植物生态学报 ›› 2020, Vol. 44 ›› Issue (8): 791-806.DOI: 10.17521/cjpe.2020.0126
• 研究论文 • 下一篇
嘎玛达尔基1,2, 杨泽1,2, 谭星儒1,2, 王珊珊1,2, 李伟晶1,2, 游翠海1,2, 王彦兵1,2, 张兵伟1,3, 任婷婷1,2, 陈世苹1,2,*()
收稿日期:
2020-04-30
接受日期:
2020-07-01
出版日期:
2020-08-20
发布日期:
2020-07-09
通讯作者:
陈世苹
作者简介:
* spchen@ibcas.ac.cn基金资助:
GAMADAERJI 1,2, YANG Ze1,2, TAN Xing-Ru1,2, WANG Shan-Shan1,2, LI Wei-Jing1,2, YOU Cui-Hai1,2, WANG Yan-Bing1,2, ZHANG Bing-Wei1,3, REN Ting-Ting1,2, CHEN Shi-Ping1,2,*()
Received:
2020-04-30
Accepted:
2020-07-01
Online:
2020-08-20
Published:
2020-07-09
Contact:
CHEN Shi-Ping
Supported by:
摘要:
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。
嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响. 植物生态学报, 2020, 44(8): 791-806. DOI: 10.17521/cjpe.2020.0126
GAMADAERJI , YANG Ze, TAN Xing-Ru, WANG Shan-Shan, LI Wei-Jing, YOU Cui-Hai, WANG Yan-Bing, ZHANG Bing-Wei, REN Ting-Ting, CHEN Shi-Ping. Effect of altered litter input and nitrogen addition on ecosystem aboveground primary productivity and plant functional group composition in a semiarid grassland. Chinese Journal of Plant Ecology, 2020, 44(8): 791-806. DOI: 10.17521/cjpe.2020.0126
处理 Treatment | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|
N0 | 433 ± 13 | 199 ± 24 | 203 ± 26 | 135 ± 38 | 101 ± 8 | 129 ± 16 |
N1 | 433 ± 13 | 250 ± 23 | 291 ± 50 | 225 ± 47 | 158 ± 10 | 190 ± 17 |
表1 2013-2018年凋落物添加处理中每年的凋落物添加量(g·m-2)
Table 1 Annual litter addition amount of litter addition treatment in 2013- 2018 (g·m-2)
处理 Treatment | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|---|
N0 | 433 ± 13 | 199 ± 24 | 203 ± 26 | 135 ± 38 | 101 ± 8 | 129 ± 16 |
N1 | 433 ± 13 | 250 ± 23 | 291 ± 50 | 225 ± 47 | 158 ± 10 | 190 ± 17 |
图1 长期平均(1955-2011年)和实验年份(2012-2018年)生长季(5-9月)降水量及日平均气温。
Fig. 1 Changes in growing season precipitation and daily mean air temperature during the studied period (2012-2018) and the longterm mean growing season precipitation during 1955-2011.
