植物生态学报 ›› 2023, Vol. 47 ›› Issue (8): 1116-1130.DOI: 10.17521/cjpe.2023.0041
所属专题: 植物功能性状
收稿日期:
2023-02-14
接受日期:
2023-04-26
出版日期:
2023-08-20
发布日期:
2023-05-04
通讯作者:
*白天道(基金资助:
FENG Shan-Shan, HUANG Chun-Hui, TANG Meng-Yun, JIANG Wei-Xin, BAI Tian-Dao*()
Received:
2023-02-14
Accepted:
2023-04-26
Online:
2023-08-20
Published:
2023-05-04
Contact:
*BAI Tian-Dao(Supported by:
摘要:
叶片是林木获取和利用生存资源的重要器官, 其形态结构一定程度上反映了林木的生境适应性。探究南盘江—红水河流域的地理气候对该区域重要树种细叶云南松(Pinus yunnanensis var. tenuifolia)针叶形态及显微结构的塑造作用, 对理解该树种的生态适应性及资源保育具有重要参考价值。该研究以分布于贵州和广西的细叶云南松9个自然种群的18个针叶形态及显微性状为研究对象, 结合种群所在地7个地理和气候因子, 采用巢氏方差分析、相关分析、多元统计分析(主成分分析、冗余分析和系统聚类分析)方法解析其种群差异及环境关联。结果表明, 除叶截面面积与中柱截面面积之比(V1)外, 其他指标在种群间均存在不同程度的分化(表型分化系数(VST) = 22.32%-51.42%), 即种群间生境异质性对大部分指标有显著影响。Pearson相关分析和多元统计分析表明: 针叶树脂道相关指标(树脂道数目、周长、面积等)随纬度、海拔、降水量增加而增大, 随年平均气温升高而减小; 气孔相关指标(气孔密度、气孔密度与V1之比)随经纬度增加而增大, 随相对湿度增加而减小; 针叶横截面大小相关指标(叶宽、叶厚、叶截面面积、中柱面积等)则主要与采样地至南盘江—红水河谷的距离显著相关, 距离越近, 指标值越小。综上, 细叶云南松在与云南松(P. yunnanensis)截然不同的干热生境驱动下, 表现出所有树脂道性状小型化趋势, 细叶云南松较高的气孔密度(以及下陷的气孔)有利于其在干旱环境下平衡呼吸和蒸腾失水作用, 而其相对细柔的针叶则可能主要由该区域特殊的河谷地形造成的焚风及峡谷强风的胁迫作用以及季节性暖干气候对针叶的生长限制作用所塑造。
冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释. 植物生态学报, 2023, 47(8): 1116-1130. DOI: 10.17521/cjpe.2023.0041
FENG Shan-Shan, HUANG Chun-Hui, TANG Meng-Yun, JIANG Wei-Xin, BAI Tian-Dao. Geographical variation of needles phenotypic and anatomic traits between populations of Pinus yunnanensis var. tenuifolia and its environmental interpretation. Chinese Journal of Plant Ecology, 2023, 47(8): 1116-1130. DOI: 10.17521/cjpe.2023.0041
性状缩写 Abbreviation of character | 单位 Unit | 性状名称 Name of character |
---|---|---|
αA | ° | 针叶截面夹角 Angle of needle cross section |
NW | mm | 叶宽 Needle width |
NT | mm | 叶厚 Needle thickness |
NSP | mm | 叶截面周长 Needle cross-section perimeter |
NSA | mm2 | 叶截面面积 Needle cross-section area |
CCW | mm | 中柱宽 Central cylinder width |
CCT | mm | 中柱厚 Central cylinder thickness |
CCP | mm | 中柱截面周长 Central cylinder perimeter |
CCA | mm2 | 中柱截面面积 Central cylinder area |
RCN | No. | 树脂道数 Number of resin canals |
RCP | mm | 树脂道总周长 Resin canal perimeter |
RCA | mm2 | 树脂道总面积 Resin canal area |
MA | mm2 | 叶肉面积 Mesophyll area |
MSD | No.·mm-2 | 气孔密度 Mean stomatal density |
V1 | 叶截面面积与中柱截面面积之比 NSA/CCA | |
V2 | 树脂道数与气孔密度之比 RCN/MSD | |
V3 | 树脂道数与V1之比 RCN/V1 | |
V4 | 气孔密度与V1之比 MSD/V1 |
表1 细叶云南松针叶参试性状指标名称、缩写及单位
Table 1 Names, abbreviations, and units of tested needle characters for Pinus yunnanensis var. tenuifolia
性状缩写 Abbreviation of character | 单位 Unit | 性状名称 Name of character |
---|---|---|
αA | ° | 针叶截面夹角 Angle of needle cross section |
NW | mm | 叶宽 Needle width |
NT | mm | 叶厚 Needle thickness |
NSP | mm | 叶截面周长 Needle cross-section perimeter |
