植物生态学报 ›› 2022, Vol. 46 ›› Issue (11): 1376-1387.DOI: 10.17521/cjpe.2022.0257
所属专题: 植物功能性状
代远萌1,2, 李满乐1,2, 徐铭泽1,2, 田赟1,2,3,*(), 赵洪贤1,2, 高圣杰1,2, 郝少荣1,2, 刘鹏1,2,3, 贾昕1,2,3, 查天山1,2,3
收稿日期:
2022-06-18
接受日期:
2022-09-23
出版日期:
2022-11-20
发布日期:
2022-09-28
通讯作者:
*田赟(tianyun@bjfu.edu.cn)
基金资助:
DAI Yuan-Meng1,2, LI Man-Le1,2, XU Ming-Ze1,2, TIAN Yun1,2,3,*(), ZHAO Hong-Xian1,2, GAO Sheng-Jie1,2, HAO Shao-Rong1,2, LIU Peng1,2,3, JIA Xin1,2,3, ZHA Tian-Shan1,2,3
Received:
2022-06-18
Accepted:
2022-09-23
Online:
2022-11-20
Published:
2022-09-28
Contact:
*TIAN Yun(tianyun@bjfu.edu.cn)
Supported by:
摘要:
半干旱地区沙丘固定过程中的植物叶性状的动态研究对于揭示该地区沙生植物对环境变化的生态适应策略具有重要意义。该研究选择毛乌素沙地沙丘4个不同固定阶段(半固定沙丘、固定沙丘、土壤结皮固定沙丘和草本植物固定沙丘)典型沙生植物黑沙蒿(Artemisia ordosica)为研究对象, 通过相关性分析、主成分分析及相似性分析等方法对黑沙蒿叶面积(LA)、比叶面积(SLA)、叶干物质含量(LDMC)和最大净光合速率(Amax)等11个叶性状进行分析, 探明黑沙蒿叶性状随沙丘逐渐固定的变化规律及叶性状间相互关系。主要结果有: (1)黑沙蒿LA和Amax在半固定沙丘阶段显著高于其他3个阶段; 叶碳含量随沙丘逐渐固定呈现先显著升高后略下降的变化趋势; 叶磷含量在半固定沙丘和土壤结皮固定沙丘阶段显著高于其余2个阶段, 且在半固定沙丘阶段最高。这些叶性状的变化表明在半固定沙丘阶段黑沙蒿倾向于增强光合作用来提高生存能力。(2)在不同阶段, 与植物光合能力相关的LA、SLA分别同反映物理防御结构的LDMC、叶组织密度间存在显著或极显著负相关关系。表明植物为适应环境, 对叶片光合能力的投资会随物理防御结构投资的增加而降低。这也表明了植物在生长繁殖和增强防御能力之间存在一种“此消彼长”的权衡关系。(3)综合沙丘的4个固定阶段, 与植物营养相关的叶化学性状同形态、生理性状间均存在显著相关关系; 且随沙丘逐渐固定, 黑沙蒿在资源权衡策略上存在从“快速投资-收益型”向“缓慢投资-收益型”变化的趋势。该研究结果进一步证实了沙生植物可通过叶性状与叶性状间相互关系优化其资源权衡策略, 以此来适应环境变化。
代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征. 植物生态学报, 2022, 46(11): 1376-1387. DOI: 10.17521/cjpe.2022.0257
DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land. Chinese Journal of Plant Ecology, 2022, 46(11): 1376-1387. DOI: 10.17521/cjpe.2022.0257
图1 毛乌素沙地沙丘不同固定阶段样地特征。A, 半固定沙丘阶段。B, 固定沙丘阶段。C, 土壤结皮固定沙丘阶段。D, 草本植物固定沙丘阶段。
Fig. 1 Characteristics of different dune fixation stages in Mau Us Sandy Land. A, Semi-fixed dune stage. B, Fixed dune stage. C, Fixed dune covered with biological soil crusts. D, Fixed dune with abundant herbaceous plants.