df | DOC含量 DOC content | DON含量 DON content | df | Ts | SWC | |
---|---|---|---|---|---|---|
区组 Block | 4 | 0.86 | 0.39 | 4 | 15.61*** | 3.99* |
凋落物管理 C | 2 | 0.76 | 0.77 | 2 | 14.44*** | 10.49*** |
氮添加 N | 1 | 28.13*** | 61.81*** | 1 | 10.52** | 0.12 |
年 Year (Y) | 2 | 20.14*** | 15.33*** | 5 | 780.49*** | 302.17*** |
C × N | 2 | 0.06 | 0.36 | 2 | 0.09 | 0.52 |
C × Y | 4 | 1.19 | 4.08** | 10 | 1.89# | 11.12*** |
N × Y | 2 | 8.41** | 5.18* | 5 | 2.20# | 8.42*** |
C × N × Y | 4 | 0.48 | 3.18* | 10 | 0.32 | 4.27*** |
表2 凋落物输入变化(C)和氮添加(N)对土壤微环境影响的重复测量方差分析(RANOVA)结果
Table 2 Effects of altered litter input (C) and nitrogen addition (N) on soil microenvironment evaluated using repeated measures analysis of variance (RANOVA)
df | DOC含量 DOC content | DON含量 DON content | df | Ts | SWC | |
---|---|---|---|---|---|---|
区组 Block | 4 | 0.86 | 0.39 | 4 | 15.61*** | 3.99* |
凋落物管理 C | 2 | 0.76 | 0.77 | 2 | 14.44*** | 10.49*** |
氮添加 N | 1 | 28.13*** | 61.81*** | 1 | 10.52** | 0.12 |
年 Year (Y) | 2 | 20.14*** | 15.33*** | 5 | 780.49*** | 302.17*** |
C × N | 2 | 0.06 | 0.36 | 2 | 0.09 | 0.52 |
C × Y | 4 | 1.19 | 4.08** | 10 | 1.89# | 11.12*** |
N × Y | 2 | 8.41** | 5.18* | 5 | 2.20# | 8.42*** |
C × N × Y | 4 | 0.48 | 3.18* | 10 | 0.32 | 4.27*** |
图2 2013-2018年不同凋落物输入变化和氮添加处理下, 表层(0-10 cm)土壤温度(Ts)、土壤含水量(SWC)和土壤可溶性有机碳氮(DOC和DON)含量的年际变异(A、C、E、G)和6年平均值(B、D、F、H)(平均值±标准误差)。图中给出了凋落物输入变化(C)和氮添加(N)对生产力影响的差异显著性分析结果(ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001)。柱状图中的字母表示不同凋落物输入变化和氮添加处理间各指标的多重比较结果, 不同小写字母表示不同凋落物输入变化处理间的差异显著(p < 0.05), 不同大写字母代表不同氮添加处理间的差异显著(p < 0.05)。C0, 凋落物去除; C1, 凋落物对照; C2, 凋落物添加; N0, 无氮添加; N1, 氮添加。
Fig. 2 Inter-annual variations (A, C, E, G) and the 6-year average (B, D, F, H) of soil temperature (Ts), soil water content (SWC), dissolved organic carbon (DOC) and nitrogen (DON) content in surface soil layer (0-10 cm) in different litter input and nitrogen addition treatments during 2013-2018 (mean ± SE). Significance levels were presented to show the effects of altered litter input (C) and nitrogen addition (N) treatments and their interaction (C × N) on these parameters (ns, p > 0. 1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001). The letters in the bar graph indicate the results of multiple comparisons among different litter input and nitrogen addition treatments. Different lowercase letters indicate significant difference among three altered litter input treatments (p < 0.05), and uppercase letters indicate the significant difference between two nitrogen treatments (p < 0.05). C0, litter removal; C1, control; C2, litter addition; N0, without nitrogen addition; N1, nitrogen addition.
图3 2013-2018年不同凋落物输入变化和氮添加处理下, 群落地上净初级生产力(ANPP)的年际变异(A)和6年平均值(B)。图中数据均为平均值±标准误差。图中给出了凋落物输入变化(C)和氮添加(N)对生产力影响的差异显著性分析结果(ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001)。图中不同大写字母表示氮添加对生产力影响的差异显著(p < 0.05)。C0, 凋落物去除; C1, 凋落物对照; C2, 凋落物添加; N0, 无氮添加; N1, 氮添加。
Fig. 3 Inter-annual variation (A) and the 6-year average (B) of aboveground net primary productivity (ANPP) in different litter input and nitrogen addition treatments during 2013-2018. The data in the figure are mean ± SE. Significance levels were presented to show the effects of altered litter input (C) and nitrogen addition (N) treatments and their interaction (C × N) on ANPP (ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001). Different uppercase letters in the bar graph indicate significant difference results of multiple comparisons between two nitrogen treatments (p < 0.05). C0, litter removal; C1, control; C2, litter addition; N0, without nitrogen addition; N1, nitrogen addition.
