植物生态学报 ›› 2025, Vol. 49 ›› Issue (9): 1527-1542.DOI: 10.17521/cjpe.2024.0218 cstr: 32100.14.cjpe.2024.0218
冯梅1, 欧阳胜男1,2,*(
), 李迈和2,3, 周晓倩1, 铁烈华1, 申卫军4, 段洪浪1
收稿日期:2024-07-04
接受日期:2025-01-20
出版日期:2025-09-20
发布日期:2025-04-14
通讯作者:
*欧阳胜男 (snouyang@gzu.edu.cn)基金资助:
FENG Mei1, OUYANG Sheng-Nan1,2,*(
), Matthias SAURER2, LI Mai-He2,3, ZHOU Xiao-Qian1, TIE Lie-Hua1, SHEN Wei-Jun4, DUAN Hong-Lang1, Arthur GESSLER2,5
Received:2024-07-04
Accepted:2025-01-20
Online:2025-09-20
Published:2025-04-14
Supported by:摘要:
干旱打破树木的碳(C)平衡过程是诱发树木干旱死亡的主要因素, 这一过程可能受到土壤养分(如氮(N))有效性的调控。然而, 氮添加对树木干旱响应过程中地上-地下部分碳和氮利用、各器官碳氮耦合关系的影响仍不清楚。该研究通过为期两年的微宇宙实验, 在第一个生长季对无梗花栎(Quercus petraea)进行氮添加处理, 随后在第二个生长季进行干旱处理, 并在干旱前进行15N标记、干旱中进行13C标记, 双标记后经过连续3次破坏性取样研究氮添加对无梗花栎响应持续干旱过程中碳氮分配动态的影响。主要研究结果: 1)前期氮添加促进了无梗花栎地上部分光合碳和氮分配, 也促进了根系氮吸收, 改变了植株地上-地下新吸收碳和氮的关系, 降低了各器官非结构性碳水化合物(NSC)含量; 2)干旱对无梗花栎地上-地下碳氮分配过程、各器官碳和氮关系的影响较小, 但降低了各器官NSC含量; 3)干旱第40-73天过程中, 前期氮添加下的无梗花栎表现出将吸收的氮和光合碳逐渐向地下器官转移的趋势。综上, 无梗花栎通过调控自身对碳和氮的利用策略, 具有较好的干旱适应能力, 而前期氮添加很可能会增加无梗花栎的干旱敏感性。
冯梅, 欧阳胜男, 李迈和, 周晓倩, 铁烈华, 申卫军, 段洪浪. 前期氮添加对无梗花栎幼苗干旱响应中地上-地下碳氮分配动态的影响. 植物生态学报, 2025, 49(9): 1527-1542. DOI: 10.17521/cjpe.2024.0218
FENG Mei, OUYANG Sheng-Nan, Matthias SAURER, LI Mai-He, ZHOU Xiao-Qian, TIE Lie-Hua, SHEN Wei-Jun, DUAN Hong-Lang, Arthur GESSLER. Effects of previous nitrogen addition on aboveground and belowground carbon and nitrogen allocation dynamics in drought-exposed sessile oak seedlings. Chinese Journal of Plant Ecology, 2025, 49(9): 1527-1542. DOI: 10.17521/cjpe.2024.0218
图1 氮添加和干旱处理下无梗花栎净光合速率和叶片凌晨水势的动态变化(平均值±标准误, n = 3)。N0, 不施氮处理; N+, 氮添加处理。不同小写字母表示不同处理时间具有显著差异(p < 0.05)。
Fig. 1 Dynamics of net photosynthesis and predawn leaf water potential in sessile oak under nitrogen (N) addition and drought (mean ± SE, n = 3). N0, no N addition treatment; N+, N addition treatment. Different lowercase letters indicate significant differences among the different processing time (p < 0.05).
