植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 74-82.DOI: 10.17521/cjpe.2024.0095 cstr: 32100.14.cjpe.2024.0095
张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君*()(
)
收稿日期:
2024-04-02
接受日期:
2024-10-24
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* 马妙君: ORCID: 0000-0001-7046-9574 (mjma@lzu.edu.cn)基金资助:
ZHANG Hui, ZHAO Yun-Peng, LIU Xiao-Chen, GUO Zeng-Peng, HU Guo-Rui, FENG Yan-Hao, MA Miao-Jun*()(
)
Received:
2024-04-02
Accepted:
2024-10-24
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
青藏高原东部高寒草甸局部地区因长期过度放牧而发生退化。土壤种子库是退化生态系统恢复的潜在重要资源, 其在高寒草甸退化过程中的动态及其在退化草地恢复中的作用仍有待探究。该研究在青藏高原东部选择了4个不同退化水平的高寒草甸, 构建了一个退化序列。在这一序列上对植物群落和土壤种子库进行调查, 探究了植物群落及种子库组成和特征在退化序列上的变化规律, 并分析了种子库在植物群落更新和退化高寒草甸恢复中的潜在作用。研究发现: (1)植物群落的物种丰富度和相对多度随高寒草甸的退化而显著降低, 而土壤种子库的物种丰富度呈现先升高后降低的变化规律, 种子密度则显著降低; (2)植物群落与土壤种子库物种组成相似性随退化水平增加而逐渐增加, 即种子库在植物群落更新中的潜在作用随退化水平的增加而增加; (3)相比于植物群落, 种子库对退化的响应有明显的滞后性, 可以在一定程度上缓冲退化对地上植物群落的影响。以上结果说明, 高寒草甸植物群落和土壤种子库对退化的响应不一致, 土壤种子库是退化高寒草甸恢复的重要潜在资源。然而, 土壤种子库对退化的恢复潜力是有限的, 在重度退化水平下, 由于种子库资源的过度损耗, 种子库在修复中的作用下降。以上研究结果可为青藏高原退化高寒草甸的保护、恢复和管理提供科学依据。
张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君. 高寒草甸退化过程中土壤种子库的变化及其在植物群落更新中的潜在作用. 植物生态学报, 2025, 49(1): 74-82. DOI: 10.17521/cjpe.2024.0095
ZHANG Hui, ZHAO Yun-Peng, LIU Xiao-Chen, GUO Zeng-Peng, HU Guo-Rui, FENG Yan-Hao, MA Miao-Jun. Dynamics of soil seed bank and its role in plant community regeneration during alpine meadow degradation. Chinese Journal of Plant Ecology, 2025, 49(1): 74-82. DOI: 10.17521/cjpe.2024.0095
退化水平 Degradation level | 优势物种 Dominate species | 生境描述 Habitat description |
---|---|---|
对照 Control (I) | 禾叶嵩草、线叶嵩草、垂穗披碱草、草玉梅 Carex hughii, Carex capillifolia, Elymus nutans, and Anemone rivularis | 生长季适度放牧(5-10月), 放牧家畜为牦牛和藏羊, 该样地是青藏高原东部地区典型的高寒草甸。植物群落的盖度为100%。 Moderate grazing in the growing season (from May to October), the grazing animals are yaks (Bos mutus) and Tibetan sheep (Ovis aries). This sample is a typical alpine meadow in the eastern Qingzang Plateau. The plant community coverage was 100%. |
轻度退化草甸 Light degraded meadow (II) | 禾叶嵩草、垂穗披碱草、草玉梅、鹅绒委陵菜 Carex hughii, Elymus nutans, Anemone rivularis, and Argentina anserina | 生长季放牧强度过高(5-10月), 放牧强度高于对照, 但低于重度退化草甸样地, 放牧的家畜为牦牛和藏羊, 植物群落出现轻度退化, 群落的优势功能群(莎草科和禾本科)的比例减少, 双子叶杂类草数量更多, 局部地区出现小面积斑块。植物群落的盖度为70%-80%。 Overgrazing in the growing season (from May to October). The grazing intensity was higher than that of the control, and the grazing intensity was lower than that of the moderately degraded meadow. The grazing livestock were yaks and Tibetan sheep, the plant community was slightly degraded, the proportion of dominant functional groups (Cyperaceae and Poaceae) of the alpine meadow community decreased, the number of dicotyledonous weeds increased, and a small gap appeared in local areas. The plant community coverage is 70%-80%. |
