植物生态学报 ›› 2025, Vol. 49 ›› Issue (3): 446-459.DOI: 10.17521/cjpe.2024.0086 cstr: 32100.14.cjpe.2024.0086
苗春1, 刘靓1, 朱冠男1, 白宇轩1, 佘维维1,2, 秦树高1,2, 郭焱培1,3, 张宇清1,2,*()
收稿日期:
2024-03-27
接受日期:
2024-09-28
出版日期:
2025-03-20
发布日期:
2024-09-29
通讯作者:
* 张宇清(zhangyqbjfu@gmail.com)基金资助:
MIAO Chun1, LIU Liang1, ZHU Guan-Nan1, BAI Yu-Xuan1, SHE Wei-Wei1,2, QIN Shu-Gao1,2, GUO Yan-Pei1,3, ZHANG Yu-Qing1,2,*()
Received:
2024-03-27
Accepted:
2024-09-28
Online:
2025-03-20
Published:
2024-09-29
Contact:
* ZHANG Yu-Qing(zhangyqbjfu@gmail.com)Supported by:
摘要:
氮是维系植物群落物种多样性的关键养分元素。在氮贫乏的荒漠生态系统中, 固沙植物群落种间互作如何影响各功能群植物种氮吸收模式, 目前仍不明确。该研究基于野外植物种移除实验平台, 以毛乌素沙地黑沙蒿(Artemisia ordosica)固沙植物群落为研究对象, 设置移除黑沙蒿和保留黑沙蒿两种处理, 采用15N标记技术, 探究黑沙蒿对3种邻近功能群草本植物(一年生草本、多年生禾草、多年生杂类草)及草本群落的硝态氮、铵态氮和甘氨酸吸收速率和比例的影响; 同时测定各处理土壤铵态氮、硝态氮、全氮及可溶性有机氮含量、土壤含水率、地表透光率等环境因子, 分析各功能群草本植物及草本群落对不同形态氮的吸收速率、比例及其与环境因子的关系。研究结果显示: (1)无机氮和小分子有机氮是黑沙蒿群落草本植物的有效氮源, 所有功能群植物及草本群落对各形态氮的偏好顺序为硝态氮>铵态氮>甘氨酸; (2)移除黑沙蒿后, 一年生草本、多年生禾草及草本群落的氮吸收速率分别增加了48.32%、129.77%和55.53%, 多年生禾草对硝态氮的吸收比例增加了10.65%; (3)黑沙蒿通过改变其株丛下局部环境, 尤其是降低透光率和土壤硝态氮含量, 影响草本植物的氮吸收模式; (4)黑沙蒿群落中各功能群草本植物氮吸收速率及比例受不同环境因子影响, 其中多年生禾草表现出灵活的氮源可塑性和较高的氮利用效率。研究发现, 草本植物差异化的氮获取策略, 可能是黑沙蒿群落中植物应对种间氮竞争和资源短缺、提高群落稳定性和恢复力的重要机制; 多年生禾草凭借其灵活的氮源转换和高效吸收能力, 可能会成为未来群落的优势功能群。该研究结果有助于理解典型固沙植物群落中不同功能群物种的养分竞争和共存机制, 为荒漠化地区植被恢复和管理提供科学依据。
苗春, 刘靓, 朱冠男, 白宇轩, 佘维维, 秦树高, 郭焱培, 张宇清. 毛乌素沙地黑沙蒿对邻近草本植物氮吸收速率及比例的影响. 植物生态学报, 2025, 49(3): 446-459. DOI: 10.17521/cjpe.2024.0086
MIAO Chun, LIU Liang, ZHU Guan-Nan, BAI Yu-Xuan, SHE Wei-Wei, QIN Shu-Gao, GUO Yan-Pei, ZHANG Yu-Qing. Effects of Artemisia ordosica on the nitrogen uptake rate and proportion of associated herbaceous plants in the Mau Us Sandy Land. Chinese Journal of Plant Ecology, 2025, 49(3): 446-459. DOI: 10.17521/cjpe.2024.0086
图1 毛乌素沙地自然对照及移除黑沙蒿处理的同位素注射(A)和样地布设图(B)。CK, 对照处理; 15N-Glycine, 15N标记的甘氨酸; 15N-NH4+, 15N标记的铵态氮; 15N-NO3-, 15N标记的硝态氮; ReSH, 移除黑沙蒿处理。
Fig. 1 Isotope injection for natural control and removal of Artemisia ordosica (A) and plot layout (B) in the Mau Us Sandy Land. CK, control treatment; 15N-Glycine, soil glycine labeled with 15N;15N-NH4+, soil ammonium nitrogen labeled with 15N; 15N-NO3-, soil nitrate nitrogen labeled with 15N; ReSH, removal of A. ordosica.