df | 地上净初级生产力 ANPP | 绝对生物量 Absolute biomass | 相对生物量 Relative biomass | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB | PR | PF | SS | AB | PB% | PR% | PF% | SS% | AB% | |||
区组Block | 4 | 1.72 | 1.60 | 0.66 | 1.17 | 1.39 | 1.16 | 0.87 | 0.31 | 1.11 | 1.94 | 0.42 |
C | 2 | 3.20# | 0.77 | 3.30# | 0.01 | 0.66 | 3.13# | 0.18 | 1.65 | 0.36 | 0.70 | 3.70* |
N | 1 | 62.87*** | 31.22*** | 7.60* | 1.45 | 0.17 | 42.97*** | 9.04** | 0.24 | 12.50** | 2.81 | 37.54*** |
年Year (Y) | 5 | 57.28*** | 15.66*** | 22.04*** | 17.54*** | 1.51 | 4.32** | 4.87*** | 8.73*** | 6.41*** | 1.50 | 4.32** |
C × N | 2 | 0.02 | 0.02 | 0.02 | 0.08 | 1.33 | 2.65# | 0.08 | 0.18 | 0.23 | 1.21 | 2.96# |
C × Y | 10 | 0.59 | 1.31 | 6.36*** | 0.76 | 0.68 | 1.85# | 2.78** | 5.03*** | 0.86 | 0.44 | 1.78# |
N × Y | 5 | 7.64*** | 8.05*** | 2.63* | 5.27*** | 2.46* | 3.91** | 8.59*** | 0.30 | 10.38*** | 2.72* | 3.67** |
C × N × Y | 10 | 0.84 | 0.95 | 1.63 | 1.22 | 0.65 | 1.81# | 0.39 | 2.26* | 1.46 | 0.84 | 1.70# |
表3 凋落物输入变化(C)和氮添加(N)对群落地上净初级生产力(ANPP)及各功能群绝对和相对生物量影响的重复测量方差分析(RANOVA)结果
Table 3 Effects of altered litter input (C) and nitrogen addition (N) on community above-ground net primary productivity (ANPP) and absolute and relative biomass of each functional group evaluated using repeated measures analysis of variance (RANOVA)
df | 地上净初级生产力 ANPP | 绝对生物量 Absolute biomass | 相对生物量 Relative biomass | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PB | PR | PF | SS | AB | PB% | PR% | PF% | SS% | AB% | |||
区组Block | 4 | 1.72 | 1.60 | 0.66 | 1.17 | 1.39 | 1.16 | 0.87 | 0.31 | 1.11 | 1.94 | 0.42 |
C | 2 | 3.20# | 0.77 | 3.30# | 0.01 | 0.66 | 3.13# | 0.18 | 1.65 | 0.36 | 0.70 | 3.70* |
N | 1 | 62.87*** | 31.22*** | 7.60* | 1.45 | 0.17 | 42.97*** | 9.04** | 0.24 | 12.50** | 2.81 | 37.54*** |
年Year (Y) | 5 | 57.28*** | 15.66*** | 22.04*** | 17.54*** | 1.51 | 4.32** | 4.87*** | 8.73*** | 6.41*** | 1.50 | 4.32** |
C × N | 2 | 0.02 | 0.02 | 0.02 | 0.08 | 1.33 | 2.65# | 0.08 | 0.18 | 0.23 | 1.21 | 2.96# |
C × Y | 10 | 0.59 | 1.31 | 6.36*** | 0.76 | 0.68 | 1.85# | 2.78** | 5.03*** | 0.86 | 0.44 | 1.78# |
N × Y | 5 | 7.64*** | 8.05*** | 2.63* | 5.27*** | 2.46* | 3.91** | 8.59*** | 0.30 | 10.38*** | 2.72* | 3.67** |
C × N × Y | 10 | 0.84 | 0.95 | 1.63 | 1.22 | 0.65 | 1.81# | 0.39 | 2.26* | 1.46 | 0.84 | 1.70# |
图4 2013-2018年不同凋落物输入变化和氮添加处理下, 各功能群地上净初级生产力(ANPP)年际变异(A、C、E、G、I)和6年平均值(B、D、F、H、J)。图中数据均为平均值±标准误差。图中给出了每个年份以及多年平均凋落物输入变化(C)氮添加(N)及其交互作用(C × N)对各功能群地上净初级生产力影响的差异显著性分析结果(ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001)。不同大写字母表示不同氮添加处理(N)对各功能群地上净初级生产力影响的多重比较结果差异显著(p < 0.05)。C0, 凋落物去除; C1, 凋落物对照; C2, 凋落物添加; N0, 无氮添加; N1, 氮添加。AB, 一二年生植物; PB, 多年生丛生禾草; PF, 多年生杂类草; PR, 多年生根茎禾草; SS, 灌木与半灌木。
Fig. 4 Inter-annual variations (A, C, E, G, I) and 6-year average (B, D, F, H, J) of aboveground net primary productivity (ANPP) of five functional groups in different litter input and nitrogen addition treatments during 2013-2018. The data in the figure are mean ± SE. Significance levels were presented to show the effects of altered litter input (C) and nitrogen addition (N) treatments and their interaction (C × N) on ANPP of each functional group (ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001). C0, litter removal; C1, control; C2, litter addition; N0, without nitrogen addition; N1, nitrogen addition. Different uppercase letters in the bar graph indicate significant difference of multiple comparisons between two nitrogen addition treatments. AB, annual and biannual plants; PB, perennial bunch grasses; PF, perennial forbs; PR, perennial rhizome grasses; SS, shrubs and semi-shrubs.