中度退化草甸 Moderate degraded meadow (III) | 鹅绒委陵菜、草玉梅、密花香薷、细叶亚菊 Argentina anserina, Nemone rivularis, Elsholtzia densa, and Ajania tenuifolia | 生长季过度放牧(5-10月), 放牧强度高于对照和轻度退化草甸, 但低于重度退化草甸样地, 放牧的家畜为牦牛和藏羊, 植物群落出现大面积退化, 群落的优势功能群从莎草科和禾本科转变为双子叶杂类草, 局部地区出现大面积斑块。植物群落的盖度为40%-50%。 Overgrazing in the growing season (from May to October), the grazing intensity was higher than that in the control meadow and light degraded meadows, but lower than that in the seriously degraded meadow plots. The grazing livestock were yaks and Tibetan sheep, and the plant community deteriorated in a large area. The dominant functional group of the community changed from sedge and grass to dicotyledonous weeds, and large gaps appeared in local areas. The plant community coverage is 40%-50%. |
重度退化草甸 Seriously degraded meadow (IV) | 密花香薷、鹅绒委陵菜、草玉梅 Elsholtzia densa, Argentina anserina, and Anemone rivularis | 全面过度放牧(0-12月), 全年长期受到牲畜(如牦牛和藏羊)的过度放牧和践踏, 植物群落物种多样性丧失, 几乎没有禾本科和莎草科植物, 群落被双子叶的杂类草占绝对优势。植物群落的盖度为20%-30%。 Overall overgrazing throughout the year (0-12 months), long-term overgrazing and trampling by livestock (yaks and Tibetan sheep), loss of plant community species diversity, almost no grasses and sedges, the community is dominated by dicotyledonous weeds. The plant community coverage is only 20%-30%. |
表1 青藏高原东部高寒草甸4个退化水平下植物群落优势物种、放牧历史和生境描述
Table 1 Description of dominant species of plant communities, grazing history, and habitats under four degradation levels in an alpine meadow on the Qingzang Plateau
退化水平 Degradation level | 优势物种 Dominate species | 生境描述 Habitat description |
---|---|---|
对照 Control (I) | 禾叶嵩草、线叶嵩草、垂穗披碱草、草玉梅 Carex hughii, Carex capillifolia, Elymus nutans, and Anemone rivularis | 生长季适度放牧(5-10月), 放牧家畜为牦牛和藏羊, 该样地是青藏高原东部地区典型的高寒草甸。植物群落的盖度为100%。 Moderate grazing in the growing season (from May to October), the grazing animals are yaks (Bos mutus) and Tibetan sheep (Ovis aries). This sample is a typical alpine meadow in the eastern Qingzang Plateau. The plant community coverage was 100%. |
轻度退化草甸 Light degraded meadow (II) | 禾叶嵩草、垂穗披碱草、草玉梅、鹅绒委陵菜 Carex hughii, Elymus nutans, Anemone rivularis, and Argentina anserina | 生长季放牧强度过高(5-10月), 放牧强度高于对照, 但低于重度退化草甸样地, 放牧的家畜为牦牛和藏羊, 植物群落出现轻度退化, 群落的优势功能群(莎草科和禾本科)的比例减少, 双子叶杂类草数量更多, 局部地区出现小面积斑块。植物群落的盖度为70%-80%。 Overgrazing in the growing season (from May to October). The grazing intensity was higher than that of the control, and the grazing intensity was lower than that of the moderately degraded meadow. The grazing livestock were yaks and Tibetan sheep, the plant community was slightly degraded, the proportion of dominant functional groups (Cyperaceae and Poaceae) of the alpine meadow community decreased, the number of dicotyledonous weeds increased, and a small gap appeared in local areas. The plant community coverage is 70%-80%. |