混合溶液1 Mixed solution 1 | 混合溶液2 Mixed solution 2 | 混合溶液3 Mixed solution 3 | 混合溶液4 Mixed solution 4 |
---|---|---|---|
15N-NH4Cl | NH4Cl | NH4Cl | NH4Cl |
KNO3 | 15N-KNO3 | KNO3 | KNO3 |
Glycine | Glycine | 15N-Glycine | Glycine |
表1 同位素注射混合溶液配置表
Table 1 Configurations of mixed solutions for isotope injection
混合溶液1 Mixed solution 1 | 混合溶液2 Mixed solution 2 | 混合溶液3 Mixed solution 3 | 混合溶液4 Mixed solution 4 |
---|---|---|---|
15N-NH4Cl | NH4Cl | NH4Cl | NH4Cl |
KNO3 | 15N-KNO3 | KNO3 | KNO3 |
Glycine | Glycine | 15N-Glycine | Glycine |
图2 毛乌素沙地不同功能群草本植物对各形态氮及总氮的吸收速率(A)和各形态氮吸收比例(B) (平均值±标准误)。AS, 一年生草本; CK, 对照处理; glycine, 甘氨酸; NH4+-N, 铵态氮; NO3--N, 硝态氮; PF, 多年生杂类草; PG, 多年生禾草; ReSH, 移除黑沙蒿处理。不同小写字母表示不同功能群间差异显著(p < 0.05)。ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Uptake rates of different nitrogen forms and total nitrogen by different functional groups of herbaceous plants (A), and uptake proportions of different nitrogen forms (B) in the Mau Us Sandy Land (mean ± SE). AS, annual herbaceous; CK, control treatment; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen; NUR, nitrogen uptake rate; PF, perennial forbs; PG, perennial grasses; ReSH, removal of Artemisia ordosica. Different lowercase letters indicate significant differences among different functional groups (p < 0.05). ns, p > 0.1; #, p < 0.1; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图3 毛乌素沙地草本植物群落对各形态氮的吸收速率(A)、总氮吸收速率(B)和氮吸收比例(C) (平均值±标准误)。CK, 对照处理; COM, 草本群落水平; glycine, 甘氨酸; NH4+-N, 铵态氮; NO3--N, 硝态氮; NUR, 氮吸收速率; ReSH, 移除黑沙蒿处理。不同小写字母表示不同氮形态间差异显著(p < 0.05)。ns, p > 0.1; #, p < 0.1; **, p < 0.01。
Fig. 3 Uptake rates of different nitrogen forms (A), total nitrogen uptake rate (B), and nitrogen uptake proportion (C) by the herbaceous plant community in the Mau Us Sandy Land (mean ± SE). CK, control treatment; COM, herbaceous community; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen; NUR, nitrogen uptake rate; ReSH, removal of Artemisia ordosica. Different lowercase letters indicate significant differences among different nitrogen forms (p < 0.05). ns, p > 0.1; #, p < 0.1; **, p < 0.01.
