植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 244-255.DOI: 10.17521/cjpe.2024.0211 cstr: 32100.14.cjpe.2024.0211
郑琳敏, 熊小玲, 姜永孟, 王曼, 张锦秀, 曾志伟, 吕茂奎*(), 谢锦升
收稿日期:
2024-07-01
接受日期:
2024-12-24
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*吕茂奎: (228lmk@163.com)基金资助:
ZHENG Lin-Min, XIONG Xiao-Ling, JIANG Yong-Meng, WANG Man, ZHANG Jin-Xiu, ZENG Zhi-Wei, LYU Mao-Kui*(), XIE Jin-Sheng
Received:
2024-07-01
Accepted:
2024-12-24
Online:
2025-02-20
Published:
2025-02-20
Supported by:
摘要:
凋落物是森林土壤有机质的重要来源, 凋落物分解在全球碳循环过程中至关重要。武夷山具有较大的地势起伏, 沿海拔梯度形成了各种各样的植被类型和生态系统。研究不同海拔杉木凋落叶和细根的分解规律和驱动因素的差异, 可为研究区生态系统保护和管理提供一定的科学理论依据。鉴于此, 该研究选择了武夷山的不同海拔山地杉木(Cunninghamia lanceolata)人工林作为气候变化研究平台, 采用分解袋法开展了为期3.5年的杉木凋落叶和细根凋落物分解实验。主要结果: (1)同一海拔凋落叶的分解速率高于细根, 且海拔升高会降低凋落叶和细根的分解速率, 增大凋落叶与细根分解速率的差异。(2)海拔的升高会降低凋落叶和细根碳、氮、磷的释放速率, 对凋落物中木质素的分解也具有抑制作用。(3)不同海拔高度的温度差异驱动细根的分解和养分变化, 而不同海拔高度上土壤养分和微生物的变化主要作用于凋落叶。该研究探讨了温度、土壤以及微生物如何作用于凋落叶和细根的分解, 加深了对同一树种的地上和地下凋落物分解及其对气候变化响应差异的认识。
郑琳敏, 熊小玲, 姜永孟, 王曼, 张锦秀, 曾志伟, 吕茂奎, 谢锦升. 武夷山不同海拔杉木凋落叶和细根分解规律以及驱动因素的差异. 植物生态学报, 2025, 49(2): 244-255. DOI: 10.17521/cjpe.2024.0211
ZHENG Lin-Min, XIONG Xiao-Ling, JIANG Yong-Meng, WANG Man, ZHANG Jin-Xiu, ZENG Zhi-Wei, LYU Mao-Kui, XIE Jin-Sheng. Decomposition regularities of leaf litter and fine roots of Cunninghamia lanceolata and their divergent drivers at different altitudes in the Wuyi Mountain. Chinese Journal of Plant Ecology, 2025, 49(2): 244-255. DOI: 10.17521/cjpe.2024.0211
凋落物类型 Litter type | 碳含量 Carbon content (g·kg-1) | 氮含量 Nitrogen content (g·kg-1) | 磷含量 Phosphorus content (g·kg-1) | 可萃取物含量 Extractive content (%) | 纤维素含量 Cellulose content (%) | 木质素含量 Lignin content (%) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 482.06 ± 3.90 | 5.59 ± 0.14 | 0.50 ± 0.00 | 48.20 ± 0.34 | 21.23 ± 0.13 | 30.57 ± 0.23 |
细根 Fine root | 452.22 ± 2.56 | 6.80 ± 0.11 | 0.45 ± 0.00 | 35.82 ± 0.52 | 26.91 ± 0.55 | 37.39 ± 0.17 |
表1 杉木凋落叶和细根初始化学组成(平均值±标准误, n = 4)
Table 1 Initial chemical composition of leaf litter and fine root of Cunninghamia lanceolata (mean ± SE, n = 4)
凋落物类型 Litter type | 碳含量 Carbon content (g·kg-1) | 氮含量 Nitrogen content (g·kg-1) | 磷含量 Phosphorus content (g·kg-1) | 可萃取物含量 Extractive content (%) | 纤维素含量 Cellulose content (%) | 木质素含量 Lignin content (%) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 482.06 ± 3.90 | 5.59 ± 0.14 | 0.50 ± 0.00 | 48.20 ± 0.34 | 21.23 ± 0.13 | 30.57 ± 0.23 |