中度退化草甸 Moderate degraded meadow (III) | 鹅绒委陵菜、草玉梅、密花香薷、细叶亚菊 Argentina anserina, Nemone rivularis, Elsholtzia densa, and Ajania tenuifolia | 生长季过度放牧(5-10月), 放牧强度高于对照和轻度退化草甸, 但低于重度退化草甸样地, 放牧的家畜为牦牛和藏羊, 植物群落出现大面积退化, 群落的优势功能群从莎草科和禾本科转变为双子叶杂类草, 局部地区出现大面积斑块。植物群落的盖度为40%-50%。 Overgrazing in the growing season (from May to October), the grazing intensity was higher than that in the control meadow and light degraded meadows, but lower than that in the seriously degraded meadow plots. The grazing livestock were yaks and Tibetan sheep, and the plant community deteriorated in a large area. The dominant functional group of the community changed from sedge and grass to dicotyledonous weeds, and large gaps appeared in local areas. The plant community coverage is 40%-50%. |
重度退化草甸 Seriously degraded meadow (IV) | 密花香薷、鹅绒委陵菜、草玉梅 Elsholtzia densa, Argentina anserina, and Anemone rivularis | 全面过度放牧(0-12月), 全年长期受到牲畜(如牦牛和藏羊)的过度放牧和践踏, 植物群落物种多样性丧失, 几乎没有禾本科和莎草科植物, 群落被双子叶的杂类草占绝对优势。植物群落的盖度为20%-30%。 Overall overgrazing throughout the year (0-12 months), long-term overgrazing and trampling by livestock (yaks and Tibetan sheep), loss of plant community species diversity, almost no grasses and sedges, the community is dominated by dicotyledonous weeds. The plant community coverage is only 20%-30%. |
图1 青藏高原东部高寒草甸植物群落物种丰富度(A)、相对丰度(B), 以及不同生活型(C, 一年生和多年生物种)的物种丰富度在4个退化水平之间的变化(平均值±标准误)。I、II、III和IV代表高寒草甸的4个退化水平(对照、轻度退化、中度退化以及重度退化)。不同字母表示不同退化水平间差异显著(p < 0.05)。
Fig. 1 Changes in alpine meadow plant community of species richness (A), relative abundance (B), and species richness of life form (C, annuals and perennials) along four degradation levels (mean ± SE) on the eastern Qingzang Plateau. I to IV represent four degradation levels (control, light degraded meadow, moderate degraded meadow, and seriously degraded meadow). Different letters indicate significant difference between different degradation levels (p < 0.05).
图2 青藏高原东部高寒草甸地上植物群落和土壤种子库的物种组成沿退化梯度的非度量多维尺度分析(NMDS)排序。I、II、III和IV沿颜色由浅到深代表4个退化水平(对照、轻度退化、中度退化以及重度退化)。
Fig. 2 Non-metric Multidimensional Scaling (NMDS) ordination of species composition of the aboveground vegetation and soil seed bank along a degradation gradient in an alpine meadow on the eastern Qingzang Plateau. I to IV represent four degradation levels (control, light degraded meadow, moderate degraded meadow, and seriously degraded meadow) along the color from light to dark.