| 因素 Factor | 13C: | 净光合速率 Net photosynthetic rate (µmol·m-2·s-1) | 叶片凌晨水势 Predawn leaf water potential (MPa) | |||
|---|---|---|---|---|---|---|
| 叶 Leaf | 茎 Stem | 细根 Fine root | 粗根 Coarse root | |||
| N | 0.009 | 0.008 | <0.001 | <0.001 | 0.136 | 0.732 |
| D | 0.993 | 0.850 | 0.199 | 0.853 | <0.001 | <0.001 |
| Time | 0.302 | 0.356 | 0.011 | 0.002 | <0.001 | 0.004 |
| D × Time | 0.867 | 0.796 | 0.167 | 0.692 | 0.116 | 0.027 |
| N × Time | 0.310 | 0.273 | 0.139 | 0.015 | <0.001 | 0.193 |
| D × N | 0.888 | 0.917 | 0.931 | 0.655 | 0.901 | 0.767 |
| D × N × Time | 0.854 | 0.719 | 0.210 | 0.773 | 0.240 | 0.049 |
表1 氮添加、干旱、采样时间及其交互作用对无梗花栎各器官13C和15N含量比值、净光合速率和叶片凌晨水势的影响(p值)
Table 1 Effects of nitrogen addition, drought, sampling time, and their interaction on the ratio of 13C and 15N content in all orangs, net photosynthetic rate, and predawn leaf water potential of sessile oak (p value)
| 因素 Factor | 13C: | 净光合速率 Net photosynthetic rate (µmol·m-2·s-1) | 叶片凌晨水势 Predawn leaf water potential (MPa) | |||
|---|---|---|---|---|---|---|
| 叶 Leaf | 茎 Stem | 细根 Fine root | 粗根 Coarse root | |||
| N | 0.009 | 0.008 | <0.001 | <0.001 | 0.136 | 0.732 |
| D | 0.993 | 0.850 | 0.199 | 0.853 | <0.001 | <0.001 |
| Time | 0.302 | 0.356 | 0.011 | 0.002 | <0.001 | 0.004 |
| D × Time | 0.867 | 0.796 | 0.167 | 0.692 | 0.116 | 0.027 |
| N × Time | 0.310 | 0.273 | 0.139 | 0.015 | <0.001 | 0.193 |
| D × N | 0.888 | 0.917 | 0.931 | 0.655 | 0.901 | 0.767 |
| D × N × Time | 0.854 | 0.719 | 0.210 | 0.773 | 0.240 | 0.049 |
图2 氮添加和干旱下无梗花栎各器官13C相对分配比例(平均值±标准误, n = 3)。N0, 不施氮处理; N+, 氮添加处理。不同大写字母表示不施氮和氮添加处理间具有显著差异(p < 0.05), 不同小写字母表示3个取样时间点(复水后的第15、40、73天)之间具有显著差异(p < 0.05)。
Fig. 2 Relative 13C allocation to different organs in sessile oak under nitrogen (N) addition and drought at three harvest times (mean ± SE, n = 3). N0, no N addition; N+, N addition treatment. Different uppercase letters indicate significant differences between the no N addition and the N addition treatment (p < 0.05), and different lowercase letters indicate significant differences among the three sampling time points (the 15, 40 and 73 days after rewetting) (p < 0.05).