细根 Fine root | 452.22 ± 2.56 | 6.80 ± 0.11 | 0.45 ± 0.00 | 35.82 ± 0.52 | 26.91 ± 0.55 | 37.39 ± 0.17 |
海拔 Altitude (m) | 坡向 Aspect of slope | 坡度 Slope (°) | 土壤类型 Soil type | 年平均气温 Annual average air temperature (℃) | 年降水量 Annual precipitation (mm) | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|
200 | 东南 Southeast | 25 | 红壤 Red soil | 18.85 | 2 411 | 10.18 |
700 | 东南 Southeast | 35 | 黄红壤 Yellow-red soil | 16.74 | 2 374 | 14.74 |
1 200 | 东南 Southeast | 24 | 黄壤 Yellow soil | 14.65 | 2 481 | 15.00 |
表2 武夷山不同海拔杉木纯林基本情况
Table 2 Basic information of pure forests of Cunninghamia lanceolata at different altitudes in the Wuyi Mountain
海拔 Altitude (m) | 坡向 Aspect of slope | 坡度 Slope (°) | 土壤类型 Soil type | 年平均气温 Annual average air temperature (℃) | 年降水量 Annual precipitation (mm) | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|
200 | 东南 Southeast | 25 | 红壤 Red soil | 18.85 | 2 411 | 10.18 |
700 | 东南 Southeast | 35 | 黄红壤 Yellow-red soil | 16.74 | 2 374 | 14.74 |
1 200 | 东南 Southeast | 24 | 黄壤 Yellow soil | 14.65 | 2 481 | 15.00 |
微生物类群 Microbial type | 磷脂脂肪酸标志物 Phospholipid fatty acid signatures | |
---|---|---|
细菌 Bacteria | 常见细菌 Common bacteria | 12:0, 14:0, 15:0, 17:0, 20:0 |
革兰氏阳性菌 Gram-positive bacteria | 16:0, 18:0, 16:0 2OH, a13:0, a15:0, a17:0, i13:0, i14:0, i15:0, i16:0 | |
放线菌 Actinomycetes | 10Me 16:0, 10Me 17:0,10Me 18:0, i17:0 | |
革兰氏阴性菌 Gram-negative bacteria | 14:1ω5c, 16:1ω7c, 18:1ω7c, 18:1ω9c, cy17:0, 10Me17:1ω7c | |
真菌 Fungi | 常见真菌 Common fungi | 18:1ω9c, 18:2ω6c, 18:3ω3c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1ω5c |
表3 磷脂脂肪酸标记分类
Table 3 Identifier of phospholipid fatty acids
微生物类群 Microbial type | 磷脂脂肪酸标志物 Phospholipid fatty acid signatures | |
---|---|---|
细菌 Bacteria | 常见细菌 Common bacteria | 12:0, 14:0, 15:0, 17:0, 20:0 |
革兰氏阳性菌 Gram-positive bacteria | 16:0, 18:0, 16:0 2OH, a13:0, a15:0, a17:0, i13:0, i14:0, i15:0, i16:0 | |
放线菌 Actinomycetes | 10Me 16:0, 10Me 17:0,10Me 18:0, i17:0 | |
革兰氏阴性菌 Gram-negative bacteria | 14:1ω5c, 16:1ω7c, 18:1ω7c, 18:1ω9c, cy17:0, 10Me17:1ω7c | |
真菌 Fungi | 常见真菌 Common fungi | 18:1ω9c, 18:2ω6c, 18:3ω3c |
丛枝菌根真菌 Arbuscular mycorrhizal fungi | 16:1ω5c |
200 m | 700 m | 1 200 m | |
---|---|---|---|
土壤酸碱度 Soil pH | 5.05 ± 0.16A | 4.86 ± 0.11A | 4.23 ± 0.01B |
土壤有机碳含量 SOC (g·kg−1) | 26.14 ± 1.62B | 50.53 ± 3.25A | 53.31 ± 3.60A |
土壤总氮含量 TN (g·kg−1) | 1.90 ± 0.15B | 3.15 ± 0.17A | 2.62 ± 0.19A |
土壤总磷含量 TP (g·kg−1) | 0.39 ± 0.01A | 0.32 ± 0.01B | 0.28 ± 0.01C |