群落类型 Community type | 退化水平 Degradation level | R2 | p |
---|---|---|---|
植物群落 Plant community | I vs II | 0.21 | 0.096 |
I vs III | 0.25 | 0.046* | |
I vs IV | 0.57 | 0.015* | |
II vs III | 0.12 | 0.380 | |
II vs IV | 0.42 | 0.015* | |
III vs IV | 0.38 | 0.015* | |
土壤种子库 Soil seed bank | I vs II | 0.55 | 0.015* |
I vs III | 0.62 | 0.015* | |
I vs IV | 0.57 | 0.015* | |
II vs III | 0.18 | 0.096 | |
II vs IV | 0.44 | 0.015* | |
III vs IV | 0.50 | 0.015* | |
植物群落与土壤种子库 Plant community-soil seed bank | I vs I | 0.75 | 0.016* |
II vs II | 0.46 | 0.016* | |
III vs III | 0.44 | 0.015* | |
IV vs IV | 0.49 | 0.015* |
表2 青藏高原东部高寒草甸土壤种子库之间、地上植物群落之间以及植物群落与土壤种子库间的物种组成在4个退化水平之间的差异分析
Table 2 Pairwise comparisons of species using PERMANOVA (Permutational multivariate analysis of variance) based on Bray-Curtis dissimilarity among soil seed banks, plant communities, and species composition between aboveground vegetation and seed bank along a degradation gradient in an alpine meadow on the eastern Qingzang Plateau
群落类型 Community type | 退化水平 Degradation level | R2 | p |
---|---|---|---|
植物群落 Plant community | I vs II | 0.21 | 0.096 |
I vs III | 0.25 | 0.046* | |
I vs IV | 0.57 | 0.015* | |
II vs III | 0.12 | 0.380 | |
II vs IV | 0.42 | 0.015* | |
III vs IV | 0.38 | 0.015* | |
土壤种子库 Soil seed bank | I vs II | 0.55 | 0.015* |
I vs III | 0.62 | 0.015* | |
I vs IV | 0.57 | 0.015* | |
II vs III | 0.18 | 0.096 | |
II vs IV | 0.44 | 0.015* | |
III vs IV | 0.50 | 0.015* | |
植物群落与土壤种子库 Plant community-soil seed bank | I vs I | 0.75 | 0.016* |
II vs II | 0.46 | 0.016* | |
III vs III | 0.44 | 0.015* | |
IV vs IV | 0.49 | 0.015* |
图3 青藏高原东部高寒草甸土壤种子库物种丰富度(A)、不同生活型的物种丰富度(B)、种子密度(C)以及不同生活型的种子密度(D)在4个退化水平之间的变化(平均值±标准误)。I、II、III、和IV代表4个退化水平(对照、轻度退化、中度退化以及重度退化)。不同字母表示不同退化水平间的差异显著(p < 0.05)。
Fig. 3 Changes in species richness (A), species richness of different lifeforms (B), seed density (C), and seed density of different lifeforms (D) in alpine meadow seed bank along four degradation levels (mean ± SE) on the eastern Qingzang Plateau. I to IV represent four degradation levels (control, light degraded meadow, moderate degraded meadow, and seriously degraded meadow). Different letters indicate significant differences among the four degradation levels (p < 0.05).
图4 青藏高原东部高寒草甸土壤种子库和地上植物群落物种组成间的Bray-Curtis不相似性沿退化梯度上的变化趋势。I、II、III和IV代表4个退化水平(对照、轻度退化、中度退化以及重度退化)。
Fig. 4 Bray-Curtis dissimilarity of species composition between seed bank and aboveground vegetation change along a degradation gradient in an alpine meadow on the eastern Qingzang Plateau. I to IV represent four degradation levels (control, light degraded meadow, moderate degraded meadow, and seriously degraded meadow).
[1] | An H, Baskin CC, Ma M (2022). Nonlinear response of the soil seed bank and its role in plant community regeneration with increased grazing disturbance. Journal of Applied Ecology, 59, 2593-2603. |
[2] |
An H, Zhao YP, Ma MJ (2020). Precipitation controls seed bank size and its role in alpine meadow community regeneration with increasing altitude. Global Change Biology, 26, 5767-5777.