NSA | mm2 | 叶截面面积 Needle cross-section area |
CCW | mm | 中柱宽 Central cylinder width |
CCT | mm | 中柱厚 Central cylinder thickness |
CCP | mm | 中柱截面周长 Central cylinder perimeter |
CCA | mm2 | 中柱截面面积 Central cylinder area |
RCN | No. | 树脂道数 Number of resin canals |
RCP | mm | 树脂道总周长 Resin canal perimeter |
RCA | mm2 | 树脂道总面积 Resin canal area |
MA | mm2 | 叶肉面积 Mesophyll area |
MSD | No.·mm-2 | 气孔密度 Mean stomatal density |
V1 | 叶截面面积与中柱截面面积之比 NSA/CCA | |
V2 | 树脂道数与气孔密度之比 RCN/MSD | |
V3 | 树脂道数与V1之比 RCN/V1 | |
V4 | 气孔密度与V1之比 MSD/V1 |
图2 细叶云南松针叶显微形态。A, 针叶表面(纵向)气孔分布状态。B, 针叶横截面图。C, 针叶横截面外皮层、树脂道及气孔放大。D, 针叶横截面模式图。αA, 针叶截面夹角; c, 中柱; e, 表皮; h, 皮下层; m, 叶肉; p, 韧皮部; r, 树脂道; s, 气孔; x, 木质部。CCT, 中柱厚; CCW, 中柱宽; NT, 针叶厚; NW, 针叶宽; RCA, 树脂道总面积; RCP, 树脂道总周长。
Fig. 2 Needle microscopic structures of Pinus yunnanensis var. tenuifolia. A, Stomata and stomatal line distribution. B, Cross section of needle. C, Enlarged exodermis, resin canal and stomata. D, Model picture of cross section of needle. αA, angle of needle cross section; c, central cylinder; e, epidermis; h, subcutaneous layer; m, mesophyll; p, phloem; r, resin canal; s, stomata; x, xylem. CCT, central cylinder thickness; CCW, central cylinder width; NT, needle thickness; NW, needle width; RCA, resin canal area; RCP, resin canal perimeter.
性状 Trait | F | 方差分量百分比 Percentage of variance component (%) | 表型分化系数 Phenotypic differentiation coefficient (VST, %) | |||
---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 种群间 Among populations | 种群内 Within population | 随机误差 Random error | ||
αA | 2.49 * | 1.59* | 2.83 | 9.85 | 87.32 | 22.32 |
NW | 16.88*** | 3.52*** | 17.99 | 27.13 | 54.88 | 39.87 |
NT | 14.83*** | 2.92*** | 17.64 | 22.57 | 59.79 | 43.86 |
NSP | 12.40*** | 3.41*** | 13.59 | 27.62 | 58.79 | 32.98 |
NSA | 13.74*** | 3.20*** | 15.54 | 25.43 | 59.04 | 37.93 |
CCW | 11.04*** | 2.38*** | 14.36 | 18.21 | 67.43 | 44.09 |
CCT | 3.68*** | 1.46* | 5.68 | 7.74 | 86.58 | 42.31 |
CCP | 7.62*** | 2.36*** | 10.27 | 18.87 | 70.86 | 35.24 |
CCA | 6.96*** | 2.17*** | 9.37 | 16.71 | 73.92 | 35.94 |
RCN | 55.63*** | 11.90*** | 26.79 | 50.01 | 23.20 | 34.88 |
RCP | 39.13*** | 9.31*** | 22.44 | 49.66 | 27.90 | 31.13 |
RCA | 20.74*** | 7.02*** | 15.23 | 45.99 | 38.77 | 24.88 |
MA | 17.64*** | 4.80*** | 15.95 | 35.87 | 48.18 | 30.78 |
MSD | 12.04*** | 2.33*** | 18.08 | 17.08 | 64.85 | 51.42 |
V1 | 1.70 | 3.90*** | 0.00 | 34.08 | 65.92 | 0.00 |
V2 | 22.60*** | 5.68*** | 18.68 | 38.97 | 42.35 | 32.40 |
V3 | 44.45*** | 10.77*** | 23.25 | 50.53 | 26.22 | 31.51 |
V4 | 10.02*** | 2.95*** | 12.78 | 24.17 | 63.04 | 34.59 |
平均值 Mean | 14.47 | 28.92 | 56.61 | 33.67 |
表2 细叶云南松针叶性状种群间和种群内F值、方差分量百分比及表型分化系数