| 因素 Factor | 叶相对分配比例 Leaf relative allocation ratio | 茎相对分配比例 Stem relative allocation ratio | 细根相对分配比例 Fine root relative allocation ratio | 粗根相对分配比例 Coarse root relative allocation ratio | 地上/地相对分配比例 Ratio of aboveground to belowground allocation | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 13C | 15N | 13C | 15N | 13C | 15N | 13C | 15N | 13C | 15N | ||||
| N | 0.948 | 0.124 | 0.025 | 0.159 | 0.027 | 0.001 | 0.154 | 0.736 | 0.003 | 0.039 | |||
| D | 0.760 | 0.505 | 0.756 | 0.263 | 0.978 | 0.283 | 0.590 | 0.758 | 0.188 | 0.072 | |||
| Time | 0.974 | 0.251 | 0.187 | 0.450 | 0.017 | 0.089 | 0.722 | 0.588 | 0.063 | 0.015 | |||
| D × Time | 0.942 | 0.878 | 0.890 | 0.413 | 0.461 | 0.148 | 0.523 | 0.967 | 0.039 | 0.038 | |||
| N × Time | 0.549 | 0.609 | 0.352 | 0.127 | 0.191 | 0.319 | 0.255 | 0.911 | 0.003 | <0.001 | |||
| D × N | 0.082 | 0.020 | 0.838 | 0.127 | 0.657 | 0.764 | 0.321 | 0.618 | 0.151 | 0.432 | |||
| D × N × Time | 0.191 | 0.036 | 0.905 | 0.508 | 0.707 | 0.347 | 0.730 | 0.260 | 0.594 | <0.001 | |||
表2 氮添加、干旱、采样时间及其交互作用对无梗花栎各器官13C、15N相对分配比例及13C、15N地上-地下比值的影响(p值)
Table 2 Effects of nitrogen addition, drought, sampling time, and their interaction on the relative allocation ratio of 15N, 13C, and the ratio of aboveground to belowground allocation in sessile oak organs (p value)
| 因素 Factor | 叶相对分配比例 Leaf relative allocation ratio | 茎相对分配比例 Stem relative allocation ratio | 细根相对分配比例 Fine root relative allocation ratio | 粗根相对分配比例 Coarse root relative allocation ratio | 地上/地相对分配比例 Ratio of aboveground to belowground allocation | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 13C | 15N | 13C | 15N | 13C | 15N | 13C | 15N | 13C | 15N | ||||
| N | 0.948 | 0.124 | 0.025 | 0.159 | 0.027 | 0.001 | 0.154 | 0.736 | 0.003 | 0.039 | |||
| D | 0.760 | 0.505 | 0.756 | 0.263 | 0.978 | 0.283 | 0.590 | 0.758 | 0.188 | 0.072 | |||
| Time | 0.974 | 0.251 | 0.187 | 0.450 | 0.017 | 0.089 | 0.722 | 0.588 | 0.063 | 0.015 | |||
| D × Time | 0.942 | 0.878 | 0.890 | 0.413 | 0.461 | 0.148 | 0.523 | 0.967 | 0.039 | 0.038 | |||
| N × Time | 0.549 | 0.609 | 0.352 | 0.127 | 0.191 | 0.319 | 0.255 | 0.911 | 0.003 | <0.001 | |||
| D × N | 0.082 | 0.020 | 0.838 | 0.127 | 0.657 | 0.764 | 0.321 | 0.618 | 0.151 | 0.432 | |||
| D × N × Time | 0.191 | 0.036 | 0.905 | 0.508 | 0.707 | 0.347 | 0.730 | 0.260 | 0.594 | <0.001 | |||
图3 氮添加和干旱下3个取样时间点无梗花栎各器官15N相对分配比例(平均值±标准误, n = 3)。N0, 不施氮处理; N+, 氮添加处理。不同大写字母表示不施氮和氮添加处理间具有显著差异(p < 0.05), 不同小写字母表示3个取样时间点之间具有显著差异(p < 0.05)。
Fig. 3 Relative allocation ratio of 15N in organs of sessile oak under nitrogen (N) addition and drought at three harvest times (mean ± SE, n = 3). N0, no N addition; N+, N addition treatment. Different uppercase letters indicate significant differences between the no N addition and the N addition treatment (p < 0.05), and different lowercase letters indicate significant differences among the three time pointsof sampling (p < 0.05).