植被特征与土壤指标 Vegetation characteristic and soil indicator | 半固定沙丘 Semi-fixed dune stage | 固定沙丘 Fixed dune stage | 土壤结皮固定沙丘 Fixed dune covered with biological soil crusts | 草本植物固定沙丘 Fixed dune with abundant herbaceous plant |
---|---|---|---|---|
植被覆盖度 Vegetation coverage (%) | 23.29 ± 2.39a | 30.27 ± 2.32a | 46.43 ± 3.19b | 61.80 ± 2.80c |
黑沙蒿覆盖度 Coverage of Artemisia ordosica (%) | 11.54 ± 1.24a | 22.11 ± 1.72b | 35.24 ± 1.37c | 38.23 ± 2.84c |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.55 ± 0.02a | 2.40 ± 0.23b | 0.94 ± 0.02a | 1.43 ± 0.05a |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 0.22 ± 0.01a | 0.31 ± 0.04b | 0.24 ± 0.01ab | 0.30 ± 0.01ab |
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.05 ± 0.00a | 0.19 ± 0.02b | 0.07 ± 0.00a | 0.12 ± 0.01a |
优势物种 Dominant species | 黑沙蒿、塔落岩黄耆、虫实、草木樨状黄耆、沙蓬 Artemisia ordosica, Corethrodendron lignosum var. leave, Corispermum sp., Astragalus melilotoides, Agriophyllum squarrosum | 黑沙蒿、柠条锦鸡儿、草木樨状黄耆、华北白前、达乌里胡枝子 Artemisia ordosica, Caragana korshinskii, Astragalus melilotoides, Vincetoxicum mongolicum, Lespedeza davurica | 黑沙蒿、塔落岩黄耆、草木樨状黄耆、华北白前、中华草沙蚕 Artemisia ordosica, Corethrodendron lignosum var. leave, Astragalus melilotoides, Vincetoxicum mongolicum, Tripogon chinensis | 黑沙蒿、塔落岩黄耆、赖草、糙隐子草、华北白前 Artemisia ordosica, Corethrodendron lignosum var. leave, Leymus secalinus, Cleistogenes squarrosa, Vincetoxicum mongolicum |
表1 毛乌素沙地沙丘不同固定阶段植被特征和土壤理化性质(平均值±标准误)
Table 1 Vegetation characteristics and soil physical-chemical properties at different dune fixation stages in Mau Us Sandy Land (mean ± SE)
植被特征与土壤指标 Vegetation characteristic and soil indicator | 半固定沙丘 Semi-fixed dune stage | 固定沙丘 Fixed dune stage | 土壤结皮固定沙丘 Fixed dune covered with biological soil crusts | 草本植物固定沙丘 Fixed dune with abundant herbaceous plant |
---|---|---|---|---|
植被覆盖度 Vegetation coverage (%) | 23.29 ± 2.39a | 30.27 ± 2.32a | 46.43 ± 3.19b | 61.80 ± 2.80c |
黑沙蒿覆盖度 Coverage of Artemisia ordosica (%) | 11.54 ± 1.24a | 22.11 ± 1.72b | 35.24 ± 1.37c | 38.23 ± 2.84c |
土壤有机碳含量 Soil organic carbon content (g·kg-1) | 0.55 ± 0.02a | 2.40 ± 0.23b | 0.94 ± 0.02a | 1.43 ± 0.05a |
土壤全氮含量 Soil total nitrogen content (g·kg-1) | 0.22 ± 0.01a | 0.31 ± 0.04b | 0.24 ± 0.01ab | 0.30 ± 0.01ab |
土壤全磷含量 Soil total phosphorus content (g·kg-1) | 0.05 ± 0.00a | 0.19 ± 0.02b | 0.07 ± 0.00a | 0.12 ± 0.01a |
优势物种 Dominant species | 黑沙蒿、塔落岩黄耆、虫实、草木樨状黄耆、沙蓬 Artemisia ordosica, Corethrodendron lignosum var. leave, Corispermum sp., Astragalus melilotoides, Agriophyllum squarrosum | 黑沙蒿、柠条锦鸡儿、草木樨状黄耆、华北白前、达乌里胡枝子 Artemisia ordosica, Caragana korshinskii, Astragalus melilotoides, Vincetoxicum mongolicum, Lespedeza davurica | 黑沙蒿、塔落岩黄耆、草木樨状黄耆、华北白前、中华草沙蚕 Artemisia ordosica, Corethrodendron lignosum var. leave, Astragalus melilotoides, Vincetoxicum mongolicum, Tripogon chinensis | 黑沙蒿、塔落岩黄耆、赖草、糙隐子草、华北白前 Artemisia ordosica, Corethrodendron lignosum var. leave, Leymus secalinus, Cleistogenes squarrosa, Vincetoxicum mongolicum |