处理 Treatment | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 可溶性有机氮含量 DON content (mg·kg-1) | 土壤含水量 SWC (%) | 透光率 Plot light |
---|---|---|---|---|---|
CK | 0.15 ± 0.03a | 0.35 ± 0.05b | 0.80 ± 0.11a | 5.93 ± 0.32a | 0.35 ± 0.03b |
ReSH | 0.17 ± 0.02a | 0.64 ± 0.08a | 1.08 ± 0.06a | 4.58 ± 0.29b | 0.53 ± 0.04a |
表2 毛乌素沙地不同处理样地土壤铵态氮、硝态氮、可溶性有机氮含量、含水量及群落透光率(平均值±标准误)
Table 2 Soil ammonium nitrogen, soil nitrate nitrogen, soil soluble organic nitrogen contents, soil water content and plot light under different treatment plots in in the Mau Us Sandy Land (mean ± SE)
处理 Treatment | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) | 可溶性有机氮含量 DON content (mg·kg-1) | 土壤含水量 SWC (%) | 透光率 Plot light |
---|---|---|---|---|---|
CK | 0.15 ± 0.03a | 0.35 ± 0.05b | 0.80 ± 0.11a | 5.93 ± 0.32a | 0.35 ± 0.03b |
ReSH | 0.17 ± 0.02a | 0.64 ± 0.08a | 1.08 ± 0.06a | 4.58 ± 0.29b | 0.53 ± 0.04a |
图4 毛乌素沙地各功能群草本植物和草本植物群落的氮吸收速率与土壤含水量、群落透光率、土壤铵态氮、土壤硝态氮及土壤有机氮含量的关系。实线表示因子间的线性拟合线, 阴影表示95%置信区间。
Fig. 4 Relationships between nitrogen uptake rates (NUR) of different functional groups of herbaceous plants and herbaceous plant community with soil water content, plot light, soil ammonium nitrogen, soil nitrate nitrogen, and soil organic nitrogen contents in the Mau Us Sandy Land. The solid lines indicate the linear fitting lines between the corresponding factors, and the shadows indicate 95% confidence intervals. AS, annual herbaceous; COM, herbaceous community; DON, soil dissolved organic nitrogen; NH4+-N, soil ammonium nitrogen; NO3--N, soil nitrate nitrogen; PF, perennial forbs; PG, perennial grasses; SWC, soil water content.
图5 毛乌素沙地各功能群草本植物及植物群落氮吸收比例与透光率、土壤含水量、土壤全氮、土壤铵态氮、土壤硝态氮及土壤有机氮含量的关系。#, p < 0.1; *, p < 0.05; **, p < 0.01。
Fig. 5 Relationships between nitrogen uptake proportion of different functional groups of herbaceous plants and herbaceous plant community with plot light, soil water content, soil total nitrogen, soil ammonium nitrogen, soil nitrate nitrogen, and soil organic nitrogen contents in the Mau Us Sandy Land. AS, annual herbaceous; COM, herbaceous community; DON, soil dissolved organic nitrogen; Gly, soil glycine; NH4+-N, soil ammonium nitrogen; NO3--N, soil nitrate nitrogen; PF, perennial forbs; PG, perennial grasses; STN, soil total nitrogen; SWC, soil water content. #, p < 0.1; *, p < 0.05; **, p < 0.01.
图6 决定毛乌素沙地草本植物群落氮吸收速率(A、B)和硝态氮吸收比例(C、D)的关键因素模型及标准化总效应。蓝色箭头表示正相关, 红色箭头表示负相关, 箭头旁数字代表标准化路径系数, 响应变量由固定效应(R2 marginal)和固定效应与随机效应(R2 conditional)解释。#, p < 0.1; *, p < 0.05; **, p < 0.01。Gly, 甘氨酸。
Fig. 6 Key factor models and standardized total effects determining the nitrogen uptake rate (A, B) and nitrate nitrogen uptake proportion (C, D) of the herbaceous plant community in the Mau Us Sandy Land. Blue arrows indicate positive effects and red arrows indicate negative effects. Standardized path coefficients were shown next to each path with indicating significance. Response variables were explained by fixed effects (R2 marginal) and fixed effects with random effects (R2 conditional). Gly, glycine; NH4+-N, ammonium nitrogen; NO3--N, nitrate nitrogen. #, p < 0.1; *, p < 0.05; **, p < 0.01.
[1] |
Andersen KM, Mayor JR, Turner BL (2017). Plasticity in nitrogen uptake among plant species with contrasting nutrient acquisition strategies in a tropical forest. Ecology, 98, 1388-1398.
DOI PMID |
[2] | Andersen KM, Turner BL (2013). Preferences or plasticity in nitrogen acquisition by understorey palms in a tropical montane forest. Journal of Ecology, 101, 819-825. |
[3] |
Ashton IW, Miller AE, Bowman WD, Suding KN (2010). Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology, 91, 3252-3260.