Table 2 F value, percentage of variance component among and within populations of needle characters and phenotypic differentiation coefficient of Pinus yunnanensis var. tenuifolia
性状 Trait | F | 方差分量百分比 Percentage of variance component (%) | 表型分化系数 Phenotypic differentiation coefficient (VST, %) | |||
---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 种群间 Among populations | 种群内 Within population | 随机误差 Random error | ||
αA | 2.49 * | 1.59* | 2.83 | 9.85 | 87.32 | 22.32 |
NW | 16.88*** | 3.52*** | 17.99 | 27.13 | 54.88 | 39.87 |
NT | 14.83*** | 2.92*** | 17.64 | 22.57 | 59.79 | 43.86 |
NSP | 12.40*** | 3.41*** | 13.59 | 27.62 | 58.79 | 32.98 |
NSA | 13.74*** | 3.20*** | 15.54 | 25.43 | 59.04 | 37.93 |
CCW | 11.04*** | 2.38*** | 14.36 | 18.21 | 67.43 | 44.09 |
CCT | 3.68*** | 1.46* | 5.68 | 7.74 | 86.58 | 42.31 |
CCP | 7.62*** | 2.36*** | 10.27 | 18.87 | 70.86 | 35.24 |
CCA | 6.96*** | 2.17*** | 9.37 | 16.71 | 73.92 | 35.94 |
RCN | 55.63*** | 11.90*** | 26.79 | 50.01 | 23.20 | 34.88 |
RCP | 39.13*** | 9.31*** | 22.44 | 49.66 | 27.90 | 31.13 |
RCA | 20.74*** | 7.02*** | 15.23 | 45.99 | 38.77 | 24.88 |
MA | 17.64*** | 4.80*** | 15.95 | 35.87 | 48.18 | 30.78 |
MSD | 12.04*** | 2.33*** | 18.08 | 17.08 | 64.85 | 51.42 |
V1 | 1.70 | 3.90*** | 0.00 | 34.08 | 65.92 | 0.00 |
V2 | 22.60*** | 5.68*** | 18.68 | 38.97 | 42.35 | 32.40 |
V3 | 44.45*** | 10.77*** | 23.25 | 50.53 | 26.22 | 31.51 |
V4 | 10.02*** | 2.95*** | 12.78 | 24.17 | 63.04 | 34.59 |
平均值 Mean | 14.47 | 28.92 | 56.61 | 33.67 |
图3 细叶云南松针叶性状与地理和气候因子的Pearson相关分析。***, p < 0.001; **, p < 0.01;*, p < 0.05。αA, 针叶截面夹角; CCA, 中柱截面积; CCP, 中柱截面周长; CCT, 中柱厚; CCW, 中柱宽; MA, 叶肉面积; MSD, 平均气孔密度; NSA, 针叶截面面积; NSP, 针叶截面周长; NT, 针叶厚; NW, 针叶宽; RCA, 树脂道总面积; RCN, 树脂道数; RCP, 树脂道总周长; V1, NSA/CCA; V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1。ALT, 海拔; DFSSR, 样点至河流距离; LAT, 纬度; LON, 经度; MAP, 年降水量; MAT, 年平均气温; MRH, 相对湿度。
Fig. 3 Pearson correlations between needle characters of Pinus yunnanensis var. tenuifolia and geographical and climatic factors. ***, p < 0.001; **, p < 0.01; *, p < 0.05. αA, angle of needle cross section; CCA, central cylinder area; CCP, central cylinder perimeter; CCT, central cylinder thickness; CCW, central cylinder width; MA, mesophyll area; MSD, mean stomatal density; NSP, needle cross-section perimeter; NSA, needle cross-section area; NT, needle thickness; NW, needle width; RCA, resin canal area; RCN, number of resin canals; RCP, resin canal perimeter; V1, NSA/CCA; V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1. ALT, altitude; DFSSR, distance from sampling site to river; LAT, latitude; LON, longitude; MAP, annual precipitation; MAT, mean annual air temperature; MRH, mean relative humidity.
