application to separate soil CO2 efflux into root- and soil-derived components. Rapid Communications in Mass Spectrometry, 20, 3379-3384.
URL PMID |
[47] |
Midwood AJ, Millard P (2011). Challenges in measuring the δ13C of the soil surface CO2 efflux. Rapid Communications in Mass Spectrometry, 25, 232-242.
URL PMID |
[48] |
Midwood AJ, Thornton B, Millard P (2008). Measuring the 13C content of soil-respired CO2 using a novel open chamber system. Rapid Communications in Mass Spectrometry, 22, 2073-2081.
DOI URL PMID |
[49] | Millard P, Midwood AJ, Hunt JE, Whitehead D, Boutton TW (2008). Partitioning soil surface CO2 efflux into autotrophic and heterotrophic components, using natural gradients in soil δ13C in an undisturbed savannah soil. Soil Biology & Biochemistry, 40, 1575-1582. |
[50] | Miller JB, Tans PP (2003). Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus B: Chemical and Physical Meteorology, 55, 207-214. |
[51] |
Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012). Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 196, 489-496.
URL PMID |
[52] |
Nickerson N, Risk D (2009). A numerical evaluation of chamber methodologies used in measuring the δ13C of soil respiration. Rapid Communications in Mass Spectrometry, 23, 2802-2810.
DOI URL PMID |
[53] | Ohlsson KEA, Singh B, Holm S, Nordgren A, Lövdahl L, Högberg P (2005). Uncertainties in static closed chamber measurements of the carbon isotopic ratio of soil-respired CO2. Soil Biology & Biochemistry, 37, 2273-2276. |
[54] | Pang JP, Wen XF (2018). A review of the calibration methods for measuring the carbon and oxygen isotopes in CO2 based on isotope ratio infrared spectroscopy. Chinese Journal of Plant Ecology, 42, 143-152. |
[ 庞家平, 温学发 (2018). 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展. 植物生态学报, 42, 143-152.] | |
[55] |
Pang JP, Wen XF, Sun XM (2016a). Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China. Science of the Total Environment, 539, 322-330.
DOI URL PMID |
[56] | Pang JP, Wen XF, Sun XM, Huang K (2016b). Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2/12CO2 measurement. Atmospheric Measurement Techniques, 9, 3879-3891. |
[57] | Parkin TB, Kaspar TC, Senwo Z, Prueger JH, Hatfield JL (2005). Relationship of soil respiration to crop and landscape in the walnut creek watershed. Journal of Hydrometeorology, 6, 812-824. |
[58] |
Plain C, Gerant D, Maillard P, Dannoura M, Dong Y, Zeller B, Priault P, Parent F, Epron D (2009). Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiology, 29, 1433-1445.
DOI URL PMID |
[59] |
Powers HH, Hunt JE, Hanson DT, McDowell NG (2010). A dynamic soil chamber system coupled with a tunable diode laser for online measurements of δ13C, δ18O, and efflux rate of soil-respired CO2. Rapid Communications in Mass Spectrometry, 24, 243-253.
URL PMID |
[60] | Pumpanen J, Kolari P, Ilvesniemi H, Minkkinen K, Vesala T, Niinistö S, Lohila A, Larmola T, Morero M, Pihlatie M, Janssens I, Yuste JC, Grünzweig JM, Reth S, Subke JA, Savage K, Kutsch W, Østreng G, Ziegler W, Anthoni P, Lindroth A, Hari P (2004). Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159-176. |
[61] |
Rey A (2015). Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Change Biology, 21, 1752-1761.
DOI URL PMID |
[62] |
Salomón RL, Valbuena-Carabaña M, Gil L, McGuire MA, Teskey RO, Aubrey DP, González-Doncel I, Rodríguez- Calcerrada J (2016). Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak. Tree Physiology, 36, 1409-1421.
DOI URL PMID |
[63] | Savage K, Phillips R, Davidson E (2014). High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences, 11, 2709-2720. |
[64] | Shi XL, Wang CK, Xu F, Wang XC (2010). Temporal dynamics and influencing factors of stem respiration for four temperate tree species. Acta Ecologica Sinica, 30, 3994-4003. |
[ 石新立, 王传宽, 许飞, 王兴昌 (2010). 四个温带树种树干呼吸的时间动态及其影响因子. 生态学报, 30, 3994-4003.] | |
[65] |
Snell HSK, Robinson D, Midwood AJ (2014). Minimising methodological biases to improve the accuracy of partitioning soil respiration using natural abundance 13C. Rapid Communications in Mass Spectrometry, 28, 2341-2351.