PMID |
[4] | Bell CW, Asao S, Calderon F, Wolk B, Wallenstein MD (2015). Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology & Biochemistry, 85, 170-182. |
[5] | Bremner JM, Sparks DL (1996). Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, Madison, USA. |
[6] | Bruno JF, Stachowicz JJ, Bertness MD (2003). Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution, 18, 119-125. |
[7] | Callaway RM (2007). Positive Interactions and Interdependence in Plant Communities. Springer, Dordrecht, The Netherlands. |
[8] | Du EZ, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu XH, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226. |
[9] | Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB (2009). Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments, 73, 521-528. |
[10] | Fernando AL, Boléo S, Barbosa B, Costa J, Duarte MP, Monti A (2015). Perennial grass production opportunities on marginal Mediterranean land. BioEnergy Research, 8, 1523-1537. |
[11] | Fowler N (1986). The role of competition in plant communities in arid and semiarid regions. Annual Review of Ecology and Systematics, 17, 89-110. |
[12] |
Fraterrigo JM, Strickland MS, Keiser AD, Bradford MA (2011). Nitrogen uptake and preference in a forest understory following invasion by an exotic grass. Oecologia, 167, 781-791.
DOI PMID |
[13] |
Friedman J (2020). The evolution of annual and perennial plant life histories: ecological correlates and genetic mechanisms. Annual Review of Ecology, Evolution, and Systematics, 51, 461-481.
DOI |
[14] | Gao L, Cui XY, Hill PW, Guo YF (2020). Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China. Applied Soil Ecology, 147, 103398. DOI: 10.1016/j.apsoil.2019.103398. |
[15] | Gebauer RLE, Ehleringer JR (2000). Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology, 81, 1415-1424. |
[16] |
Gherardi LA, Sala OE, Yahdjian L (2013). Preference for different inorganic nitrogen forms among plant functional types and species of the Patagonian steppe. Oecologia, 173, 1075-1081.
DOI PMID |
[17] |
Hachiya T, Sakakibara H (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68, 2501-2512.
DOI PMID |
[18] | Hart SP (2023). How does facilitation influence the outcome of species interactions? Journal of Ecology, 111, 2094-2104. |
[19] |
Hesse E, Pannell JR (2011). Sexual dimorphism in a dioecious population of the wind-pollinated herb Mercurialis annua: the interactive effects of resource availability and competition. Annals of Botany, 107, 1039-1045.
DOI PMID |
[20] |
Hietz P, Turner BL, Wanek W, Richter A, Nock CA, Wright SJ (2011). Long-term change in the nitrogen cycle of tropical forests. Science, 334, 664-666.
DOI PMID |
[21] | Hong JT, Ma XX, Zhang XK, Wang XD (2017). Nitrogen uptake pattern of herbaceous plants: coping strategies in altered neighbor species. Biology and Fertility of Soils, 53, 729-735. |
[22] | Hu XF, Li WT, Liu QH, Yin CY (2022). Interactions between species change the uptake of ammonium and nitrate in Abies faxoniana and Picea asperata. Tree Physiology, 42, 1396-1410. |
[23] |
Huberty AF, Denno RF (2006). Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia, 149, 444-455.
PMID |
[24] |
Inselsbacher E, Näsholm T (2012). The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytologist, 195, 329-334.
DOI PMID |
[25] | Jin VL, Evans RD (2010). Elevated CO2 increases plant uptake of organic and inorganic N in the desert shrub Larrea tridentata. Oecologia, 163, 257-266. |
[26] | Jin YH, Zhang YJ, Xu JW, Tao Y, He HS, Guo M, Wang AL, Liu YX, Niu LP (2018). Comparative assessment of tundra vegetation changes between north and southwest slopes of Changbai Mountains, China, in response to global warming. Chinese Geographical Science, 28, 665-679. |
[27] | Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005). Dissolved organic nitrogen uptake by plants—An important N uptake pathway? Soil Biology & Biochemistry, 37, 413-423. |
[28] | Kempers AJ, Zweers A (1986). Ammonium determination in soil extracts by the salicylate method. Communications in Soil Science and Plant Analysis, 17, 715-723. |
[29] | Kielland K (1994). Amino acid absorption by Arctic plants: implications for plant nutrition and nitrogen cycling. Ecology, 75, 2373-2383. |
[30] | Lai CM, Peng F, Sun JB, Zhou J, Li CY, Xu XL, Chen XJ, You QG, Sun HY, Sun J, Xue X, Lambers H (2023). Niche differentiation and higher uptake of available nitrogen maintained the productivity of alpine meadow at early degradation. Biology and Fertility of Soils, 59, 35-49. |
[31] |
Lehman CL, Tilman D (2000). Biodiversity, stability, and productivity in competitive communities. The American Naturalist, 156, 534-552.