地理和气候因子 Geographical and climatic factor | 主成分载荷 Principal component loading | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
纬度 Latitude | 0.213 | -0.877 | 0.380 | 0.152 |
经度 Longitude | -0.850 | -0.360 | 0.369 | -0.010 |
年平均气温 Mean annual air temperature | -0.869 | 0.441 | -0.100 | 0.044 |
相对湿度 Mean relative humidity | 0.205 | 0.902 | 0.242 | -0.238 |
年降水量 Mean annual precipitation | 0.867 | 0.306 | -0.259 | 0.274 |
海拔 Altitude | 0.838 | -0.288 | 0.321 | -0.252 |
采样点至河流距离 Distance from sampling site to river | 0.079 | 0.704 | 0.660 | 0.241 |
特征值 Eigenvalue | 3.02 | 2.58 | 0.95 | 0.28 |
贡献率 Contribution rate (%) | 43.21 | 36.85 | 13.64 | 3.98 |
表4 细叶云南松种群针叶性状的地理和气候因子主成分(PC)分析
Table 4 Principal component (PC) analysis of geographical and climatic factors for needle characters of Pinus yunnanensis var. tenuifolia populations
地理和气候因子 Geographical and climatic factor | 主成分载荷 Principal component loading | |||
---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |
纬度 Latitude | 0.213 | -0.877 | 0.380 | 0.152 |
经度 Longitude | -0.850 | -0.360 | 0.369 | -0.010 |
年平均气温 Mean annual air temperature | -0.869 | 0.441 | -0.100 | 0.044 |
相对湿度 Mean relative humidity | 0.205 | 0.902 | 0.242 | -0.238 |
年降水量 Mean annual precipitation | 0.867 | 0.306 | -0.259 | 0.274 |
海拔 Altitude | 0.838 | -0.288 | 0.321 | -0.252 |
采样点至河流距离 Distance from sampling site to river | 0.079 | 0.704 | 0.660 | 0.241 |
特征值 Eigenvalue | 3.02 | 2.58 | 0.95 | 0.28 |
贡献率 Contribution rate (%) | 43.21 | 36.85 | 13.64 | 3.98 |
图4 细叶云南松种群地理和气候因子主成分(PC)与针叶性状的回归分析(平均值±标准误)。A-E为与PC1回归显著的指标。F-G为与PC2回归显著的指标。MSD, 平均气孔密度; RCA, 树脂道总面积; RCN, 树脂道数; RCP, 树脂道总周长; V1, 叶截面面积与中柱截面面积之比(NSA/CCA); V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1。
Fig. 4 Regression analysis between principal components (PC) of geographical and climatic factors and needle characters of Pinus yunnanensis var. tenuifolia populations (mean ± SE). A-E are characters that have significant regression with PC1. F-G are characters that have significant regression with PC2. MSD, mean stomatal density; RCA, resin canal area; RCN, number of resin canals; RCP, resin canal perimeter; V1, needle cross-section area divided by central cylinder area (NSA/CCA); V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1.
图5 细叶云南松种群针叶性状与地理和气候因子的冗余分析(RDA)。αA, 针叶截面夹角; CCA, 中柱截面面积; CCP, 中柱截面周长; CCT, 中柱厚; CCW, 中柱宽; MA, 叶肉面积; MSD, 平均气孔密度; NSA, 针叶截面面积; NSP, 针叶截面周长; NT, 针叶厚; NW, 针叶宽; RCA, 树脂道总面积; RCN, 树脂道数; RCP, 树脂道总周长; V1, NSA/CCA; V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1。
Fig. 5 Redundancy analysis (RDA) between needle characters and geo-climatic factors of Pinus yunnanensis var. tenuifolia populations. αA, angle of needle cross section; CCA, central cylinder area; CCP, central cylinder perimeter; CCT, central cylinder thickness; CCW, central cylinder width; MA, mesophyll area; MSD, mean stomatal density; NSA, needle cross-section area; NSP, needle cross-section perimeter; NT, needle thickness; NW, needle width; RCA, resin canal area; RCN, number of resin canals; RCP, resin canal perimeter; V1, NSA/CCA; V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1.
图6 参试细叶云南松种群地理和气候及针叶性状最佳分组数(A-C)和层次聚类树(D)。A, 基于针叶性状的种群最佳分组。B, 地理和气候因子最佳分组。C, 针叶性状最佳分组。D, 参试种群针叶性状及地理和气候因子聚类结果。αA, 针叶截面夹角; CCA, 中柱截面面积; CCP, 中柱截面周长; CCT, 中柱厚; CCW, 中柱宽; MA, 叶肉面积; MSD, 平均气孔密度; NSA, 针叶截面面积; NSP, 针叶截面周长; NT, 针叶厚; NW, 针叶宽; RCA, 树脂道总面积; RCN, 树脂道数; RCP, 树脂道总周长; V1, NSA/CCA; V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1。ALT, 海拔; DFSSR, 样点至河流距离; LAT, 纬度; LON, 经度; MAP, 年降水量; MAT, 年平均气温; MRH, 相对湿度。图D中呈现的针叶性状值、地理和气候因子为分别标准化后的数值。
Fig. 6 Optimal number of clusters (A-C) and hierarchical cluster tree (D) of geographical and climatic factors and needle traits of Pinus yunnanensis var. tenuifolia populations. A, Optimal number of clusters of populations based on needle traits. B, Optimal number of clusters of geographical and climatic factors. C, Optimal number of clusters of needle traits. D, Cluster results of needle traits and geographical and climatic factors in the tested populations. αA, angle of needle cross section; CCA, central cylinder area; CCP, central cylinder perimeter; CCT, central cylinder thickness; CCW, central cylinder width; MA, mesophyll area; MSD, mean stomatal density; NSA, needle cross-section area; NT, needle thickness; NW, needle width; NSP, needle cross-section perimeter; RCA, resin canal area; RCN, number of resin canals; RCP, resin canal perimeter; V1, NSA/CCA; V2, RCN/MSD; V3, RCN/V1; V4, MSD/V1. ALT, altitude; DFSSR, distance from sampling site to river; LAT, latitude; LON, longitude; MAP, annual precipitation; MAT, mean annual air temperature; MRH, mean relative humidity. The values of needle character and geographical and climatic factors in plot D were standardized before visualization.