图5 不同凋落物输入变化和氮添加处理下, 各功能群相对生物量多年平均值的变化。图中数据均为平均值±标准误差。星号表示不同氮处理间的差异显著(**, p < 0.01; ***, p < 0.001)。C0, 凋落物移除; C1, 对照; C2, 凋落物添加; N0, 无氮添加; N1, 氮添加。AB, 一二年生植物; PB, 多年生丛生禾草; PF, 多年生杂类草; PR, 多年生根茎禾草; SS, 灌木与半灌木。
Fig. 5 Variations in the relative biomass of the five functional groups in different litter input and nitrogen addition treatments. The data in the figure are mean ± SE. Asterisk indicated significant difference between different nitrogen treatments (**, p < 0.01; ***, p < 0.001). C0, litter removal; C1, control; and C2, litter addition; N0, nitrogen-free control; N1, nitrogen addition. AB, annual and biannual plants; PB, perennial bunch grasses; PF, perennial forbs; PR, perennial rhizome grasses; SS, shrubs, and semi-shrubs.
图6 不同氮处理条件下, 地上净初级生产力(ANPP)、土壤温度(Ts)、土壤含水量(SWC)及其季节变异(CVSWC)与上一年添加的凋落物质量间的相关关系。图中标出相关系数(R2)和差异显著性分析结果(*, p < 0.05; **, p < 0.01; ***, p < 0.001)。N0, 无氮添加; N1, 氮添加。
Fig. 6 Correlation analysis of aboveground net primary productivity (ANPP), soil temperature (Ts), soil water content (SWC) and its variation (CVSWC) with litter biomass added in the previous year under each nitrogen treatment. The correlation coefficient (R2) and significance levels are presented in the figure (*, p < 0.05; **, p < 0.01; ***, p < 0.001). N0, nitrogen-free control; N1, nitrogen addition.
图7 群落地上净初级生产力与生长季降水量(A)、土壤温度(B)、土壤含水量(C)和土壤含水量季节变异(D)之间的关系。图中标出相关系数(R2)和差异显著性分析结果(ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001)。C0, 凋落物去除; C1, 凋落物对照; C2, 凋落物添加; N0, 无氮添加; N1, 氮添加。
Fig. 7 Correlation analysis between aboveground net primary productivity (ANPP) and precipitation (A), soil temperature (Ts)(B), soil water content (SWC)(C), and seasonal variation of soil water content (CVSWC)(D) during the growing season. The correlation coefficient (R2) and the significance levels are presented in the figure (ns, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001). C0, litter removal; C1, control; C2, litter addition; N0, without nitrogen addition; N1, nitrogen addition.
图8 凋落物输入变化和氮添加通过土壤环境影响群落功能群组成及地上净初级生产力(ANPP)的结构方程模型。AIC, 赤池信息量; BIC, 贝叶斯信息量; Fisher’s Chi, 费舍尔精确检验值。
Fig. 8 Structural equation model (SEM) on how litter manipulation and nitrogen addition affect the community functional group composition and aboveground net primary productivity (ANPP) through soil environment. CVSWC, variance of soil water content; DOM, soil dissolved organic matter (the first principal component of DOC and DON, which explained 0.88 of them); PB, perennial bunch grasses; PF, perennial forbs; PR, perennial rhizome grasses; SWC, soil water content; Ts, soil temperature. AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion; Fisher’s Chi, result of Fisher exact test.