图2 毛乌素沙地沙丘不同固定阶段对黑沙蒿叶性状的影响(平均值±标准误)。Amax, 最大净光合速率; C:N, 叶碳氮比; LA, 叶面积; LCC, 叶碳含量; LDMC, 叶干物质含量; LNC, 叶氮含量; LPC, 叶磷含量; LT, 叶厚; LTD, 叶组织密度; N:P, 叶氮磷比; SLA, 比叶面积。CV, 变异系数。D1, 半固定沙丘阶段; D2, 固定沙丘阶段; D3, 土壤结皮固定沙丘阶段; D4, 草本植物固定沙丘阶段。
Fig. 2 Effects of different dune fixation stages on leaf traits of Artemisia ordosica in Mau Us Sandy Land (mean ± SE). Amax, maximum net photosynthetic rate; C:N, leaf carbon content to nitrogen content ratio; LA, leaf area; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; LTD, leaf tissue density; N:P, leaf nitrogen content to phosphorus content ratio; SLA, specific leaf area. CV, coefficient of variation. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
图3 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状间相关关系。Amax, 最大净光合速率; LA, 叶面积; LDMC, 叶干物质含量; LT, 叶厚; LTD, 叶组织密度; SLA, 比叶面积。D1, 半固定沙丘阶段; D2, 固定沙丘阶段; D3, 土壤结皮固定沙丘阶段; D4, 草本植物固定沙丘阶段。
Fig. 3 Relationships between leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land. Amax, maximum net photosynthetic rate; LA, leaf area; LDMC, leaf dry matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
LA | SLA | LT | LTD | LDMC | Amax | LCC | LNC | LPC | C:N | N:P | |
---|---|---|---|---|---|---|---|---|---|---|---|
LA | 1.00 | ||||||||||
SLA | 0.22 | 1.00 | |||||||||
LT | -0.10 | -0.15 | 1.00 | ||||||||
LTD | -0.22 | -0.72*** | -0.54*** | 1.00 | |||||||
LDMC | -0.66*** | -0.41* | 0.24 | 0.29 | 1.00 | ||||||
Amax | 0.63*** | -0.16 | -0.02 | 0.08 | -0.35* | 1.00 | |||||
LCC | -0.36* | 0.13 | 0.07 | -0.17 | 0.16 | -0.49** | 1.00 | ||||
LNC | -0.11 | 0.13 | -0.16 | 0.01 | -0.15 | -0.07 | 0.19 | 1.00 | |||
LPC | 0.50*** | 0.22 | -0.10 | -0.19 | -0.41* | 0.17 | 0.01 | 0.28 | 1.00 | ||
C:N | -0.03 | -0.05 | 0.17 | -0.11 | 0.19 | -0.17 | 0.43** | -0.79*** | -0.17 | 1.00 | |
N:P | -0.51** | -0.15 | -0.02 | 0.23 | 0.37* | -0.11 | -0.12 | 0.07 | -0.91*** | -0.21 | 1.00 |
表2 毛乌素沙地综合各沙丘固定阶段黑沙蒿叶性状间Pearson相关系数分析
Table 2 Pearson correlation coefficients among leaf traits of Artemisia ordosica at the dune fixation stages in Mau Us Sandy Land
LA | SLA | LT | LTD | LDMC | Amax | LCC | LNC | LPC | C:N | N:P | |
---|---|---|---|---|---|---|---|---|---|---|---|
LA | 1.00 | ||||||||||
SLA | 0.22 | 1.00 | |||||||||
LT | -0.10 | -0.15 | 1.00 | ||||||||
LTD | -0.22 | -0.72*** | -0.54*** | 1.00 | |||||||
LDMC | -0.66*** | -0.41* | 0.24 | 0.29 | 1.00 | ||||||
Amax | 0.63*** | -0.16 | -0.02 | 0.08 | -0.35* | 1.00 | |||||
LCC | -0.36* | 0.13 | 0.07 | -0.17 | 0.16 | -0.49** | 1.00 | ||||
LNC | -0.11 | 0.13 | -0.16 | 0.01 | -0.15 | -0.07 | 0.19 | 1.00 | |||