[1] | An HP, Zhou JW (1994). Soil erosion and its preventive strategies in South-pan River and North-pan River of Guizhou Province. Journal of Soil and Water Conservation, 8(3), 36-45. |
[安和平, 周家维 (1994). 贵州南、北盘江流域土壤侵蚀现状及防治对策. 水土保持学报, 8(3), 36-45.] | |
[2] | An HP, Zhou JW (1995). Zoning and evaluation of soil erosion in the Nanpan River and Beipan River basin, Guizhou. Guizhou Forestry Science and Technology, 23(2), 1-21. |
[安和平, 周家维 (1995). 贵州南、北盘江流域土壤侵蚀分区与评价. 贵州林业科技, 23(2), 1-21.] | |
[3] |
Bai TD, Yu CL, Gan ZC, Lai HR, Yang YC, Huang HC, Jiang WX (2020). Association of cone and seed traits of Pinus yunnanensis var. tenuifolia with geo-meteorological factors. Chinese Journal of Plant Ecology, 44, 1224-1235.
DOI URL |
[白天道, 余春兰, 甘泽朝, 甘泽朝, 赖海荣, 杨隐超, 黄厚宸, 蒋维昕 (2020). 细叶云南松种实性状变异与地理气象因子的关联. 植物生态学报, 44, 1224-1235.] | |
[4] |
Boratyńska K, Jasińska AK, Ciepłuch E (2008). Effect of tree age on needle morphology and anatomy of Pinus uliginosa and Pinus sylvestris—Species-specific character separation during ontogenesis. Flora, 203, 617-626.
DOI URL |
[5] |
Buraczyk W, Tulik M, Konecka A, Szeligowski H, Czacharowski M, Będkowski M (2022). Does leaf mass per area (LMA) discriminate natural pine populations of different origins? European Journal of Forest Research, 141, 1177-1187.
DOI |
[6] | Chen XY, Meng JX, Zhou XQ, Yuan HW, Niu SH, Li Y (2019). Genetic variation of needle morphology and anatomical traits and physiological traits among Pinus tabuliformis geographic populations. Journal of Beijing Forestry University, 41(7), 19-30. |
[陈新宇, 孟景祥, 周先清, 袁虎威, 钮世辉, 李悦 (2019). 油松地理种群针叶形态解剖与生理指标遗传变异分析. 北京林业大学学报, 41(7), 19-30.] | |
[7] | Chen YL, Liu BJ (2022). Hydro-meteorological integrated drought evaluation of Xijiang River Basin. Water Resources and Power, 40(3), 17-21. |
[陈毓灵, 刘丙军 (2022). 西江流域水文气象综合干旱评价. 水电能源科学, 40(3), 17-21.] | |
[8] |
Gardiner B, Berry P, Moulia B (2016). Wind impacts on plant growth, mechanics and damage. Plant Science, 245, 94-118.
DOI PMID |
[9] | Ge S, Wang MX, Chen YW (1988). An analysis of population genetic structure of masson pine by isozyme technique. Scientia Silvae Sinicae, 24, 399-409. |
[葛颂, 王明庥, 陈岳武 (1988). 用同工酶研究马尾松群体的遗传结构. 林业科学, 24, 399-409.] | |
[10] |
Grill D, Tausz M, Pöllinger UTE, Jiménez MS, Morales D (2004). Effects of drought on needle anatomy of Pinus canariensis. Flora, 199, 85-89.
DOI URL |
[11] | Huang RF (1993). The population genetics and evolution of Pinus yunnanensis. Journal of Yunnan University (Natural Science Edition), 15, 50-63. |
[黄瑞复 (1993). 云南松的种群遗传与进化. 云南大学学报(自然科学版), 15, 50-63.] | |
[12] |
Huang YJ, Mao JF, Chen ZQ, Meng JX, Xu YL, Duan AN, Li Y (2016). Genetic structure of needle morphological and anatomical traits of Pinus yunnanensis. Journal of Forestry Research, 27, 13-25.
DOI URL |
[13] |
Jankowski A, Wyka TP, Żytkowiak R, Danusevičius D, Oleksyn J (2019). Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? Evidence from common garden experiments. Tree Physiology, 39, 573-589.
DOI PMID |
[14] |
Jankowski A, Wyka TP, Żytkowiak R, Nihlgård B, Reich PB, Oleksyn J (2017). Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1900 km temperate-boreal transect. Functional Ecology, 31, 2212-2223.