[1] |
Ågren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth-modeling the interaction between nitrogen and phosphorus. New Phytologist, 194, 953-960.
DOI URL |
[2] |
Amatangelo KL, Dukes JS, Field CB (2008). Responses of a California annual grassland to litter manipulation. Journal of Vegetation Science, 19, 605-612.
DOI URL |
[3] |
Austin AT, Vivanco L (2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442, 555-558.
DOI URL PMID |
[4] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[5] | Bai YF, Pan QM, Xing Q (2016). Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 61, 201-212. |
[ 白永飞, 潘庆民, 邢旗 (2016). 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 61, 201-212.] | |
[6] |
Bansal S, Sheley RL, Blank B, Vasquez EA (2014). Plant litter effects on soil nutrient availability and vegetation dynamics: changes that occur when annual grasses invade shrub- steppe communities. Plant Ecology, 215, 367-378.
DOI URL |
[7] |
Booth MS, Stark JM, Rastetter E (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75, 139-157.
DOI URL |
[8] |
Bosy JL, Reader RJ (1995). Mechanisms underlying the suppression of forb seedling emergence by grass (Poa pratensis) litter. Functional Ecology, 9, 635-639.
DOI URL |
[9] | Brearley FQ, Press MC, Scholes JD (2003). Nutrients obtained from leaf litter can improve the growth of dipterocarp seedlings. New Phytologist, 160, 101-110. |
[10] |
Carlyle CN, Fraser LH, Turkington R (2014). Response of grassland biomass production to simulated climate change and clipping along an elevation gradient. Oecologia, 174, 1065-1073.
DOI URL |
[11] | Chen ZZ, Wang SP (2000). Typical Chinese Grassland Ecosystem. Science Press, Beijing. |
[ 陈佐忠, 汪诗平 (2000). 中国典型草原生态系统. 科学出版社, 北京.] | |
[12] |
Clark CM, Tilman D (2008). Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
DOI URL PMID |
[13] |
Clark CM, Tilman D (2010). Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling. Ecology, 91, 3620-3630.
DOI URL PMID |
[14] |
Deng MF, Liu LL, Jiang L, Liu WX, Wang X, Li SP, Yang S, Wang B (2018). Ecosystem scale trade-off in nitrogen acquisition pathways. Nature Ecology & Evolution, 2, 1724-1734.
DOI URL PMID |
[15] |
Deutsch ES, Bork EW, Willms WD (2010a). Separation of grassland litter and ecosite influences on seasonal soil moisture and plant growth dynamics. Plant Ecology, 209, 135-145.
DOI URL |
[16] | Deutsch ES, Bork EW, Willms WD (2010b). Soil moisture and plant growth responses to litter and defoliation impacts in Parkland grasslands. Agriculture Ecosystems & Environment, 135, 1-9. |
[17] |
Facelli JM, Pickett STA (1991a). Plant litter: light interception and effects on an old-field plant community. Ecology, 72, 1024-1031.
DOI URL |
[18] |
Facelli JM, Pickett STA (1991b). Plant litter: its dynamics and effects on plant community structure. The Botanical Review, 57, 1-32.
DOI URL |
[19] |
Fang JY, Yang YH, Ma WH, Mohammat A, Shen HH (2010). Ecosystem carbon stocks and their changes in Chinaʼs grasslands. Science China Life Sciences, 53, 757-765.
DOI URL PMID |
[20] | Fang JY, Yu GR, Liu LL, Hu SJ, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020. |
[21] |
Foster BL, Gross KL (1998). Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology, 79, 2593-2602.
DOI URL |
[22] |
Gao Y, Sun SN, Xing F, Mu XM, Bai YG (2019). Nitrogen addition interacted with salinity-alkalinity to modify plant diversity, microbial PLFAs and soil coupled elements: a 5-year experiment. Applied Soil Ecology, 137, 78-86.
DOI URL |
[23] |
Gruber N, Galloway JN (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296.
DOI URL PMID |
[24] |
Heisler-White JL, Knapp AK, Kelly EF (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158, 129-140.