DOI PMID |
[3] | Bhattachan A, D’Odorico P, Dintwe K, Okin GS, Collins SL (2014). Resilience and recovery potential of duneland vegetation in the southern Kalahari. Ecosphere, 5, 1-14. DOI: 10.1890/es13-00268.1. |
[4] | Bossuyt B, Honnay O (2008). Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science, 19, 875-884. |
[5] | Brock MA (2011). Persistence of seed banks in Australian temporary wetlands. Freshwater Biology, 56, 1312-1327. |
[6] | Chu H, Zhang C, Dong Q, Shang Z, Degen AA, Yang X, Yu Y, Yang Z, Zhang Y (2019). The effect of grazing intensity and season on the soil seed bank and its relation with above-ground vegetation on the alpine steppe. Agriculture Ecosystems & Environment, 285, 106622. DOI: 10.1016/j.agee.2019.106622. |
[7] | Cooper EJ (2006). Reindeer grazing reduces seed and propagule banks in the high Arctic. Canadian Journal of Botany, 84, 1740-1752. |
[8] | Eskelinen A, Elwood E, Harrison S, Beyen E, Gremer JR (2021). Vulnerability of grassland seed banks to resource-enhancing global changes. Ecology, 102, e03512. DOI: 10.1002/ecy.3512. |
[9] | Eskelinen A, Jessen MT, Bahamonde HA, Bakker JD, Borer ET, Caldeira MC, Harpole WS, Jia M, Lannes LS, Nogueira C, Olde Venterink H, Peri PL, Porath-Krause AJ, Seabloom EW, Schroeder K, et al. (2023). Herbivory and nutrients shape grassland soil seed banks. Nature Communications, 14, 3949. DOI: 10.1038/s41467-023-39677-x. |
[10] | Fenner M, Thompson K (2005). The Ecology of Seeds. Cambridge University Press, Cambridge, UK. |
[11] | Guo Z, Zhao Y, Zhang P, Zhang H, Baskin CC, Zhang T, Chen Y, Hu G, Yang X, Mao H, Zhang Z, Ma M (2024). Rodents mediate the relationship between seed rain, seed bank and plant community with increased grazing disturbance. Ecological Applications, 34, e2984. DOI: 10.1002/eap.2984. |
[12] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science and Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.]
DOI |
|
[13] | He M, Xin C, Baskin CC, Li J, Zhao Y, An H, Sheng X, Zhao L, Zhao Y, Ma M (2021). Different response of transient and persistent seed bank of alpine wetland to grazing disturbance on the Tibetan Plateau. Plant and Soil, 459, 93-107. |
[14] | Hopfensperger KN (2007). A review of similarity between seed bank and standing vegetation across ecosystems. Oikos, 116, 1438-1448. |
[15] | Kapás RE, Plue J, Kimberley A, Cousins SAO (2020). Grazing livestock increases both vegetation and seed bank diversity in remnant and restored grasslands. Journal of Vegetation Science, 31, 1053-1065. |
[16] | Klaus VH, Schäfer D, Prati D, Busch V, Hamer U, Hoever CJ, Kleinebecker T, Mertens D, Fischer M, Hölzel N (2018). Effects of mowing, grazing and fertilization on soil seed banks in temperate grasslands in Central Europe. Agriculture, Ecosystems & Environment, 256, 211-217. |
[17] | Li J, Okin GS, Alvarez L, Epstein H (2007). Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry, 85, 317-332. |
[18] | Liu M, Zhang Z, Sun J, Wang Y, Wang J, Tsunekawa A, Yibeltal M, Xu M, Chen Y (2020). One-year grazing exclusion remarkably restores degraded alpine meadow at Zoige, eastern Tibetan Plateau. Global Ecology and Conservation, 22, e00951. DOI: 10.1016/j.gecco.2020.e00951. |
[19] | Loydi A (2019). Effects of grazing exclusion on vegetation and seed bank composition in a mesic mountain grassland in Argentina. Plant Ecology & Diversity, 12, 127-138. |
[20] | Ma M, Baskin CC, Li WJ, Zhao YP, Zhao Y, Zhao L, Chen N, Du GZ (2019). Seed banks trigger ecological resilience in subalpine meadows abandoned after arable farming on the Tibetan Plateau. Ecological Applications, 29, e01959. DOI: 10.1002/eap.1959. |
[21] | Ma M, Baskin CC, Yu K, Ma Z, Du G (2017). Wetland drying indirectly influences plant community and seed bank diversity through soil pH. Ecological Indicators, 80, 186-195. |
[22] | Ma M, Baskin CC, Zhao YP, An H (2023). Light controls alpine meadow community assembly during succession by affecting species recruitment from the seed bank. Ecological Applications, 33, e2782. DOI: 10.1002/eap.2782. |
[23] | Ma M, Collins SL, Du G (2020). Direct and indirect effects of temperature and precipitation on alpine seed banks in the Tibetan Plateau. Ecological Applications, 30, e02096. DOI: 10.1002/eap.2096. |
[24] | Ma M, Collins SL, Ratajczak Z, Du G (2021). Soil seed banks, alternative stable state theory, and ecosystem resilience. BioScience, 71, 697-707. |
[25] |
Ma M, Walck JL, Ma Z, Wang L, Du G (2018). Grazing disturbance increases transient but decreases persistent soil seed bank. Ecological Applications, 28, 1020-1031.