URL PMID |
[66] |
Sturm P, Tuzson B, Henne S, Emmenegger L (2013). Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: analytical improvements and representative results. Atmospheric Measurement Techniques, 6, 1659-1671.
DOI URL |
[67] |
Subke JA, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009). Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytologist, 183, 349-357.
DOI URL PMID |
[68] |
Sun LJ, Ataka M, Kominami Y, Yoshimura K (2017). Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiology, 37, 1011-1020.
URL PMID |
[69] |
Sun T, Mao ZJ (2011). Functional relationships between morphology and respiration of fine roots in two Chinese temperate tree species. Plant and Soil, 346, 375-384.
DOI URL |
[70] | Susfalk RB, Cheng WX, Johnson DW, Walker RF, Verburg P, Fu S (2002). Lateral diffusion and atmospheric CO2 mixing compromise estimates of rhizosphere respiration in a forest soil. Canadian Journal of Forest Research, 32, 1005-1015. |
[71] |
Wang JY, Wang XJ, Wang JP (2018a). Profile distribution of CO2 in an arid saline-alkali soil with gypsum and wheat straw amendments: a two-year incubation experiment. Scientific Reports, 8, 11939. DOI: 10.038/s41598-018-30312-0.
URL PMID |
[72] | Wang XW, Mao ZJ, McGuire MA, Teskey RO (2019). Stem radial CO2 conductance affects stem respiratory CO2 fluxes in ash and birch trees. Journal of Forestry Research, 30, 21-29. |
[73] | Wang YY, Li XX, Dong WX, Wu DM, Hu CS, Zhang YM, Luo YQ (2018b). Depth-dependent greenhouse gas production and consumption in an upland cropping system in northern China. Geoderma, 319, 100-112. |
[74] | Wei J, Liu WG, Wan H, Cheng JM, Li WJ (2016). Differential allocation of carbon in fenced and clipped grasslands: a 13C tracer study in the semiarid Chinese Loess Plateau. Plant and Soil, 406, 251-263. |
[75] | Weiss I, Mizrahi Y, Raveh E (2009). Chamber response time: a neglected issue in gas exchange measurements. Photosynthetica, 47, 121-124. |
[76] | Wen XF, Meng Y, Zhang XY, Sun XM, Lee X (2013). Evaluating calibration strategies for isotope ratio infrared spectroscopy for atmospheric 13CO2/12CO2 measurement. Atmospheric Measurement Techniques, 6, 1491-1501. |
[77] | Wen XF, Sun XM, Liu YF, Li XB (2007). Effects of linear and exponential fitting on the initial rate of change in CO2 concentration across the soil surface. Journal of Plant Ecology (Chinese Version), 31, 380-385. |
[ 温学发, 孙晓敏, 刘允芬, 李晓波 (2007). 线性和指数回归方法对土壤呼吸CO2扩散速率估算的影响. 植物生态学报, 31, 380-385.] | |
[78] | Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee XH (2008). Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 349, 489-500. |
[79] | Wen XF, Zhang XY, Wei J, Lü SD, Wang J, Chen CH, Song XW, Wang JY, Dai XQ (2019). Understanding the biogeochemical process and mechanism of ecosystem carbon cycle from the perspective of the earth’s critical zone. Advances in Earth Science, 34, 471-479. |
[ 温学发, 张心昱, 魏杰, 吕斯丹, 王静, 陈昌华, 宋贤威, 王晶苑, 戴晓琴 (2019). 地球关键带视角理解生态系统碳生物地球化学过程与机制. 地球科学进展, 34, 471-479.] | |
[80] |
Wingate L, Ogée J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A (2010). Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytologist, 188, 576-589.
DOI URL PMID |
[81] | Wu YB, Tan HC, Deng YC, Wu J, Xu XL, Wang YF, Tang YH, Teruo H, Cui XY (2010). Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field13C pulse-labeling. Global Change Biology, 16, 2322-2333. |
[82] | Xu LK, Furtaw MD, Madsen RA, Garcia RL, Anderson DJ, McDermitt DK (2006). On maintaining pressure equilibrium between a soil CO2 flux chamber and the ambient air. Journal of Geophysical Research, 111, D08S10. DOI: 10.1029/2005JD006435. |
[83] |
Yang JY, He YJ, Aubrey DP, Zhuang QL, Teskey RO (2016). Global patterns and predictors of stem CO2 efflux in forest ecosystems. Global Change Biology, 22, 1433-1444.