DOI URL |
[15] | Jia ZR, Zhang SG, Wang JH (2011). Genetic variation and spatial geographical trend of needles, cones and seeds traits for natural populations of Picea linzhinesis. Forest Research, 24, 428-436. |
[贾子瑞, 张守攻, 王军辉 (2011). 林芝云杉天然群体针叶与种实的变异及其地理趋势. 林业科学研究, 24, 428-436.] | |
[16] | Jin XQ (1993). Study on the general situation of soil and water loss in the Nanpan and Beipan River basin of Guizhou Province. Guizhou Forestry Science and Technology, 21(3), 11-16. |
[金小麒 (1993). 贵州省南北盘江流域水土流失概况研究. 贵州林业科技, 21(3), 11-16.] | |
[17] | Li CY, Wang YB, Liao CY, Zhou SF (2016). Research progress of Pinus yunnanensis var. tenuifolia. Forest Inventory and Planning, 41(6), 30-34. |
[李春叶, 王有兵, 廖聪宇, 周顺福 (2016). 细叶云南松研究进展. 林业调查规划, 41(6), 30-34.] | |
[18] | Li FG, Wang F, Zhao YJ (2006). Climate resources and agricultural production in southwest Guizhou. Journal of Guangxi Meteorology, 27(S3), 42-62. |
[李腹广, 王芬, 赵玉金 (2006). 黔西南气候资源与农业生产. 广西气象, 27(S3), 42-62.] | |
[19] | Li FG, Yang L, Li J (2014). Study on spatial-temporal distribution characteristics of climate productivity and its response to climate change in southwest Guizhou. Journal of Guizhou Meteorology, 38(4), 43-46. |
[李腹广, 杨玲, 李婧 (2014). 黔西南州气候生产力时空分布特征及对气候变化响应研究. 贵州气象, 38(4), 43-46.] | |
[20] | Li FL, Bao WK (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany, 22(S1), 118-127. |
[李芳兰, 包维楷 (2005). 植物叶片形态解剖结构对环境变化的响应与适应. 植物学通报, 22(S1), 118-127.] | |
[21] | Li YF (2016). Research on wind load response of Hongshui River Bridge. Shanxi Architecture, 42(10), 159-161. |
[李扬帆 (2016). 红水河大桥风荷载响应研究. 山西建筑, 42(10), 159-161.] | |
[22] | Li YF, He JA, Yu SF, Liao LN, Wang HX, Ye SM (2019). Spatial patterns of trees in a south subtropical Pinus yunnanensis var. tenuifolia forest after selective logging of large-sized trees. Chinese Journal of Ecology, 38, 3585-3592. |
[李远发, 何吉安, 喻素芳, 廖良宁, 王宏翔, 叶绍明 (2019). 南亚热带细叶云南松林大径木择伐后的空间格局. 生态学杂志, 38, 3585-3592.] | |
[23] |
Li YF, Hui G, Yu SF, Luo YH, Yao X, Ye S (2017). Nearest neighbour relationships in Pinus yunnanensis var. tenuifolia forests along the Nanpan River, China. iForest— Biogeosciences and Forestry, 10, 746-753.
DOI URL |
[24] | Li ZJ, Wang HP (1981). The distribution of Pinus yunnanensis var. tenuifolia in relation to the environmental conditions. Acta Phytoecologica et Geobotanica Sinica, 5, 28-37. |
[李治基, 王献溥 (1981). 广西细叶云南松的地理分布和环境的关系. 植物生态学与地植物学丛刊, 5, 28-37.] | |
[25] | Liu LL, Cao W, He T, Wu D, Jiang H (2019). Analysis on spatial-temporal variation of soil loss and its driving factors in North-south Pan River watershed. Science of Soil and Water Conservation, 17(6), 69-77. |
[刘璐璐, 曹巍, 贺添, 吴丹, 江华 (2019). 南北盘江流域土壤侵蚀时空动态变化及影响因素分析. 中国水土保持科学, 17(6), 69-77.] | |
[26] | Liu XT, Wei JT, Wu PL, Wu L, Xu QS, Fang YL, Yang B, Zhao XY (2021). Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of northern China. Journal of Beijing Forestry University, 43(4), 25-34. |
[刘晓婷, 魏嘉彤, 吴培莉, 吴琳, 徐清山, 房衍林, 杨斌, 赵曦阳 (2021). 吉林省天然红松居群表型变异分析及多样性研究. 北京林业大学学报, 43(4), 25-34.] | |
[27] | Liu YL (2011). The Variation and Trend of Needle Trait Indexes of Pinus tabuleaformis Carr. Geographic Populations. Master degree dissertation, Beijing Forestry University, Beijing. |
[刘永良 (2011). 油松地理种群针叶性状指标的变异与趋势. 硕士学位论文, 北京林业大学, 北京.] | |
[28] | Logan M (2011). Biostatistical Design and Analysis Using R: a Practical Guide. Wiley-Blackwell, West Sussex, UK. |
[29] |
López R, Climent J, Gil L (2008). From desert to cloud forest: the non-trivial phenotypic variation of Canary Island pine needles. Trees, 22, 843-849.