土壤总碳氮比 C:N | 13.76 ± 0.41C | 16.08 ± 0.39B | 20.35 ± 0.75A |
可溶性有机碳含量 DOC (mg·kg−1) | 87.55 ± 10.10C | 201.28 ± 7.19B | 353.17 ± 28.77A |
可溶性有机氮含量 DON (mg·kg−1) | 4.40 ± 0.64B | 5.98 ± 0.24B | 12.73 ± 1.94A |
矿质氮含量 MN (mg·kg−1) | 28.36 ± 1.07B | 33.25 ± 0.58A | 29.77 ± 1.88AB |
革兰氏阳性菌生物量 GP (nmol·g−1) | 24.09 ± 0.50A | 28.47 ± 2.80A | 22.94 ± 0.93A |
革兰氏阴性菌生物量 GN (nmol·g−1) | 29.55 ± 0.52B | 43.71 ± 4.50A | 33.15 ± 1.90B |
真菌生物量 Fungi biomass (nmol·g−1) | 8.46 ± 0.34B | 12.76 ± 1.07A | 15.25 ± 1.34A |
总微生物生物量 Total PLFAs (nmol·g−1) | 75.25 ± 1.20B | 101.63 ± 8.93A | 84.65 ± 4.17AB |
GP:GN | 0.89 ± 0.01A | 0.71 ± 0.02B | 0.74 ± 0.00B |
F:B | 0.15 ± 0.01B | 0.18 ± 0.02B | 0.27 ± 0.02A |
表4 不同海拔土壤性质及微生物群落组成(平均值±标准误, n = 4)
Table 4 Properties of soil and microbial community at different altitudes (mean ± SE, n = 4)
200 m | 700 m | 1 200 m | |
---|---|---|---|
土壤酸碱度 Soil pH | 5.05 ± 0.16A | 4.86 ± 0.11A | 4.23 ± 0.01B |
土壤有机碳含量 SOC (g·kg−1) | 26.14 ± 1.62B | 50.53 ± 3.25A | 53.31 ± 3.60A |
土壤总氮含量 TN (g·kg−1) | 1.90 ± 0.15B | 3.15 ± 0.17A | 2.62 ± 0.19A |
土壤总磷含量 TP (g·kg−1) | 0.39 ± 0.01A | 0.32 ± 0.01B | 0.28 ± 0.01C |
土壤总碳氮比 C:N | 13.76 ± 0.41C | 16.08 ± 0.39B | 20.35 ± 0.75A |
可溶性有机碳含量 DOC (mg·kg−1) | 87.55 ± 10.10C | 201.28 ± 7.19B | 353.17 ± 28.77A |
可溶性有机氮含量 DON (mg·kg−1) | 4.40 ± 0.64B | 5.98 ± 0.24B | 12.73 ± 1.94A |
矿质氮含量 MN (mg·kg−1) | 28.36 ± 1.07B | 33.25 ± 0.58A | 29.77 ± 1.88AB |
革兰氏阳性菌生物量 GP (nmol·g−1) | 24.09 ± 0.50A | 28.47 ± 2.80A | 22.94 ± 0.93A |
革兰氏阴性菌生物量 GN (nmol·g−1) | 29.55 ± 0.52B | 43.71 ± 4.50A | 33.15 ± 1.90B |
真菌生物量 Fungi biomass (nmol·g−1) | 8.46 ± 0.34B | 12.76 ± 1.07A | 15.25 ± 1.34A |
总微生物生物量 Total PLFAs (nmol·g−1) | 75.25 ± 1.20B | 101.63 ± 8.93A | 84.65 ± 4.17AB |
GP:GN | 0.89 ± 0.01A | 0.71 ± 0.02B | 0.74 ± 0.00B |
F:B | 0.15 ± 0.01B | 0.18 ± 0.02B | 0.27 ± 0.02A |
图1 杉木凋落叶和细根在武夷山不同海拔的干质量残留率(平均值±标准误, n = 4)。L, 凋落叶; R, 细根。不同大写字母表示同一凋落物的干质量残留率在不同海拔间差异显著(p < 0.05); *表示同一海拔凋落叶和细根的干质量残留率差异显著。*, p < 0.05; **, p < 0.01。
Fig. 1 Dry mass remaining rate of leaf litter and fine root of Cunninghamia lanceolata at different altitudes in the Wuyi Mountain (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the dry mass remaining rate of the same litter significant differences among different altitudes (p < 0.05); * indicates that the dry mass remaining rate is a significant difference between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01.