DOI PMID |
[26] | Ma MJ, Zhou XH, Du GZ (2010a). Role of soil seed bank along a disturbance gradient in an alpine meadow on the Tibet Plateau. Flora, 205, 128-134. |
[27] | Ma MJ, Zhou XH, Wang G, Ma Z, Du GZ (2013). Seasonal dynamics in alpine meadow seed banks along an altitudinal gradient on the Tibetan Plateau. Plant and Soil, 336, 291-302. |
[28] | Ma MJ, Zhou XH, Wang G, Ma Z, Du GZ (2010b). Seasonal dynamics in alpine meadow seed banks along an altitudinal gradient on the Tibetan Plateau. Plant and Soil, 336, 291-302. |
[29] | Matus G, Papp M, Tóthmérész B (2005). Impact of management on vegetation dynamics and seed bank formation of inland dune grassland in Hungary. Flora, 200, 296-306. |
[30] | Noble A, Palmer SM, Glaves DJ, Crowle A, Brown LE, Holden J (2018). Prescribed burning, atmospheric pollution and grazing effects on peatland vegetation composition. Journal of Applied Ecology, 55, 559-569. |
[31] | Plue J, van Calster H, Auestad I, Basto S, Bekker RM, Bruun HH, Chevalier R, Decocq G, Grandin U, Hermy M, Jacquemyn H, Jakobsson A, Jankowska-Błaszczuk M, Kalamees R, Koch MA, et al. (2021). Buffering effects of soil seed banks on plant community composition in response to land use and climate. Global Ecology and Biogeography, 30, 128-139. |
[32] | Sun J, Ma BB, Lu XY (2018). Grazing enhances soil nutrient effects: trade-offs between aboveground and belowground biomass in alpine grasslands of the Tibetan Plateau. Land Degradation & Development, 29, 337-348. |
[33] | Wang X, Ge W, Zhang M, Fernández-Pascual E, Moles A, Saatkamp A, Rosbakh S, Bu H, Panahi P, Ma M (2024). Large and non-spherical seeds are less likely to form a persistent soil seed bank. Proceedings of the Royal Society B: Biological Sciences, 291, 20232764. DOI: 10.1098/rspb.2023.2764. |
[34] |
Zhang C, Willis CG, Burghardt LT, Qi W, Liu K, de Moura Souza-Filho PR, Ma Z, Du G (2014). The community-level effect of light on germination timing in relation to seed mass: a source of regeneration niche differentiation. New Phytologist, 204, 496-506.