DOI URL |
[30] | Lu YX, Liang CF (1983). General information and fundamental features of plant geography of Guangxi. Guihaia, 3, 153-165. |
[陆益新, 梁畴芬 (1983). 广西植物地理的基本情况和基本特征. 广西植物, 3, 153-165.] | |
[31] |
Lukjanova A, Mandre M (2010). Effects of alkalization of the environment on the anatomy of scots pine (Pinus sylvestris) needles. Water, Air, and Soil Pollution, 206, 13-22.
DOI URL |
[32] |
Meng JX, Chen XY, Huang YJ, Wang LM, Xing FQ, Li Y (2019). Environmental contribution to needle variation among natural populations of Pinus tabuliformis. Journal of Forestry Research, 30, 1311-1322.
DOI |
[33] | Ni FT, Li CY, Wang ZW, Liu Q (2012). Study on dry resistance and cold resistance of leaf of Pinus. Journal of Jilin Normal University (Natural Science Edition), 33(2), 110-112. |
[倪福太, 李长有, 王占武, 刘强 (2012). 四种松属植物叶的抗寒抗旱特点研究. 吉林师范大学学报(自然科学版), 33(2), 110-112.] | |
[34] | Ni X, Sun L, Cai Q, Ma S, Feng Y, Sun Y, An L, Ji C (2022). Variation and determinants of leaf anatomical traits from boreal to tropical forests in eastern China. Ecological Indicators, 140, 108992. DOI: 10.1016/j.ecolind.2022.108992. |
[35] | Popović V, Nikolić B, Lučić A, Rakonjac L, Šešlija Jovanović D, Miljković D (2022). Morpho-anatomical trait variability of the Norway spruce (Picea abies (L.) Karst.) needles in natural populations along elevational diversity gradient. Trees, 36, 1131-1147. DOI: 10.1007/s00468-022-02277-1. |
[36] | Ren W, He TG, Chen KJ, Hu YZ (2019). Study on wind guide railings of Nanpan River Grand Bridge on Yunnan- Guangxi Railway. Sichuan Architecture, 39(2), 96-101. |
[任伟, 何庭国, 陈克坚, 胡玉珠 (2019). 云桂铁路南盘江特大桥导风栏杆研究. 四川建筑, 39(2), 96-101.] | |
[37] |
Roden JS, Canny MJ, Huang CX, Ball MC (2009). Frost tolerance and ice formation in Pinus radiata needles: ice management by the endodermis and transfusion tissues. Functional Plant Biology, 36, 180-189.
DOI PMID |
[38] |
Stamp MA, Hadfield JD (2020). The relative importance of plasticity versus genetic differentiation in explaining between population differences: a meta-analysis. Ecology Letters, 23, 1432-1441.
DOI URL |
[39] | van Gardingen PR, Grace J, Jeffree CE (1991). Abrasive damage by wind to the needle surfaces of Picea sitchensis (Bong.) Carr. and Pinus sylvestris L. Plant, Cell & Environment, 14, 185-193. |
[40] |
Wahid N, González-Martínez SC, El Hadrami I, Boulli A (2006). Variation of morphological traits in natural populations of maritime pine (Pinus pinaster Ait.) in Morocco. Annals of Forest Science, 63, 83-92.
DOI URL |
[41] | Wang CM, Wang J, Jiang HQ (2004). A study on comparative anatomy of Pinus yunnanensis needles under different habitats. Journal of Southwest Forestry College, 24(1), 1-5. |
[王昌命, 王锦, 姜汉侨 (2004). 云南松针叶比较解剖学研究. 西南林学院学报, 24(1), 1-5.] | |
[42] | Wang HP (1987). The phytocoenological features of Pinus yunnanensis var. tenuifolia forest in Guangxi. Bulletin of Botanical Research, 7(1), 127-150. |
[王献溥 (1987). 广西细叶云南松群系的初步研究. 植物研究, 7(1), 127-150.] | |
[43] | Wang XP (1991). The phytocoenological features of Pinus yunnanensis var. tenuifolia forest in Guangxi. Bulletin of Botanical Research, 11, 91-103. |
[王献溥 (1991). 广西细叶云南松林的群落学特点. 植物研究, 11, 91-103.] | |
[44] | Wang ZC, Wang HY (2002). A brief introduction to the climatic characteristics and vegetation distribution in Guizhou province. Guizhou Forestry Science and Technology, 30(4), 46-50. |
[王孜昌, 王宏艳 (2002). 贵州省气候特点与植被分布规律简介. 贵州林业科技, 30(4), 46-50.] | |
[45] | Wei QM, Huang YC, Zhao YH, Han JX, Yang M (2017). Physiological responses of seedlings of Pinus yunnanensis var. tenuifolia to PEG-6000 simulated drought stress. Journal of Southwest Forestry University (Natural Sciences), 37 (3), 7-13. |
[韦秋梅, 黄毅翠, 赵毅辉, 韩俊学, 杨梅 (2017). 细叶云南松幼苗对PEG-6000模拟干旱胁迫的生理响应. 西南林业大学学报(自然科学), 37(3), 7-13.] | |
[46] |
Wu H, Hu ZH (1997). Comparative anatomy of resin ducts of the Pinaceae. Trees, 11, 135-143.