凋落物类型 Litter type | 海拔 Altitude (m) | Olson负指数方程 Olson negative exponential equation | 分解系数 Decomposition coefficient (k) | R2 | 半分解时间 T0.50 (a) | 分解95%时间 T0.95 (a) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 200 | y = 103.55e-0.62t | 0.62Aa | 0.98 | 1.11Bb | 4.82Bb |
700 | y = 98.65e-0.41t | 0.41Ba | 0.94 | 1.70Ab | 7.35Ab | |
1 200 | y = 95.04e-0.39t | 0.39Ba | 0.99 | 1.79Ab | 7.72Ab | |
细根 Fine root | 200 | y = 98.74e-0.38t | 0.38Ab | 0.99 | 1.83Ca | 7.92Ca |
700 | y = 95.49e-0.25t | 0.25Bb | 0.98 | 2.83Ba | 12.23Ba | |
1 200 | y = 92.96e-0.20t | 0.20Bb | 0.97 | 3.53Aa | 15.24Aa |
表5 不同海拔杉木凋落叶和细根干质量残留率(y, %)随时间(t)的指数回归方程
Table 5 Exponential regression equation of dry mass remaining (y, %) as a function of leaf litter of Cunninghamia lanceolata and fine root decomposition to time (t) at different altitudes
凋落物类型 Litter type | 海拔 Altitude (m) | Olson负指数方程 Olson negative exponential equation | 分解系数 Decomposition coefficient (k) | R2 | 半分解时间 T0.50 (a) | 分解95%时间 T0.95 (a) |
---|---|---|---|---|---|---|
凋落叶 Leaf litter | 200 | y = 103.55e-0.62t | 0.62Aa | 0.98 | 1.11Bb | 4.82Bb |
700 | y = 98.65e-0.41t | 0.41Ba | 0.94 | 1.70Ab | 7.35Ab | |
1 200 | y = 95.04e-0.39t | 0.39Ba | 0.99 | 1.79Ab | 7.72Ab | |
细根 Fine root | 200 | y = 98.74e-0.38t | 0.38Ab | 0.99 | 1.83Ca | 7.92Ca |
700 | y = 95.49e-0.25t | 0.25Bb | 0.98 | 2.83Ba | 12.23Ba | |
1 200 | y = 92.96e-0.20t | 0.20Bb | 0.97 | 3.53Aa | 15.24Aa |
图2 杉木凋落叶和细根在不同海拔的碳(C)、碳(N)、磷(P)含量(平均值±标准误, n = 4)。L, 凋落叶; R, 细根。不同大写字母表示同一凋落物的C、N、P含量在不同海拔间差异显著(p < 0.05); *表示同一海拔凋落叶和细根的C、N、P含量差异显著。*, p < 0.05; **, p < 0.01; ns, p > 0.05。
Fig. 2 Carbon (C), nitrogen (N) and phosphorus (P) content of leaf litter and fine root of Cunninghamia lanceolata at different altitudes (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the C, N, P content of the same litter significant differences among different altitudes (p < 0.05); * indicates that the C, N, P content are significant differences between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01; ns, p > 0.05.