LPC | 0.50*** | 0.22 | -0.10 | -0.19 | -0.41* | 0.17 | 0.01 | 0.28 | 1.00 | ||
C:N | -0.03 | -0.05 | 0.17 | -0.11 | 0.19 | -0.17 | 0.43** | -0.79*** | -0.17 | 1.00 | |
N:P | -0.51** | -0.15 | -0.02 | 0.23 | 0.37* | -0.11 | -0.12 | 0.07 | -0.91*** | -0.21 | 1.00 |
图4 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状主成分(PC)分析结果。A, 黑沙蒿主要叶性状载荷。B, 黑沙蒿叶性状对沙丘固定不同阶段的响应。Amax, 最大净光合速率; C:N, 叶碳氮比; LA, 叶面积; LCC, 叶碳含量; LDMC, 叶干物质含量; LNC, 叶氮含量; LPC, 叶磷含量; LT, 叶厚; LTD, 叶组织密度; N:P, 叶氮磷比; SLA, 比叶面积。D1, 半固定沙丘阶段; D2, 固定沙丘阶段; D3, 土壤结皮固定沙丘阶段; D4, 草本植物固定沙丘阶段。
Fig. 4 Results of principle component (PC) analysis of Artemisia ordosica leaf traits in different dune fixation stages in Mau Us Sandy Land. A, Main leaf trait load of Artemisia ordosica. B, Response of Artemisia ordosica to different stages of dune fixation. Amax, maximum net photosynthetic rate; C:N, leaf carbon content to nitrogen content ratio; LA, leaf area; LCC, leaf carbon content; LDMC, leaf dry matter content; LNC, leaf nitrogen content; LPC, leaf phosphorus content; LT, leaf thickness; LTD, leaf tissue density; N:P, leaf nitrogen content to phosphorus content ratio; SLA, specific leaf area. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
叶性状 Leaf trait | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
LA | 0.47 | 0.07 | 0.27 |
SLA | 0.26 | -0.28 | -0.32 |
LT | -0.07 | -0.31 | 0.14 |
LTD | -0.23 | 0.46 | 0.14 |
LDMC | -0.44 | -0.05 | 0.04 |
Amax | 0.26 | 0.32 | 0.36 |
LCC | -0.13 | -0.42 | -0.27 |
LNC | 0.09 | 0.23 | -0.62 |
LPC | 0.44 | -0.06 | -0.10 |
C:N | -0.12 | -0.46 | 0.43 |
N:P | -0.40 | 0.23 | -0.10 |
方差比例 Variance ratio | 29.20% | 20.03% | 17.11% |
累计方差比例 Cumulative variance ratio | 29.20% | 49.23% | 66.34% |
表3 毛乌素沙地沙丘黑沙蒿叶性状在主成分分析中的载荷及解释方差
Table 3 Loadings and interpreted variance of leaf traits in principal component analysis in Mau Us Sandy Land
叶性状 Leaf trait | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
LA | 0.47 | 0.07 | 0.27 |
SLA | 0.26 | -0.28 | -0.32 |
LT | -0.07 | -0.31 | 0.14 |
LTD | -0.23 | 0.46 | 0.14 |
LDMC | -0.44 | -0.05 | 0.04 |
Amax | 0.26 | 0.32 | 0.36 |
LCC | -0.13 | -0.42 | -0.27 |
LNC | 0.09 | 0.23 | -0.62 |
LPC | 0.44 | -0.06 | -0.10 |
C:N | -0.12 | -0.46 | 0.43 |
N:P | -0.40 | 0.23 | -0.10 |
方差比例 Variance ratio | 29.20% | 20.03% | 17.11% |
累计方差比例 Cumulative variance ratio | 29.20% | 49.23% | 66.34% |
图5 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状相似性分析。D1, 半固定沙丘阶段; D2, 固定沙丘阶段; D3, 土壤结皮固定沙丘阶段; D4, 草本植物固定沙丘阶段。
Fig. 5 Analysis of leaf traits similarities of Artemisia ordosica in different dune fixation stages in Mau Us Sandy Land. D1, semi-fixed dune stage; D2, fixed dune stage; D3, fixed dune covered with biological soil crusts; D4, fixed dune with abundant herbaceous plants.