| 因素 Factor | 叶NSC含量 Leaf NSC content (%) | 茎NSC含量 Stem NSC content (%) | 细根NSC含量 Fine root NSC content (%) | 粗根NSC含量 Coarse root NSC content (%) | 根系氮吸收速率 Root nitrogen uptake rate (%) |
|---|---|---|---|---|---|
| N | 0.016 | 0.004 | 0.032 | 0.261 | <0.001 |
| D | 0.344 | 0.153 | 0.030 | <0.001 | 0.136 |
| Time | 0.008 | 0.003 | 0.228 | <0.001 | <0.001 |
| D × Time | 0.563 | 0.250 | 0.022 | <0.001 | 0.116 |
| N × Time | 0.205 | 0.929 | 0.726 | 0.072 | <0.001 |
| D × N | 0.797 | 0.096 | 0.842 | 0.351 | 0.901 |
| D × N × Time | 0.863 | 0.103 | 0.684 | 0.700 | 0.240 |
表3 氮添加、干旱、采样时间及其交互作用对无梗花栎各器官非结构性碳水化合物(NSC)含量和根系氮吸收速率的影响(p值)
Table 3 Effects of nitrogen addition, drought, sampling time, and their interaction on non-structural carbohydrates (NSC) content and root nitrogen uptake rate in various organs of sessile oak (p value)
| 因素 Factor | 叶NSC含量 Leaf NSC content (%) | 茎NSC含量 Stem NSC content (%) | 细根NSC含量 Fine root NSC content (%) | 粗根NSC含量 Coarse root NSC content (%) | 根系氮吸收速率 Root nitrogen uptake rate (%) |
|---|---|---|---|---|---|
| N | 0.016 | 0.004 | 0.032 | 0.261 | <0.001 |
| D | 0.344 | 0.153 | 0.030 | <0.001 | 0.136 |
| Time | 0.008 | 0.003 | 0.228 | <0.001 | <0.001 |
| D × Time | 0.563 | 0.250 | 0.022 | <0.001 | 0.116 |
| N × Time | 0.205 | 0.929 | 0.726 | 0.072 | <0.001 |
| D × N | 0.797 | 0.096 | 0.842 | 0.351 | 0.901 |
| D × N × Time | 0.863 | 0.103 | 0.684 | 0.700 | 0.240 |
图4 氮添加和干旱下3个取样时间点无梗花栎各器官非结构性碳水化合物含量(平均值±标准误, n = 3)。N0, 不施氮处理; N+, 氮添加处理。不同小写字母表示3个取样时间点之间具有显著差异(p < 0.05); *表示不施氮和氮添加处理间具有显著性差异(p < 0.05)。
Fig. 4 Tissues’ non-structural carbohydrate content in sessile oak under nitrogen (N) addition and drought at three harvest times (the 15, 40 and 73 days after rewetting) (mean ± SE, n = 3). N0, no N addition; N+, N addition treatment. Different lowercase letters indicate significant differences among the three sampling time points (p < 0.05); * indicate significant differences between the no N addition and the N addition treatment under the two watering regimes (p < 0.05).
图5 氮添加和干旱下无梗花栎3个取样时间点的根系氮吸收速率(平均值±标准误, n = 3)。DN+, 干旱条件下氮添加组; DN0, 干旱条件下不施氮组; WN+, 正常浇水条件下氮添加组; WN0, 正常浇水条件下不施氮组。不同大写字母表示不施氮和施氮间具有显著差异(p < 0.05), 不同小写字母表示3个取样时间点之间具有显著差异(p < 0.05)。
Fig. 5 Root nitrogen uptake rate in sessile oak under nitrogen (N) additions and drought at three harvest times (mean ± SE, n = 3). DN+, drought-exposed sessile oak with N addition; DN0, the drought-exposed sessile oak without N addition; WN+, the well-watered sessile oak with N addition; WN0, the well-watered sessile oak without N addition. Different uppercase letters indicate significant differences between the no N addition and the N addition treatment (p < 0.05), and different lowercase letters indicate significant differences among the three time points of sampling (p < 0.05).
图6 氮添加和干旱下无梗花栎3个取样时间点各器官的13C与15N含量比值(平均值±标准误, n = 3)。N0, 不施氮处理; N+, 氮添加处理。不同的小写字母表示3个取样时间点之间具有显著差异(p < 0.05), *表示不施氮和氮添加处理间具有显著性差异(p < 0.05)。
Fig. 6 Rate of 13C to 15N content in sessile oak under nitrogen (N) additions and drought at three harvest times (mean ± SE, n = 3). N0, no N addition; N+, N addition treatment. Different lowercase letters indicate significant differences among the three sampling time points (p < 0.05), * indicate significant differences between the no N addition and the N addition treatment under the two watering regimes (p < 0.05).