DOI URL PMID |
[25] | Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013). Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the United States of America, 110, 11911-11916. |
[26] |
Jensen K, Gutekunst K (2003). Effects of litter on establishment of grassland plant species: the role of seed size and successional status. Basic and Applied Ecology, 4, 579-587.
DOI URL |
[27] | Jiang HZ (2018). Effects of Litter Removal and Litter Addition on Community Structure and Ecosystem Function of Stepper Ecosystem. Master degree dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 蒋红志 (2018). 凋落物移除与添加对草原生态系统群落结构和生态系统的影响. 硕士学位论文, 中国科学院大学, 北京.] | |
[28] |
Jing ZB, Cheng JM, Chen A (2013). Assessment of vegetative ecological characteristics and the succession process during three decades of grazing exclusion in a continental steppe grassland. Ecological Engineering, 57, 162-169.
DOI URL |
[29] |
Jones DL, Willett VB (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology & Biochemistry, 38, 991-999.
DOI URL |
[30] |
Kelemen A, Török P, Valkó O, Miglécz T, Tóthmérész B (2013). Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands. Journal of Vegetation Science, 24, 1195-1203.
DOI URL |
[31] |
Knapp AK, Seastedt TR (1986). Detritus accumulation limits productivity of tallgrass prairie. BioScience, 36, 662-668.
DOI URL |
[32] |
Kohmann MM, Sollenberger LE, Dubeux Jr JCB, Silveira ML, Moreno LSB (2019). Legume proportion in grassland litter affects decomposition dynamics and nutrient mineralization. Agronomy Journal, 111, 1079-1089.
DOI URL |
[33] |
Lamb EG (2008). Direct and indirect control of grassland community structure by litter, resources, and biomass. Ecology, 89, 216-225.
DOI URL PMID |
[34] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[35] |
Letts B, Lamb EG, Mischkolz JM, Romo JT (2015). Litter accumulation drives grassland plant community composition and functional diversity via leaf traits. Plant Ecology, 216, 357-370.
DOI URL |
[36] |
Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011). Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 340, 253-264.
DOI URL |
[37] |
Liu JS, Cui Y, Li XF, Wilsey BJ, Isbell F, Wan SQ, Wang L, Wang DL (2018). Reversal of nitrogen-induced species diversity declines mediated by change in dominant grass and litter. Oecologia, 188, 921-929.
DOI URL PMID |
[38] | Lu M, Zhou XH, Luo YQ, Yang YH, Fang CM, Chen JK, Li B (2011). Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agriculture, Ecosystems & Environment, 140, 234-244. |
[39] |
Manning P, Saunders M, Bardgett RD, Bonkowski M, Bradford MA, Ellis RJ, Kandeler E, Marhan S, Tscherko D (2008). Direct and indirect effects of nitrogen deposition on litter decomposition. Soil Biology & Biochemistry, 40, 688-698.
DOI URL |
[40] | Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia. Acta Phytoecologica Sinica, 29, 311-317. |
[ 潘庆民, 白永飞, 韩兴国, 杨景成 (2005). 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 29, 311-317.] | |
[41] |
Patrick LB, Fraser LH, Kershner MW (2008). Large-scale manipulation of plant litter and fertilizer in a managed successional temperate grassland. Plant Ecology, 197, 183-195.
DOI URL |
[42] |
Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
DOI URL PMID |
[43] |
Ren HY, Xu ZW, Isbell F, Huang JH, Han XG, Wan SQ, Chen SP, Wang RZ, Zeng DH, Jiang Y, Fang YT (2017). Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecological Monographs, 87, 457-469.
DOI URL |
[44] |
Rice EL, Parenti RL (1978). Causes of decreases in productivity in undisturbed tall grass prairie. American Journal of Botany, 65, 1091-1097.
DOI URL |
[45] |
Ruprecht E, Enyedi MZ, Eckstein RL, Donath TW (2010). Restorative removal of plant litter and vegetation 40 years after abandonment enhances re-emergence of steppe grassland vegetation. Biological Conservation, 143, 449-456.
DOI URL |
[46] |
Sasaki T, Lu X, Hirota M, Bai Y (2019). Species asynchrony and response diversity determine multifunctional stability of natural grasslands. Journal of Ecology, 107, 1862-1875.
DOI URL |
[47] |
Sayer EJ, Heard MS, Grant HK, Marthews TR, Tanner EVJ (2011). Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change, 1, 304-307.