DOI PMID |
[35] | Zhao YP, Liao JC, Bao XK, Ma MJ (2021). Soil seed bank dynamics are regulated by bird diversity and soil moisture during alpine wetland degradation. Biological Conservation, 263, 109360. DOI: 10.1016/j.biocon.2021.109360. |
[1] | 陈龙 郭柯 勾晓华 赵秀海 马泓若. 祁连圆柏林群落组成及特征[J]. 植物生态学报, 2025, 49(植被): 0-0. |
[2] | 王娟 张登山 肖元明 裴全帮 王博 樊博 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[3] | 房凯, 王迎新, 黄建辉, 段俊光, 张琦, 张倩, 甘红豪, 褚建民. 内蒙古典型草原不同退化阶段植被恢复的养分限制因子解析[J]. 植物生态学报, 2025, 49(1): 7-18. |
[4] | 杜淑辉, 褚建民, 段俊光, 薛建国, 徐磊, 徐晓庆, 王其兵, 黄建辉, 张倩. 木质素酚类物质对内蒙古退化草地土壤有机碳的影响[J]. 植物生态学报, 2025, 49(1): 30-41. |
[5] | 马东峰, 贾存智, 王学朋, 赵鹏鹏, 胡小文. 甘南高寒退化草甸多物种组配的修复效果评估[J]. 植物生态学报, 2025, 49(1): 93-102. |
[6] | 姚博, 陈云, 曹雯婕, 龚相文, 罗永清, 郑成卓, 王旭洋, 王正文, 李玉强. 呼伦贝尔退化沙地植被-土壤碳氮磷互馈关系及微生物驱动机制[J]. 植物生态学报, 2025, 49(1): 59-73. |
[7] | 孙佳美, 安冰儿, 刘伟, 王璟, 潘庆民. 草原植物繁殖体调控技术: “蘖芽岛”的培育与移植[J]. 植物生态学报, 2025, 49(1): 129-137. |
[8] | 刘伟, 郝毅晴, 孙佳美, 王璟, 范冰, 郝建玺, 金那申, 潘庆民. 呼伦贝尔退化草原土壤养分调控的原理与技术[J]. 植物生态学报, 2025, 49(1): 138-147. |
[9] | 夏敏菖, 李倩倩, 钱清清, 任淑君, 梁应冲, 陈亭颖, 李映佳, 牟宗敏, 陈穗云. 青霉菌灭活菌丝体对白车轴草和黑麦草生长及生理特性的影响[J]. 植物生态学报, 2025, 49(1): 189-198. |
[10] | 王麟, 李雪, 王愉, 王新, 胡小文, 杨梅, 朱剑霄. 不同配方种衣剂对高寒草地乡土草种种子生长与建植的影响[J]. 植物生态学报, 2025, 49(1): 118-128. |
[11] | 许梦真, 卢正宽, 谭星儒, 王彦兵, 苏天成, 窦山德, 潘庆民, 陈世苹. 呼伦贝尔草甸草原退化特征因子识别与快速诊断指标体系构建[J]. 植物生态学报, 2025, 49(1): 42-58. |
[12] | 牛亚平, 高晓霞, 姚世庭, 杨元合, 彭云峰. 退化高寒草地植物多样性和功能群组成与地上生产力的关系[J]. 植物生态学报, 2025, 49(1): 83-92. |
[13] | 姚宝辉, 王蓉, 谈昭贤, 张妍, 王义弘, 王苏芹, 周华坤, 曲家鹏. 艾美耳球虫投放对高原鼠兔及高寒草地植物群落特征的影响[J]. 植物生态学报, 2025, 49(1): 199-210. |
[14] | 徐嘉昕, 肖元明, 王小赟, 王雯莹, 马玉花, 李强峰, 周国英. 微生物菌肥与氮磷肥回补对退化高寒草甸土壤理化性质和酶活性的影响[J]. 植物生态学报, 2025, 49(1): 159-172. |
[15] | 李天琦, 曹继容, 柳小妮, 田思惠, 兰波兰, 邱颖, 薛建国, 张倩, 褚建民, 张淑敏, 黄建辉, 李凌浩, 王其兵. 内蒙古典型草原土壤酶化学计量与限制性养分对放牧的响应[J]. 植物生态学报, 2025, 49(1): 19-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19