图3 杉木凋落叶和细根在不同海拔的碳(C)、碳(N)、磷(P)残留率(平均值±标准误, n = 4)。L, 凋落叶; R, 细根。不同大写字母表示同一凋落物的C、N、P残留率在不同海拔差异显著(p < 0.05); *表示同一海拔凋落叶和细根的C、N、P残留率差异显著。*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 3 Carbon (C), nitrogen (N) and phosphorus (P) remaining rate of leaf litter and fine root of Cunninghamia lanceolata at different altitudes (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the C, N, P remaining rate of the same litter significant differences among different altitudes (p < 0.05); * indicates that the C, N, P remaining rate are significant differences between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
图4 杉木凋落叶和细根在不同海拔的可萃取物、纤维素和木质素残留率(平均值±标准误, n = 4)。L, 凋落叶; R, 细根。不同大写字母表示同一凋落物的可萃取物、纤维素和木质素残留率在不同海拔差异显著(p < 0.05); *表示同一海拔凋落叶和细根的可萃取物、纤维素和木质素残留率差异显著。*, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05。
Fig. 4 Extractive, cellulose and lignin remaining rate of leaf litter and fine root of Cunninghamia lanceolata at different altitudes (mean ± SE, n = 4). L, leaf litter; R, fine root. Different uppercase letters indicate the extractive, cellulose, lignin remaining rate of the same litter significant differences among different altitudes (p < 0.05); * indicates that the extractive, cellulose, lignin remaining rate are significant differences between leaf litter and fine root at the same altitude. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, p > 0.05.
图5 杉木凋落叶和细根的干质量、氮(N)、磷(P)和木质素残留率与环境因子的相关关系(r)。C:N, 土壤总碳氮比; DOC, 可溶性有机碳含量; DON, 可溶性有机氮含量; Fungi, 真菌生物量; F:B, 真菌和细菌生物量比值; GP:GN, 革兰氏阳性菌和革兰氏阴性菌生物量比值; SM, 土壤湿度; SOC, 土壤有机碳含量; T, 温度; TN, 土壤总氮含量; TP, 土壤总磷含量。*, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 4。
Fig. 5 Correlation (r) of dry mass, nitrogen (N), phosphorus (P) and lignin remaining rate of leaf litter and fine root of Cunninghamia lanceolata with environmental factors. C:N, soil total carbon to nitrogen ratio; DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; Fungi, fungi biomass; F:B, fungi biomass to bacteria biomass ratio; GP:GN, gram positive biomass to gram negative biomass ratio; SM, soil moisture; SOC, soil organic carbon content; T, air temperature; TN, total nitrogen content; TP, total phosphorus content. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n = 4.
图6 环境因子与凋落物分解的方差分解分析。A, 凋落叶。B, 细根。DOC, 可溶性有机碳含量; DON, 可溶性有机氮含量; Fungi, 真菌生物量; F:B, 真菌和细菌生物量比值; GP:GN, 革兰氏阳性菌和革兰氏阴性菌生物量比值; SM, 土壤湿度; SOC, 土壤有机碳含量; T, 温度; TN, 土壤总氮含量; TP, 土壤总磷含量。
Fig. 6 Variance partitioning analysis of environmental factors and decomposition of litter. A, Leaf litter. B, Fine root. DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; Fungi, fungi biomass; F:B, fungi biomass to bacteria biomass ratio; GP:GN, gram positive biomass to gram negative biomass ratio; SM, soil moisture; SOC, soil organic carbon content; T, air temperature; TN, total nitrogen content; TP, total phosphorus content.