DOI URL |
[48] | Shen Y (2016). Effects of Water and Nitrogen and Litter Addition on Leymus chinensis Garssland. PhD dissertation, China Agricultural University, Beijing. |
[ 沈月 (2016). 水和氮及凋落物添加对羊草草地的影响机制. 博士学位论文, 中国农业大学, 北京.] | |
[49] |
Shen Y, Chen WQ, Yang GW, Yang X, Liu N, Sun X, Chen JS, Zhang YJ (2016). Can litter addition mediate plant productivity responses to increased precipitation and nitrogen deposition in a typical steppe? Ecological Research, 31, 579-587.
DOI URL |
[50] |
Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004). Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.
DOI URL PMID |
[51] | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
[52] |
Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH (2016). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
DOI URL PMID |
[53] | Varga C, Fekete I, Kotroczó Z, Krakomperger Z, Vincze G (2008). The effect of litter on soil organic matter (SOM) turnover in Síkfőkút site. Cereal Research Communications, 36, 547-550. |
[54] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[55] | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YH (2008). Variation in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-321. |
[ 万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.] | |
[56] | Wang J (2011). The Effect of Litter on Vegetation and Soil Moisture in Typical Grassland. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. |
[ 王静 (2011). 凋落物对典型草原植被及土壤水分的影响. 博士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[57] |
Wang J, Gao YZ, Zhang YH, Yang JJ, Smith MD, Knapp AK, Eissenstat DM, Han XG (2019). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969.
DOI URL PMID |
[58] |
Wang J, Zhao ML, Willms WD, Han GD, Wang ZW, Bai YF (2011). Can plant litter affect net primary production of a typical steppe in Inner Mongolia? Journal of Vegetation Science, 22, 367-376.
DOI URL |
[59] | Wang J-J, Pisani O, Lin LH, Lun OOY, Bowden RD, Lajtha K, Simpson AJ, Simpson MJ (2017a). Long-term litter manipulation alters soil organic matter turnover in a temperate deciduous forest Science of the Total Environment, 608, 865-875. |
[60] | Wang SS (2016). Effects of Altered Litter Input on Productivity and Carbon Fluxes of a Semiarid Grassland, Inner Mongolia. Master degree dissertation, University of Chinese Academy of Sciences, Beijing. |
[ 王珊珊 (2016). 凋落物输入变化对半干旱草原生产力和碳通量的影响. 硕士学位论文, 中国科学院大学, 北京.] | |
[61] |
Wang X, Xu Z, Lü X, Wang R, Cai J, Yang S, Li M-H, Jiang Y (2017b). Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant and Soil, 418, 241-253.
DOI URL |
[62] |
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
DOI URL PMID |
[63] |
Wikeem BM, Newman RF, Ryswyk AL (1989). Effect of fertilization date and litter removal on grassland forage production. Journal of Range Management, 42, 412-415.
DOI URL |
[64] |
Wilcox KR, Tredennick AT, Koerner SE, Grman E, Hallett LM, Avolio ML, La Pierre KJ, Houseman GR, Isbell F, Johnson DS, Alatalo JM, Baldwin AH, Bork EW, Boughton EH, Bowman WD, Britton AJ, Cahill Jr JF, Collins SL, Du GZ, Eskelinen A, Gough L, Jentsch A, Kern C, Klanderud K, Knapp AK, Kreyling J, Luo YQ, McLaren JR, Megonigal P, Onipchenko V, Prevéy J, Price JN, Robinson CH, Sala OE, Smith MD, Soudzilovskaia NA, Souza L, Tilman D, White SR, Xu ZW, Yahdjian L, Yu Q, Zhang PF, Zhang YH (2017). Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecology Letters, 20, 1534-1545.
DOI URL PMID |
[65] |
Wu GL, Du GZ, Liu ZH, Thirgood S (2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant and Soil, 319, 115-126.
DOI URL |
[66] |
Wu JB, Wang XD (2019). Temporal stability of aboveground net primary production in northern Tibet alpine steppe in response to nitrogen addition. Journal of Mountain Science, 16, 2679-2686.
DOI URL |
[67] |
Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
DOI URL |
[68] |
Xu S, Liu L, Sayer EJ (2013a). Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences, 10, 7423-7433.