DOI URL |
[47] | Wu TG, Zhang P, Zhang L, Wang GG, Yu MK (2016). Morphological response of eight Quercus species to simulated wind load. PLoS ONE, 11, e0163613. DOI: 10.1371/journal.pone.0163613. |
[48] |
Xing F, Mao JF, Meng J, Dai J, Zhao W, Liu H, Xing Z, Zhang H, Wang XR, Li Y (2014). Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents, Pinus tabuliformis and Pinus yunnanensis. Ecology and Evolution, 4, 1890-1902.
DOI URL |
[49] | Xu XL (1983). Geographical distribution and growth characteristics of Pinus yunnanensis forest in Guizhou. Guizhou Science, (1), 91-95. |
[徐学良 (1983). 细叶云南松林在贵州的地理分布和生长特性. 贵州科学, (1), 91-95.] | |
[50] |
Xu YL, Woeste K, Cai NH, Kang XY, Li GQ, Chen S, Duan AN (2016). Variation in needle and cone traits in natural populations of Pinus yunnanensis. Journal of Forestry Research, 27, 41-49.
DOI URL |
[51] |
Yu SF, She GH, Ye SM, Zhou XG, Yao XY, Li YF (2018). Characteristics of soil microbial biomass and community composition in Pinus yunnanensis var. tenuifolia secondary forests. Journal of Sustainable Forestry, 37, 753-770.
DOI URL |
[52] | Zhang CQ, Ji ZF, Lin LL, Zhao RH, Wang YL (2015). Phenotypic diversity of Acer mono Maxim population. Acta Ecologica Sinica, 35, 343-348. |
[张翠琴, 姬志峰, 林丽丽, 赵瑞华, 王祎玲 (2015). 五角枫种群表型多样性. 生态学报, 35, 343-348.] | |
[53] | Zhang P, Sun Y, Yu MK, Wu TG. (2018). Variation in needle morphology and anatomy of Pinus thunbergii along coastal-inland gradient. Bulletin of Botanical Research, 38, 343-348. |
[张鹏, 孙阳, 虞木奎, 吴统贵 (2018). 海岸梯度上黑松针叶形态与解剖结构性状的变化规律. 植物研究, 38, 343-348.]
DOI |
|
[54] | Zhang P, Wen YX, Wang L, Zhang H, Wang GG, Wu TG (2020). Leaf structural carbohydrate decreased for Pinus thunbergii along coast-inland gradients. Forests, 11, 449. DOI: 10.3390/f11040449. |
[55] |
Zhao CM, Chen LT, Ma F, Yao BQ, Liu JQ (2008). Altitudinal differences in the leaf fitness of juvenile and mature alpine spruce trees (Picea crassifolia). Tree Physiology, 28, 133-141.
PMID |
[1] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[2] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[3] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[4] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[5] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[6] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[7] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[8] | 白天道, 余春兰, 甘泽朝, 赖海荣, 杨隐超, 黄厚宸, 蒋维昕. 细叶云南松种实性状变异与地理气象因子的关联[J]. 植物生态学报, 2020, 44(12): 1224-1235. |
[9] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[10] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
[11] | 孙元丰, 万宏伟, 赵玉金, 陈世苹, 白永飞. 中国草地生态系统根系周转的空间格局和驱动因子[J]. 植物生态学报, 2018, 42(3): 337-348. |
[12] | 朱弘, 朱淑霞, 李涌福, 伊贤贵, 段一凡, 王贤荣. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12): 1168-1178. |
[13] | 王甜, 徐姗, 赵梦颖, 李贺, 寇丹, 方精云, 胡会峰. 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性[J]. 植物生态学报, 2017, 41(11): 1168-1176. |
[14] | 周晓旋, 蔡玲玲, 傅梅萍, 洪礼伟, 沈英嘉, 李庆顺. 红树植物胎生现象研究进展[J]. 植物生态学报, 2016, 40(12): 1328-1343. |
[15] | 闫敏, 李增元, 田昕, 陈尔学, 谷成燕. 黑河上游植被总初级生产力遥感估算及其对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19