图7 前期氮添加、干旱及其两者的共同作用对无梗花栎地上-地下碳氮耦合关系的影响。 表示无显著影响; 表示抑制作用; 表示促进作用, 灰色箭头表示氮从地下向地上运输, 白色箭头表示光合碳从地上向地下运输, 中间的闭环表示地上部分光合作用碳合成和分配与地下根系氮吸收和分配形成一个耦联过程。
Fig. 7 Effects of previous nitrogen addition, drought, and their combination on the coupling relationship between aboveground and underground carbon (C) and nitrogen (N) in sessile oak. represent no significant effects, inhibition and promotion, respectively. Grey arrows indicate nitrogen transport from belowground to aboveground, white arrows indicate photosynthetic carbon transport from aboveground to belowground, and the closed loop in the middle indicates that photosynthetic carbon synthesis and distribution in the aboveground part and nitrogen absorption and distribution in the belowground root system form a coupled process.
| [1] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
| [2] | Anderegg WRL, Trugman AT, Badgley G, Anderson CM, Bartuska A, Ciais P, Cullenward D, Field CB, Freeman J, Goetz SJ, Hicke JA, Huntzinger D, Jackson RB, Nickerson J, Pacala S, Randerson JT (2020). Climate-driven risks to the climate mitigation potential of forests. Science, 368, eaaz7005. DOI: 10.1126/science.aaz700. |
| [3] |
Bloom AJ, Chapin III FS, Mooney HA (1985). Resource limitation in plants-an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392.
DOI URL |
| [4] |
Cary KL, Ranieri GM, Pittermann J (2020). Xylem form and function under extreme nutrient limitation: an example from California’s pygmy forest. New Phytologist, 226, 760-769.
DOI URL |
| [5] | Chen LT, Gao RM, Shi XD (2017). Drought stress on chlorophyll content and root activity in seedlings of Larix principis-rupprechtii and Pinus tabuliformis. Journal of Agriculture, 7(3), 67. |
|
[陈龙涛, 高润梅, 石晓东 (2017). 干旱胁迫对华北落叶松和油松幼苗叶绿素含量与根系活力的影响. 农学学报, 7(3), 67.]
DOI |
|
| [6] |
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539.
DOI |
| [7] |
Cochard H, Cruiziat P, Tyree MT (1992). Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiology, 100, 205-209.
DOI PMID |
| [8] |
Dietze MC, Sala AN, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014). Nonstructural carbon in woody plants. Annual Review of Plant Biology, 65, 667-687.
DOI PMID |
| [9] | Duan HL, Wu JP, Liu WF, Liao YC, Zhang HN, Fan HB (2015). Water relations and carbon dynamics under drought stress and the mechanisms of drought-induced tree mortality. Scientia Silvae Sinicae, 51(11), 113-120. |
| [段洪浪, 吴建平, 刘文飞, 廖迎春, 张海娜, 樊后保 (2015). 干旱胁迫下树木的碳水过程以及干旱死亡机理. 林业科学, 51(11), 113-120.] | |
| [10] |
Dziedek C, Härdtle W, von Oheimb G, Fichtner A (2016). Nitrogen addition enhances drought sensitivity of young deciduous tree species. Frontiers in Plant Science, 7, 1100. DOI: 10.3389/fpls.2016.01100.
PMID |
| [11] | Ellenberg H, Leuschner C (2010). Vegetation Mitteleuropas mit den Alpen: in Ökologischer, Dynamischer und Historischer Sicht. Springer Spektrum, Germany. |
| [12] | Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, et al. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 368, 20130164. DOI: 10.1098/rstb.2013.0164. |
| [13] |
Galiano L, Timofeeva G, Saurer M, Siegwolf R, Martínez-Vilalta J, Hommel R, Gessler A (2017). The fate of recently fixed carbon after drought release: towards unravelling C storage regulation in Tilia platyphyllos and Pinus sylvestris. Plant, Cell & Environment, 40, 1711-1724.