[1] |
Ackerly D, Knight C, Weiss S, Barton K, Starmer K (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI PMID |
[2] |
Anderegg LDL, Berner LT, Badgley G, Sethi ML, Law BE, HilleRisLambers J (2018). Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 21, 734-744.
DOI PMID |
[3] |
Bai YX, She WW, Michalet R, Zheng J, Qin SG, Zhang YQ (2018). Benefactor facilitation and beneficiary feedback effects drive shrub-dominated community succession in a semi-arid dune ecosystem. Applied Vegetation Science, 21, 595-606.
DOI URL |
[4] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. 14-188. |
[ 鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京. 14-188.] | |
[5] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[ 陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[6] |
Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R (2003a). Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14, 311-322.
DOI URL |
[7] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003b). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[8] |
Craven D, Hall JS, Berlyn GP, Ashton MS,van Breugel M (2015). Changing gears during succession: shifting functional strategies in young tropical secondary forests. Oecologia, 179, 293-305.
DOI PMID |
[9] |
Dai JZ, Bai YT, Wei ZJ, Zhang C, Yan RR (2021). Effects of root-cutting in the vegetative phase on plant functional traits of Leymus chinensis. Chinese Journal of Plant Ecology, 45, 1292-1302.
DOI URL |
[ 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞 (2021). 切根对羊草营养生长期内植物功能性状的影响. 植物生态学报, 45, 1292-1302.]
DOI |
|
[10] |
Derroire G, Powers JS, Hulshof CM, Cárdenas Varela LE, Healey JR (2018). Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Scientific Reports, 8, 285. DOI: 10.1038/s41598-017-18525-1.
DOI |
[11] |
Dong N, Prentice IC, Wright IJ, Evans BJ, Togashi HF, Caddy-Retalic S, Mcinerney FA, Sparrow B, Leitch E, Lowe AJ (2020). Components of leaf-trait variation along environmental gradients. New Phytologist, 228, 82-94.
DOI URL |
[12] |
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience, 46, 674-684.
DOI URL |
[13] |
Fajardo A, Piper FI, Hoch G (2013). Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany, 112, 623-631.
DOI PMID |
[14] | Feng QH, Shi ZM, Dong LL (2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae, 44(4), 125-131. |
[ 冯秋红, 史作民, 董莉莉 (2008). 植物功能性状对环境的响应及其应用. 林业科学, 44(4), 125-131.] | |
[15] |
Funk JL (2013). The physiology of invasive plants in low- resource environments. Conservation Physiology, 1, cot026. DOI: 10.1093/conphys/cot026.
DOI |
[16] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848
DOI URL |
[17] |
He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
DOI URL |
[18] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[19] |
He YY, Guo SL, Wang Z (2019). Research progress of trade- off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[ 何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[20] |
Heberling JM, Fridley JD (2012). Biogeographic constraints on the world-wide leaf economics spectrum. Global Ecology and Biogeography, 21, 1137-1146.
DOI URL |
[21] |
Huang JP, Yu HP, Dai AG, Wei Y, Kang LT (2017). Drylands face potential threat under 2 °C global warming target. Nature Climate Change, 7, 417-422.
DOI URL |
[22] | Jia X, Zha TS, Gong JN, Wang B, Zhang YQ, Wu B, Qin SG, Peltola H (2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228- 229, 120-129. |
[23] |
Jiang XY, Jia X, Gao SJ, Jiang Y, Wei NN, Han C, Zha TS, Liu P, Tian Y, Qin SG (2021). Plant nutrient contents rather than physical traits are coordinated between leaves and roots in a desert shrubland. Frontiers in Plant Science, 12, 734775. DOI: 10.3389/fpls.2021.734775.