DOI PMID |
[32] | Lim SL, Voon CP, Guan XQ, Yang Y, Gardeström P, Lim BL (2020). In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD+ fluorescent protein sensors. Nature Communications, 11, 3238. DOI:10.1038/s41467-020-17056-0. |
[33] |
Lind EM, Borer E, Seabloom E, Adler P, Bakker JD, Blumenthal DM, Crawley M, Davies K, Firn J, Gruner DS, Stanley Harpole W, Hautier Y, Hillebrand H, Knops J, Melbourne B, et al.(2013). Life-history constraints in grassland plant species: a growth-defence trade-off is the norm. Ecology Letters, 16, 513-521.
DOI PMID |
[34] |
Lipson D, Näsholm T (2001). The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128, 305-316.
DOI PMID |
[35] | Liu J, Peng B, Xia ZW, Sun JF, Gao DC, Dai WW, Jiang P, Bai E (2017). Different fates of deposited and in a temperate forest in Northeast China: a 15N tracer study. Global Change Biology, 23, 2441-2449. |
[36] | Liu M, Adl S, Cui XY, Tian YQ, Xu XL, Kuzyakov Y (2020). In situ methods of plant-microbial interactions for nitrogen in rhizosphere. Rhizosphere, 13, 100186. DOI: 10.1016/j.rhisph.2020.100186. |
[37] | Liu QY, Xu MJ, Yuan Y, Wang HM (2021). Interspecific competition for inorganic nitrogen between canopy trees and underlayer-planted young trees in subtropical pine plantations. Forest Ecology and Management, 494, 119331. DOI: 10.1016/j.foreco.2021.119331. |
[38] | Liu XY, Koba K, Koyama LA, Hobbie SE, Weiss MS, Inagaki Y, Shaver GR, Giblin AE, Hobara S, Nadelhoffer KJ, Sommerkorn M, Rastetter EB, Kling GW, Laundre JA, Yano Y, et al.(2018). Nitrate is an important nitrogen source for Arctic tundra plants. Proceedings of the National Academy of Sciences of the United States of America, 115, 3398-3403. |
[39] | Ma QX, Xu M, Liu MJ, Cao XC, Hill PW, Chadwick DR, Wu LH, Jones DL (2022). Organic and inorganic sulfur and nitrogen uptake by co-existing grassland plant species competing with soil microorganisms. Soil Biology & Biochemistry, 168, 108627. DOI: 10.1016/j.soilbio.2022.108627. |
[40] |
Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado- Baquerizo M, Bowker MA, García-Palacios P, Gaitán J, Gallardo A, Lázaro R, Berdugo M (2016). Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology, Evolution, and Systematics, 47, 215-237.
DOI PMID |
[41] | Mayor JR, Wright SJ, Schuur EAG, Brooks ME, Turner BL (2014). Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. Biogeochemistry, 119, 293-306. |
[42] | McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in Arctic tundra. Nature, 415, 68-71. |
[43] |
Miao C, Bai YX, Zhang YQ, She WW, Liu L, Qiao YG, Qin SG (2022). Interspecific interactions alter plant functional strategies in a revegetated shrub-dominated community in the Mu Us Desert, China. Annals of Botany, 130, 149-158.
DOI PMID |
[44] |
Miller AE, Bowman WD, Suding KN (2007). Plant uptake of inorganic and organic nitrogen: neighbor identity matters. Ecology, 88, 1832-1840.