DOI URL |
| [14] |
Gessler A, Jung K, Gasche R, Papen H, Heidenfelder A, Börner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005). Climate and forest management influence nitrogen balance of European beech forests: microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. European Journal of Forest Research, 124, 95-111.
DOI URL |
| [15] |
Gessler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007). Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21, 1-11.
DOI URL |
| [16] |
Gessler A, Keitel C, Nahm M, Rennenberg H (2004). Water shortage affects the water and nitrogen balance in Central European beech forests. Plant Biology, 6, 289-298.
PMID |
| [17] |
Gessler A, Schaub M, McDowell NG (2017). The role of nutrients in drought-induced tree mortality and recovery. New Phytologist, 214, 513-520.
DOI PMID |
| [18] |
Hagedorn F, Joseph J, Peter M, Luster J, Pritsch K, Geppert U, Kerner R, Molinier V, Egli S, Schaub M, Liu JF, Li MH, Sever K, Weiler M, Siegwolf RTW, Gessler A, Arend M (2016). Recovery of trees from drought depends on belowground sink control. Nature Plants, 2, 16111. DOI: 10.1038/nplants.2016.111.
PMID |
| [19] |
Hartmann H, Trumbore S (2016). Understanding the roles of nonstructural carbohydrates in forest trees—From what we can measure to what we want to know. New Phytologist, 211, 386-403.
DOI PMID |
| [20] |
Hartmann H, Ziegler W, Kolle O, Trumbore S (2013a). Thirst beats hunger-declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist, 200, 340-349.
DOI URL |
| [21] |
Hartmann H, Ziegler W, Trumbore S (2013b). Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Functional Ecology, 27, 413-427.
DOI URL |
| [22] |
Haynes BE, Gower ST (1995). Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology, 15, 317-325.
PMID |
| [23] |
Hertenberger G, Wanek W (2004). Evaluation of methods to measure differential 15N labeling of soil and root N pools for studies of root exudation. Rapid Communications in Mass Spectrometry, 18, 2415-2425.
PMID |
| [24] |
Hikino K, Danzberger J, Riedel VP, Hesse BD, Hafner BD, Gebhardt T, Rehschuh R, Ruehr NK, Brunn M, Bauerle TL, Landhäusser SM, Lehmann MM, Rötzer T, Pretzsch H, Buegger F, et al. (2022). Dynamics of initial carbon allocation after drought release in mature Norway spruce—Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine-root growth. Global Change Biology, 28, 6889-6905.
DOI URL |
| [25] |
Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Environment, 26, 1067-1081.
DOI URL |
| [26] |
Joseph J, Luster J, Bottero A, Buser N, Baechli L, Sever K, Gessler A (2021). Effects of drought on nitrogen uptake and carbon dynamics in trees. Tree Physiology, 41, 927-943.
DOI PMID |
| [27] |
Kleczewski NM, Herms DA, Bonello P (2010). Effects of soil type, fertilization and drought on carbon allocation to root growth and partitioning between secondary metabolism and ectomycorrhizae of Betula papyrifera. Tree Physiology, 30, 807-817.
DOI PMID |
| [28] |
Kreuzwieser J, Gessler A (2010). Global climate change and tree nutrition: influence of water availability. Tree Physiology, 30, 1221-1234.
DOI PMID |
| [29] |
Li WB, Zhang HX, Huang GZ, Liu RX, Wu HJ, Zhao CY, McDowell NG (2020). Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 29, 573-589.