DOI URL PMID |
[84] | Yang QP, Xu M, Chi YG, Zheng YP, Shen RC, Li PX, Dai HT (2012). Temporal and spatial variations of stem CO2 efflux of three species in subtropical China. Journal of Plant Ecology, 5, 229-237. |
[85] |
Yang QP, Zhang WD, Li RS, Zheng WH, Yang JY, Xu M, Guan X, Huang K, Chen LC, Wang QK, Wang SL (2019). Effects of girdling on stem CO2 efflux and its temperature sensitivity in Chinese fir and sweetgum trees. Agricultural and Forest Meteorology, 268, 116-123.
DOI URL |
[86] | Yu GR (2009). Scientific Frontier on Human Activities and Ecosystem Changes. Higher Education Press, Beijing. |
[ 于贵瑞 (2009). 人类活动与生态系统变化的前言科学问题. 高等教育出版社, 北京.] | |
[87] | Yu GR, Sun XM (2017). Principles of Flux Measurement in Terrestrial Ecosystems. 2nd ed. Higher Education Press, Beijing. |
[ 于贵瑞, 孙晓敏 (2017). 陆地生态系统通量观测的原理与方法. 2版. 高等教育出版社, 北京.] | |
[88] | Yu GR, Wen XF, Li XB, Liu YY, Xing YW, Zhu XN (2015). Device and Method for Verifying the Flux of Soil Carbon Dioxide, Methane and Nitrous Oxide. China, 201410527692.5. 2015-01-14. |
[ 于贵瑞, 温学发, 李晓波, 刘亚勇, 邢友武, 朱湘宁 (2015). 土壤二氧化碳、甲烷和氧化亚氮通量验证装置以及验证方法. 中国, 201410527692.5. 2015-01-14.] | |
[89] | Yu ZL (2017). Ecology: Current Knowledge and Future Challenges. Higher Education Press, Beijing. |
[ 于振良 (2017). 生态学的现状与发展趋势. 高等教育出版社, 北京.] | |
[90] | Zhao JY, Xiao W, Zhang M, Wang JY, Wen XF, Lee XH (2020). Applications and prospect of the flux-gradient method in measuring the greenhouse gases and isotope fluxes. Chinese Journal of Plant Ecology, 44, 305-317. |
[ 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉 (2020). 通量梯度法在温室气体及同位素通量观测研究中的应用与展望, 植物生态学报, 44, 305-317.] | |
[91] | Zhao KJ, Dong BQ, Jia ZK, Ma LY (2018). Effect of climatic factors on the temporal variation of stem respiration in Larix principis-rupprechtii Mayr. Agricultural and Forest Meteorology, 248, 441-448. |
[92] | Zhou J, Yang ZY, Wu GH, Yang YZ, Lin GH (2018). The relationship between soil CO2 efflux and its carbon isotopic composition under non-steady-state conditions. Agricultural and Forest Meteorology, 256-257, 492-500. |
[1] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[2] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[3] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[4] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[5] | 吴铠, 李凯, 贾伟瀚, 廖梦娜, 倪健. 湖泊沉积植物古DNA的现代过程[J]. 植物生态学报, 2022, 46(7): 735-752. |
[6] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[7] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[8] | 方运霆, 刘冬伟, 朱飞飞, 图影, 李善龙, 黄韶楠, 全智, 王盎. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383. |
[9] | 赵佳玉, 肖薇, 张弥, 王晶苑, 温学发, 李旭辉. 通量梯度法在温室气体及同位素通量观测研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 305-317. |
[10] | 庞家平, 温学发. 稳定同位素红外光谱技术测定CO2同位素校正方法的研究进展[J]. 植物生态学报, 2018, 42(2): 143-152. |
[11] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[12] | 吕婷, 赵西宁, 高晓东, 潘燕辉. 黄土丘陵区典型天然灌丛和人工灌丛优势植物土壤水分利用策略[J]. 植物生态学报, 2017, 41(2): 175-185. |
[13] | 窦渤凯, 王义东, 薛冬梅, 王中良. 挺水和湿生草本植物传输甲烷的过程与机制研究进展[J]. 植物生态学报, 2017, 41(11): 1208-1218. |
[14] | 邹婷婷, 张子良, 李娜, 袁远爽, 郑东辉, 刘庆, 尹华军. 川西亚高山针叶林主要树种对土壤中不同形态氮素的吸收差异[J]. 植物生态学报, 2017, 41(10): 1051-1059. |
[15] | 何春霞, 陈平, 孟平, 张劲松, 杨洪国. 华北低丘山区果药复合系统种间水分利用策略[J]. 植物生态学报, 2016, 40(2): 151-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19