DOI |
[24] | Jiang Y, Jin C, Jiang XY, Li XH, Wei NN, Gao SJ, Liu P, Jia X, Zha TS (2022). Relative changes and biophysical controls of leaf resource use efficiencies in Artemisia ordosica. Acta Ecologica Sinica, 42, 6196-6208. |
[ 蒋燕, 靳川, 姜晓燕, 李鑫豪, 魏宁宁, 高圣杰, 刘鹏, 贾昕, 查天山 (2022). 油蒿叶片资源利用效率相对变化及其生物与非生物影响因素. 生态学报, 42, 6196-6208.] | |
[25] |
Jin C, Li XH, Jiang Y, Xu MZ, Tian Y, Liu P, Jia X, Zha TS (2021). Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 45, 870-879.
DOI URL |
[ 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山 (2021). 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制. 植物生态学报, 45, 870-879.]
DOI |
|
[26] | Jin C, Zha TS, Jia X, Tian Y, Zhou WJ, Wei TZ (2020). Light energy partitioning, photoprotection and influencing factors of photosystem II in an exotic species (Salix psammophila) in Mu Us Sandy Land. Scientia Silvae Sinicae, 56(10), 34-44. |
[ 靳川, 查天山, 贾昕, 田赟, 周文君, 卫腾宙 (2020). 毛乌素沙地沙柳光系统II光保护机制和能量分配动态及其影响因子. 林业科学, 56(10), 34-44.] | |
[27] |
John MK (1970). Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Science, 109, 214-220.
DOI URL |
[28] | Kattge J, Díaz S, Lavorel S, Prentice C, Leadley P, Böenisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY—A global database of plant traits. Global Change Biology, 17, 2905-2935. |
[29] | Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122. |
[30] |
Koricheva J (2002). Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology, 83, 176-190.
DOI URL |
[31] |
Kumar M, Garkoti SC (2021). Functional traits, growth patterns, and litter dynamics of invasive alien and co-occurring native shrub species of chir pine forest in the central Himalaya, India. Plant Ecology, 222, 723-735.
DOI URL |
[32] | Li SL, Yu FH, Werger MJA, Dong M, Zuidema PA (2011). Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. Journal of Ecology, 99, 610-620. |
[33] | Li Y (2020). Variation of Leaf Trait Network Among Different Vegetation Types and Its Influencing Factors. PhD dissertation, Beijing Forestry University, Beijing. |
[ 李颖 (2020). 叶片性状网络在不同植被类型间的变异规律及其影响因素. 博士学位论文, 北京林业大学, 北京.] | |
[34] |
Li Y, Liu CC, Sack L, Xu L, Li MX, Zhang JH, He NP (2022). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25, 1442-1457.
DOI URL |
[35] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-33. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[36] |
Luo YK, Hu HF, Zhao MY, Li H, Liu SS, Fang JY (2019). Latitudinal pattern and the driving factors of leaf functional traits in 185 shrub species across Eastern China. Journal of Plant Ecology, 12, 67-77.
DOI URL |
[37] | Qin J, Kong HY, Liu H (2016). Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests. Journal of Northwest A&F University (Natural Science Edition), 44, 68-76. |
[ 秦娟, 孔海燕, 刘华 (2016). 马尾松不同林型土壤C、N、P、K的化学计量特征. 西北农林科技大学学报(自然科学版), 44, 68-76.] | |
[38] | Qu P, Xing YJ, Wang QG (2018). Research progress of plant economic spectrum. Chinese Agricultural Science Bulletin, 34(10), 88-94. |
[ 曲鹏, 邢亚娟, 王庆贵 (2018). 植物经济谱研究进展. 中国农学通报, 34(10), 88-94.] | |
[39] |
Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[40] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[41] |
Rose L, Rubarth MC, Hertel D, Leuschner C (2013). Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows. Journal of Vegetation Science, 24, 239-250.
DOI URL |
[42] |
Ryser P (1996). The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Functional Ecology, 10, 717-723.