DOI URL |
| [30] | Lu JY, Yang JF, Keitel C, Yin LM, Wang P, Cheng WX, Dijkstra FA (2022). Belowground carbon efficiency for nitrogen and phosphorus acquisition varies between Lolium perenne and Trifolium repens and depends on phosphorus fertilization. Frontiers in Plant Science, 13, 927435. DOI: 10.3389/fpls.2022.927435. |
| [31] | Ma Y, Su BL, Han YG, Wu XH, Zhou WM, Wang QW, Zhou L, Yu DP (2021). Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress. Chinese Journal of Applied Ecology, 32, 513-520. |
|
[马玥, 苏宝玲, 韩艳刚, 吴星慧, 周旺明, 王庆伟, 周莉, 于大炮 (2021). 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 32, 513-520.]
DOI |
|
| [32] |
Malagoli P, Laine P, Rossato L, Ourry A (2005). Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (Brassica napus) from stem extension to harvest. II. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues. Annals of Botany, 95, 1187-1198.
PMID |
| [33] | Marušić M, Seletković I, Ognjenović M, Jonard M, Sever K, Schaub M, Gessler A, Šango M, Sirovica I, Zegnal I, Bogdanić R, Potočić N (2023). Nutrient and growth response of Fagus sylvatica L. saplings to drought is modified by fertilisation. Forests, 14, 2445. DOI: 10.3390/f14122445. |
| [34] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
| [35] |
McDowell NG (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051-1059.
DOI PMID |
| [36] |
McDowell NG, Sevanto S (2010). The mechanisms of carbon starvation: How, when, or does it even occur at all? New Phytologist, 186, 264-266.
DOI PMID |
| [37] | McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002). Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 415, 68-71. |
| [38] |
Millard P, Sommerkorn M, Grelet GA (2007). Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist, 175, 11-28.
DOI PMID |
| [39] |
O’Brien MJ, Leuzinger S, Philipson CD, Tay J, Hector A (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4, 710-714.
DOI |
| [40] |
Ouyang SN, Gessler A, Saurer M, Hagedorn F, Gao DC, Wang XY, Schaub M, Li MH, Shen WJ, Schönbeck L (2021). Root carbon and nutrient homeostasis determines downy oak sapling survival and recovery from drought. Tree Physiology, 41, 1400-1412.
DOI URL |
| [41] | Ouyang SN, Tie LH, Saurer M, Bose AK, Duan HL, Li MH, Xu XL, Shen WJ, Gessler A (2024). Divergent role of nutrient availability in determining drought responses of sessile oak and Scots pine seedlings: evidence from 13C and 15N dual labeling. Tree Physiology, 44, tpad105. DOI: 10.1093/treephys/tpad105. |
| [42] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI PMID |
| [43] |
Rehschuh R, Rehschuh S, Gast A, Jakab AL, Lehmann MM, Saurer M, Gessler A, Ruehr NK (2022). Tree allocation dynamics beyond heat and hot drought stress reveal changes in carbon storage, belowground translocation and growth. New Phytologist, 233, 687-704.
DOI URL |
| [44] | Rehschuh R, Ruehr NK (2024). What is the role of soil nutrients in drought responses of trees? Tree Physiology, 44, tpad152. DOI: 10.1093/treephys/tpad152. |
| [45] |
Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009). Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology, 11, 4-23.
DOI URL |
| [46] | Rissanen K, Hölttä T, Bäck J, Rigling A, Wermelinger B, Gessler A (2021). Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown scots pine. Environmental and Experimental Botany, 185, 104410. DOI: 10.1016/j.envexpbot.2021.104410. |
| [47] | Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G (2012). Effects of drought on nutrient uptake and assimilation in vegetable crops//Aroca R. Plant Responses to Drought Stress. Springer, Berlin. 171-195. |
| [48] |
Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009). Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytologist, 184, 950-961.
DOI URL |
| [49] |
Sala AN, Piper F, Hoch G (2010). Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist, 186, 274-281.
DOI PMID |
| [50] |
Sala A, Woodruff DR, Meinzer FC (2012). Carbon dynamics in trees: feast or famine? Tree Physiology, 32, 764-775.
DOI PMID |
| [51] |
Salmon Y, Torres-Ruiz JM, Poyatos R, Martinez-Vilalta J, Meir P, Cochard H, Mencuccini M (2015). Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. Plant, Cell & Environment, 38, 2575-2588.