[1] | Berg B, Lönn M, Ni X, Sun T, Dong L, Gaitnieks T, Virzo de Santo A, Johansson MB (2022). Decomposition rates in late stages of scots pine and Norway spruce needle litter: influence of nutrients and substrate properties over a climate gradient. Forest Ecology and Management, 522, 120452. DOI: 10.1016/j.foreco.2022.120452. |
[2] | Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer, Heidelberg. |
[3] | Berger TW, Duboc O, Djukic I, Tatzber M, Gerzabek MH, Zehetner F (2015). Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an alpine elevation gradient: decay and nutrient release. Geoderma, 251, 92-104. |
[4] | Bohara M, Acharya K, Perveen S, Manevski K, Hu C, Yadav RKP, Shrestha K, Li X (2020). In situ litter decomposition and nutrient release from forest trees along an elevation gradient in Central Himalaya. Catena, 194, 104698. DOI: 10.1016/j.catena.2020.104698. |
[5] | Bohara M, Yadav RKP, Dong W, Cao J, Hu C (2019). Nutrient and isotopic dynamics of litter decomposition from different land uses in naturally restoring Taihang Mountain, North China. Sustainability, 11, 1752. DOI: 10.3390/su11061752. |
[6] | Bonanomi G, Cesarano G, Gaglione SA, Ippolito F, Sarker T, Rao MA (2017). Soil fertility promotes decomposition rate of nutrient poor, but not nutrient rich litter through nitrogen transfer. Plant and Soil, 412, 397-411. |
[7] | Bonanomi G, Idbella M, Zotti M, Santorufo L, Motti R, Maisto G, de Marco A (2021). Decomposition and temperature sensitivity of fine root and leaf litter of 43 mediterranean species. Plant and Soil, 464, 453-465. |
[8] | Bradford MA, Veen GFC, Bonis A, Bradford EM, Classen AT, Cornelissen JHC, Crowther TW, de Long JR, Freschet GT, Kardol P, Manrubia-Freixa M, Maynard DS, Newman GS, Logtestijn RSP, Viketoft M, et al. (2017). A test of the hierarchical model of litter decomposition. Nature Ecology & Evolution, 1, 1836-1845. |
[9] |
Cheever BM, Webster JR, Bilger EE, Thomas SA (2013). The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology, 94, 1614-1625.
PMID |
[10] | Chen L, Liu L, Qin S, Yang G, Fang K, Zhu B, Kuzyakov Y, Chen P, Xu Y, Yang Y (2019). Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, 10, 5112. DOI: 10.1038/s41467-019-13119-z. |
[11] | Crowther TW, van den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, Averill C, Maynard DS (2019). The global soil community and its influence on biogeochemistry. Science, 365, eaav0550. DOI: 10.1126/science.aav0550. |
[12] | Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. |
[13] | Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65. |
[14] | Frostegård Å, Bååth E, Tunlio A (1993). Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25, 723-730. |
[15] | Gavazov K, Mills R, Spiegelberger T, Lenglet J, Buttler A (2014). Biotic and abiotic constraints on the decomposition of Fagus sylvatica leaf litter along an altitudinal gradient in contrasting land-use types. Ecosystems, 17, 1326-1337. |
[16] | Goud JVS, Bindu NSVSSSLH, Samatha B, Prasad MR, Singara Charya MA (2011). Lignolytic enzyme activities of wood decaying fungi from Andhra Pradesh. Journal of the Indian Academy of Wood Science, 8, 26-31. |
[17] | Harrison AF (1982). Labile organic phosphorus mineralization in relationship to soil properties. Soil Biology & Biochemistry, 14, 343-351. |
[18] | Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C, Chadwick OA, Vitousek PM, Kretzschmar R, Frossard E (2018). Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 9, 3226. DOI: 10.1038/s41467-018-05731-2. |
[19] | Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69. |
[20] | Hernández-Cáceres D, Stokes A, Angeles-Alvarez G, Abadie J, Anthelme F, Bounous M, Freschet GT, Roumet C, Weemstra M, Merino-Martín L, Reverchon F (2022). Vegetation creates microenvironments that influence soil microbial activity and functional diversity along an elevation gradient. Soil Biology & Biochemistry, 165, 108485. DOI: 10.1016/j.soilbio.2021.108485. |