PMID |
[45] | Pastore AI, Barabás G, Bimler MD, Mayfield MM, Miller TE (2021). The evolution of niche overlap and competitive differences. Nature Ecology & Evolution, 5, 330-337. |
[46] | Pierce NA, Archer SR, Bestelmeyer BT, James DK (2019). Grass-shrub competition in arid lands: an overlooked driver in grassland-shrubland state transition? Ecosystems, 22, 619-628. |
[47] | Qiao JJ, Zuo XA, Yue P, Wang SK, Hu Y, Guo XX, Li XY, Lv P, Guo AX, Sun SS (2023). High nitrogen addition induces functional trait divergence of plant community in a temperate desert steppe. Plant and Soil, 487, 133-156. |
[48] | Qiao YG, Bai YX, Zhang YQ, She WW, Lai ZR, Qin SG (2019). Arbuscular mycorrhizal fungi shape the adaptive strategy of plants by mediating nutrient acquisition in a shrub-dominated community in the Mu Us Desert. Plant and Soil, 443, 549-564. |
[49] |
Quan Z, Liu X, Liu D (2022). Research progress on soil soluble organic nitrogen. Chinese Journal of Applied Ecology, 33, 277-288.
DOI |
[全智, 刘轩, 刘东 (2022), 土壤可溶性有机氮研究进展. 应用生态学报, 33, 277-288.]
DOI |
|
[50] | Raab TK, Lipson DA, Monson RK (1999). Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology, 80, 2408-2419. |
[51] | Rahman S, Mehta S, Husen A (2024). Use of amino acids in plant growth, photosynthetic assimilation, and nutrient availability//Husen A. Biostimulants in Plant Protection and Performance. Elsevier, Amsterdam, The Netherlands. 117-127. |
[52] | Ramond JB, Jordaan K, Díez B, Heinzelmann SM, Cowan DA (2022). Microbial biogeochemical cycling of nitrogen in arid ecosystems. Microbiology and Molecular Biology Reviews, 86, e0010921. DOI: 10.1128/mmbr.00109-21. |
[53] |
Rejmánková E (2005). Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytologist, 167, 471-482.
PMID |
[54] | Sah RN (1994). Nitrate-nitrogen determination—A critical review. Communications in Soil Science and Plant Analysis, 25, 2841-2869. |
[55] | Schimann H, Ponton S, Hättenschwiler S, Ferry B, Lensi R, Domenach AM, Roggy JC (2008). Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biology & Biochemistry, 40, 487-494. |
[56] | She WW, Bai YX, Zhang YQ, Qin SG, Feng W, Lai ZR, Qiao YG, Liu L, Zhang WJ, Miao C (2021). Nitrogen-enhanced herbaceous competition threatens woody species persistence in a desert ecosystem. Plant and Soil, 460, 333-345. |
[57] | She WW, Bai YX, Zhang YQ, Qin SG, Jia X, Feng W, Lai ZR, Fu J, Qiao YG (2020). Nitrogen enrichment suppresses revegetated shrub growth under increased precipitation via herb-induced topsoil water limitation in a desert ecosystem in Northern China. Plant and Soil, 446, 97-110. |
[58] | Simon J (2023). Relevance of organic vs. inorganic nitrogen in intra- and interspecific competition of seven central European tree species. Trees, 37, 1583-1591. |
[59] | Skujiņš J (1981). Nitrogen cycling in arid ecosystems. Ecological Bulletins, 33, 477-491. |
[60] | Steidinger BS, Turner BL, Corrales A, Dalling JW (2015). Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species. Functional Ecology, 29, 121-130. |
[61] | Templer PH, Dawson TE (2004). Nitrogen uptake by four tree species of the Catskill Mountains, New York:implications for forest N dynamics. Plant and Soil, 262, 251-261. |
[62] |
von Felten S, Niklaus PA, Scherer-Lorenzen M, Hector A, Buchmann N (2012). Do grassland plant communities profit from N partitioning by soil depth? Ecology, 93, 2386-2396.