DOI URL |
[43] |
She WW, Bai YX, Zhang YQ, Qin SG, Liu Z, Wu B (2017). Plasticity in meristem allocation as an adaptive strategy of a desert shrub under contrasting environments. Frontiers in Plant Science, 8, 1933. DOI: 10.3389/fpls.2017.01933.
DOI |
[44] | Si JH, Feng Q, Chang ZQ, Wang YB, Tian YZ, Xie ZC, Gao LP (2011). Community structure and species diversity of desert plants in the wind-sand area of Yabulai. Acta Botanica Boreali-Occidentalia Sinica, 31, 602-608. |
[ 司建华, 冯起, 常宗强, 王耀斌, 田永祯, 谢宗才, 高立平 (2011). 阿拉善雅布赖风沙区荒漠植物群落结构和物种多样性研究. 西北植物学报, 31, 602-608.] | |
[45] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. |
[46] |
Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
DOI PMID |
[47] |
Tian D, Yan ZB, Fang JY (2021). Review on characteristics and main hypotheses of plant ecological stoichiometry. Chinese Journal of Plant Ecology, 45, 682-713.
DOI |
[ 田地, 严正兵, 方精云 (2021). 植物生态化学计量特征及其主要假说. 植物生态学报, 45, 682-713.]
DOI |
|
[48] |
Tian D, Yan ZB, Ma SH, Ding YH, Luo YK, Chen YH, Du EZ, Han WX, Kovacs ED, Shen HH, Hu HF, Kattge J, Schmid B, Fang JY (2019). Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Science China Life Sciences, 62, 1047-1057.
DOI PMID |
[49] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[50] |
Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[51] |
Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecology, 15, 423-434.
DOI URL |
[52] |
Wu YJ, Ren C, Tian Y, Zha TS, Liu P, Bai YJ, Ma JY, Lai ZR, Bourquea CPA (2018). Photosynthetic gas-exchange and PSII photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila). Ecological Indicators, 94, 130-138.
DOI URL |
[53] |
Xiao D, Wang XJ, Zhang K, He NP, Hou JH (2016). Effects of nitrogen addition on leaf traits of common species in natural Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China. Chinese Journal of Plant Ecology, 40, 686-701.
DOI URL |
[ 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华 (2016). 氮添加对山西太岳山天然油松林主要植物叶片性状的影响. 植物生态学报, 40, 686-701.]
DOI |
|
[54] | Yan F, Cong RC (2015). Study on classification progress and cataloging system of sandy land in China. Geographical Research, 34, 455-465. |
[ 闫峰, 丛日春 (2015). 中国沙地分类进展及编目体系. 地理研究, 34, 455-465.] | |
[55] |
Zhang JH, He NP, Liu CC, Xu L, Yu Q, Yu GR (2018). Allocation strategies for nitrogen and phosphorus in forest plants. Oikos, 127, 1506-1514.
DOI URL |
[56] | Zhang JH, Wu B (2014). Influences of biological soil crust in Artemisia ordosica community on the precipitation infiltration process. Journal of University of Chinese Academy of Sciences, 31, 214-220. |
[ 张军红, 吴波 (2014). 黑沙蒿群落生物结皮对降水入渗过程的影响. 中国科学院大学学报, 31, 214-220.]
DOI |
|
[57] |
Zhang JL, Zhu JJ, Cao KF (2007). Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China. Trees, 21, 631-643.
DOI URL |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[3] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[4] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[5] | 祁鲁玉, 陈浩楠, 库丽洪·赛热别力, 籍天宇, 孟高德, 秦慧颖, 王宁, 宋逸欣, 刘春雨, 杜宁, 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
[6] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[7] | 谭一波, 田红灯, 曾春阳, 沈浩, 申文辉, 叶建平, 甘国娟. 猫儿山铁杉相邻植株冠层机械磨损对枝叶性状的影响[J]. 植物生态学报, 2021, 45(12): 1281-1291. |
[8] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[9] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[10] | 祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺. 不同气候带间成熟林植物叶性状间异速生长关系 随功能型的变异[J]. 植物生态学报, 2011, 35(7): 687-698. |
[11] | 牟美蓉, 蒋巧兰, 王文卿. 真红树和半红树植物叶片氯含量及叶性状的比较[J]. 植物生态学报, 2007, 31(3): 497-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19