DOI URL |
[69] |
Xu X, Sherry RA, Niu S, Li D, Luo Y (2013b). Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Global Change Biology, 19, 2753-2764.
DOI URL |
[70] |
Xu ZW, Ren HY, Li MH, van Ruijven J, Han XG, Wan SQ, Li H, Yu Q, Jiang Y, Jiang L (2015). Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 103, 1308-1316.
DOI URL |
[71] |
Yan LM, Chen SP, Huang JH, Lin GH (2010). Differential responses of auto- and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 16, 2345-2357.
DOI URL |
[72] |
Yang H, Jiang L, Li L, Li A, Wu MY, Wan SQ (2012). Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 15, 619-626.
DOI URL |
[73] |
Yang H, Li Y, Wu MY, Zhang Z, Li L, Wan SQ (2011). Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Global Change Biology, 17, 2936-2944.
DOI URL |
[74] |
Yarwood S, Brewer E, Yarwood R, Lajtha K, Myrold D (2013). Soil microbe active community composition and capability of responding to litter addition after 12 years of no inputs. Applied and Environmental Microbiology, 79, 1385-1392.
DOI URL |
[75] |
Yue K, Peng Y, Peng CH, Yang WQ, Peng X, Wu FZ (2016). Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports, 6, 19895. DOI: 10.1038/srep19895.
DOI URL PMID |
[76] |
Zhang BW, Tan XR, Wang SS, Chen ML, Chen SP, Ren TT, Xia JY, Bai YF, Huang JH, Han XG (2017). Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semi-arid steppe. Functional Ecology, 31, 1301-1311.
DOI URL |
[77] |
Zhang TA, Luo Y, Chen HYH, Ruan H (2018a). Responses of litter decomposition and nutrient release to N addition: a meta-analysis of terrestrial ecosystems. Applied Soil Ecology, 128, 35-42.
DOI URL |
[78] |
Zhang XY, Wang W (2015). Control of climate and litter quality on leaf litter decomposition in different climatic zones. Journal of Plant Research, 128, 791-802.
DOI URL PMID |
[79] |
Zhang Y, Loreau M, Lü X, He N, Zhang G, Han X (2016). Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 22, 1445-1455.
DOI URL PMID |
[80] |
Zhang YH, He NP, Loreau M, Pan QM, Han XG (2018b). Scale dependence of the diversity-stability relationship in a temperate grassland. Journal of Ecology, 106, 1277-1285.
DOI URL |
[81] |
Zhang YJ, Yang GW, Liu N, Chang SJ, Wang XY (2013). Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 22, 290-299.
DOI URL |
[ 张英俊, 杨高文, 刘楠, 常书娟, 王晓亚 (2013). 草原碳汇管理对策. 草业学报, 22, 290-299.] | |
[82] |
Zhao YN, Yang B, Li MX, Xiao RQ, Rao KY, Wang JQ, Zhang T, Guo JX (2019). Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow. Science of the Total Environment, 654, 863-871.
DOI URL |
[83] |
Zong N, Zhao GS, Shi PL (2019). Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the Northern Tibetan Plateau. Ecology and Evolution, 9, 9782-9793.
DOI URL PMID |
[1] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[3] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[4] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[5] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[6] | 杨建强, 刁华杰, 胡姝娅, 王常慧. 不同水平氮添加对盐渍化草地土壤微生物特征的影响[J]. 植物生态学报, 2021, 45(7): 780-789. |
[7] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[8] | 武运涛, 杨森, 王欣, 黄俊胜, 王斌, 刘卫星, 刘玲莉. 草地土壤有机质不同组分氮库对长期氮添加的响应[J]. 植物生态学报, 2021, 45(7): 790-798. |
[9] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
[10] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[11] | 徐小惠, 刁华杰, 覃楚仪, 郝杰, 申颜, 董宽虎, 王常慧. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1): 85-95. |
[12] | 李军军, 李萌茹, 齐兴娥, 王立龙, 徐世健. 芨芨草叶片养分特征对氮磷不同添加水平的响应[J]. 植物生态学报, 2020, 44(10): 1050-1058. |
[13] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[14] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[15] | 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报, 2020, 44(1): 22-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19