PMID |
[63] | Wang RX, Tian YQ, Ouyang SN, Xu XL, Xu FZ, Zhang Y (2016). Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes. Biology and Fertility of Soils, 52, 951-961. |
[64] | Wang WY, Ma YG, Xu J, Wang HC, Zhu JF, Zhou HK (2012). The uptake diversity of soil nitrogen nutrients by main plant species in Kobresia humilis alpine meadow on the Qinghai-Tibet Plateau. Science China: Earth Sciences, 55, 1688-1695. |
[王文颖, 马永贵, 徐进, 王慧春, 朱锦福, 周华坤 (2012). 高寒矮嵩草(Kobresia humilis)草甸植物吸收土壤氮的多元化途径研究. 中国科学: 地球科学, 55, 1688-1695.] | |
[65] | White JR, Reddy KR (2009). Biogeochemical dynamics I: nitrogen cycling in wetlands. The Wetlands Handbook, 2, 213-227. |
[66] | Xu XL, Ouyang H, Cao GM, Richter A, Wanek W, Kuzyakov Y (2011a). Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow. Plant and Soil, 341, 495-504. |
[67] | Xu XL, Ouyang H, Kuzyakov Y, Richter A, Wanek W (2006). Significance of organic nitrogen acquisition for dominant plant species in an alpine meadow on the Tibet Plateau, China. Plant and Soil, 285, 221-231. |
[68] | Xu XL, Ouyang H, Richter A, Wanek W, Cao GM, Kuzyakov Y (2011b). Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology, 99, 563-571. |
[69] | Yahdjian L, Gherardi L, Sala OE (2014). Grasses have larger response than shrubs to increased nitrogen availability: a fertilization experiment in the Patagonian steppe. Journal of Arid Environments, 102, 17-20. |
[70] | Zak DR, Grigal DF, Gleeson S, Tilman D (1990). Carbon and nitrogen cycling during old-field succession: constraints on plant and microbial biomass. Biogeochemistry, 11, 111-129. |
[71] | Zhang XJ, Liang XS, Ma W, Wang ZW (2021). Temporal variation and resorption of nutrients in plant culms and leaves in Hulun Buir grassland. Chinese Journal of Plant Ecology, 45, 738-748. |
[张效境, 梁潇洒, 马望, 王正文 (2021). 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收. 植物生态学报, 45, 738-748.]
DOI |
|
[72] | Zhang XS (1994). Principles and optimal models for development of Maowusu sandy grassland. Acta Phytoecologia et Geobotanica Sinica, 18, 1-16. |
[张新时 (1994). 毛乌素沙地的生态背景及其草地建设的原则与优化模式. 植物生态学报, 18, 1-16.] | |
[73] |
Zhuang W, Wang M, Xiao Y, Zhou X, Wu N (2022). Differential uptake of nitrogen forms by two herbs in the Gurbantunggut desert, Central Asia. Plant Biology, 24, 758-765.
DOI PMID |
[1] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
[2] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[3] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[4] | 徐铭泽, 赵洪贤, 李成, 李满乐, 田赟, 刘鹏, 查天山. 季节尺度毛乌素沙地黑沙蒿的叶片性状网络特征及驱动因素[J]. 植物生态学报, 2024, 48(12): 1650-1665. |
[5] | 马斌, 佘维维, 秦欢, 宣瑞智, 宋春阳, 袁新月, 苗春, 刘靓, 冯薇, 秦树高, 张宇清. 氮水添加对黑沙蒿种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[6] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[7] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[8] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[9] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[10] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[11] | 李海东, 吴新卫, 肖治术. 种间互作网络的结构、生态系统功能及稳定性机制研究[J]. 植物生态学报, 2021, 45(10): 1049-1063. |
[12] | 张治国, 魏海霞. 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化[J]. 植物生态学报, 2019, 43(11): 979-987. |
[13] | 刘凤红, 叶学华, 于飞海, 董鸣. 毛乌素沙地游击型克隆半灌木羊柴对局部沙埋的反应[J]. 植物生态学报, 2006, 30(2): 278-285. |
[14] | 陈玉福, 董鸣. 毛乌素沙地群落动态中克隆和非克隆植物作用的比较[J]. 植物生态学报, 2002, 26(3): 377-380. |
[15] | 何维明. 为什么自然条件下沙地柏种群以无性更新为主[J]. 植物生态学报, 2002, 26(2): 235-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19