[21] | Kramer C, Gleixner G (2006). Variable use of plant-and soil-derived carbon by microorganisms in agricultural soils. Soil Biology & Biochemistry, 38, 3267-3278. |
[22] | Liu G, Wang L, Jiang L, Pan X, Huang Z, Dong M, Cornelissen JHC (2018). Specific leaf area predicts dryland litter decomposition via two mechanisms. Journal of Ecology, 106, 218-229. |
[23] | Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89-106. |
[24] | Meng C, Tian DS, Zeng H, Li ZL, Yi CX, Niu SL (2019). Global soil acidification impacts on belowground processes. Environmental Research Letters, 14, 074003. DOI: 10.1088/1748-9326/ab239c. |
[25] | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
[26] | Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331. |
[27] | Pourhassan N, Bruno S, Jewell MD, Shipley B, Roy S, Bellenger JP (2016). Phosphorus and micronutrient dynamics during gymnosperm and angiosperm litters decomposition in temperate cold forest from Eastern Canada. Geoderma, 273, 25-31. |
[28] | Powers JS, Montgomery RA, Adair EC, Brearley FQ, DeWalt SJ, Castanho CT, Chave J, Deinert E, Ganzhorn JU, Gilbert ME, González-Iturbe JA, Bunyavejchewin S, Grau HR, Harms KE, Hiremath A, et al. (2009). Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 97, 801-811. |
[29] | Ryan MG, Melillo JM, Ricca A (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171. |
[30] | Schuur EAG, Chadwick OA, Matson PA (2001). Carbon cycling and soil carbon storage in mesic to wet Hawaiian montane forests. Ecology, 82, 3182-3196. |
[31] | Su JS, Zhao YJ, Bai YF (2023). Asymmetric responses of leaf litter decomposition to precipitation changes in global terrestrial ecosystem. Journal of Cleaner Production, 387, 135898. DOI: 10.1016/j.jclepro.2023.135898. |
[32] | Tu LH, Hu HL, Hu TX, Zhang J, Luo SH, Dai HZ (2012). Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China. Chinese Journal of Plant Ecology, 36, 99-108. |
[涂利华, 胡红玲, 胡庭兴, 张健, 雒守华, 戴洪忠 (2012). 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应. 植物生态学报, 36, 99-108.]
DOI |
|
[33] |
Yang Y, Tian LH, Tian HQ, Sun HE, Zhao JX, Zhou QP (2020). Effect of climate warming on decomposition of plant litter in alpine meadow pastures in Northwestern Sichuan. Acta Prataculturae Sinica, 29(10), 35-46.
DOI |
[杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平 (2020). 增温对川西北高寒草甸草场植物凋落物分解的影响. 草业学报, 29(10), 35-46.]
DOI |
|
[34] | Zhu HJ, Lin ZS, Chen ZG, Tan BH, Guo CD (1982). The vertical zonation and characteristics of soils in Wuyi Mountain. Wuyi Science Journal, 2, 152-164. |
[朱鹤健, 林振盛, 陈珍皋, 谭炳华, 郭成达 (1982). 武夷山土壤垂直分布和特征. 武夷科学, 2, 152-164.] |
[1] | 李欣怡 张丽芳 吴友贵 郭静 兰荣光 吕洪飞 于明坚. 不同海拔高度下百山祖冷杉幼苗的生长特征及其影响因素[J]. 植物生态学报, 2025, 49(4): 1-0. |
[2] | 李梦琦 苗灵凤 李大东 龙奕帆 叶冰冰 杨帆. 海南东寨港红树林细根功能性状对不同潮位沉积物养分变化的响应[J]. 植物生态学报, 2025, 49(4): 1-0. |
[3] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[4] | 全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉. 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响[J]. 植物生态学报, 2024, 48(8): 1050-1064. |
[5] | 蔡慧颖, 梁亚涛, 娄虎, 杨光, 孙龙. 白桦细根功能性状和根际细菌群落随火后时间的变化[J]. 植物生态学报, 2024, 48(7): 828-843. |
[6] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[7] | 徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[8] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[9] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[10] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[11] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[12] | 庞榆, 贺同鑫, 孙建飞, 宁文彩, 裴广廷, 胡宝清, 王斌. 北热带喀斯特森林优势树种细根生物量估算模型构建[J]. 植物生态学报, 2024, 48(10): 1312-1325. |
[13] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[14] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[15] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19