DOI URL |
| [52] |
Santos M, Barros V, Lima L, Frosi G, Santos MG (2021). Whole plant water status and non-structural carbohydrates under progressive drought in a Caatinga deciduous woody species. Trees, 35, 1257-1266.
DOI |
| [53] |
Sardans J, Peñuelas J (2012). The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiology, 160, 1741-1761.
DOI PMID |
| [54] | Schönbeck L, Gessler A, Schaub M, Rigling A, Hoch G, Kahmen A, Li MH (2020). Soil nutrients and lowered source: sink ratio mitigate effects of mild but not of extreme drought in trees. Environmental and Experimental Botany, 169, 103905. DOI: 10.1016/j.envexpbot.2019.103905. |
| [55] |
Schönbeck L, Li MH, Lehmann MM, Rigling A, Schaub M, Hoch G, Kahmen A, Gessler A (2021). Soil nutrient availability alters tree carbon allocation dynamics during drought. Tree Physiology, 41, 697-707.
DOI PMID |
| [56] |
Sevanto S, Dickman LT (2015). Where does the carbon go? —Plant carbon allocation under climate change. Tree Physiology, 35, 581-584.
DOI PMID |
| [57] |
Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37, 153-161.
DOI URL |
| [58] | Shang JZ, Gao TH, Wang WF, Zhou XJ, Zong YZ (2022). Effect of nitrogen addition for two consecutive years on photosynthetic characteristics, carbon and nitrogen distribution of Populus × euramericana ‘Zhongjin7’ seedlings. Scientia Silvae Sinicae, 58(6), 23-32. |
| [尚佳州, 高钿惠, 王卫锋, 周新军, 宗毓铮 (2022). 连续2年氮添加对中金杨幼苗叶光合特性与碳氮分配的影响. 林业科学, 58(6), 23-32.] | |
| [59] | Wang J, Bian YY, Zhu YL, Yang QP, Fang X (2024). Effects of nitrogen addition and drought on sapling growth of four subtropical tree species. Journal of Tropical and Subtropical Botany, 32, 475-482. |
| [王涓, 边妍妍, 朱玉璘, 杨清培, 方熊 (2024). 氮添加和干旱对亚热带4种幼树生长的影响. 热带亚热带植物学报, 32, 475-482.] | |
| [60] |
Wang JX, Villar-Salvador P, Li GL, Liu Y (2019). Moderate water stress does not inhibit nitrogen remobilization, allowing fast growth in high nitrogen content Quercus variabilis seedlings under dry conditions. Tree Physiology, 39, 650-660.
DOI URL |
| [61] | Wang J, Zheng FL, Zhao MM, Wei HM, Jiao JY, Wang XS (2022). Effects of CO2 doubling, warming, and light drought stress on root growth and nitrogen uptake of winter wheat. Journal of Plant Nutrition and Fertilizers, 28, 1977-1989. |
| [王婧, 郑粉莉, 赵苗苗, 魏晗梅, 焦健宇, 王雪松 (2022). CO2浓度倍增、增温和轻度干旱对冬小麦根系生长和氮素吸收的影响. 植物营养与肥料学报, 28, 1977-1989.] | |
| [62] | Wang K, Wang X, Zhang RS, Liu C (2024). Seasonal dynamics of non structural carbohydrates in Populus alba and Ulmus pumila in Horqin Sandy Land. Journal of Ecology, 43, 3624-3631. |
| [王凯, 王欣, 张日升, 刘畅 (2024). 科尔沁沙地银中杨与白榆非结构性碳水化合物的季节动态比较. 生态学杂志, 43, 3624-3631.] | |
| [63] | Wu M, Zhang WH, Zhou JY, Ma C, Han WJ (2014). Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis B1. seedlings. Acta Ecologica Sinica, 34, 4223-4233. |
| [吴敏, 张文辉, 周建云, 马闯, 韩文娟 (2014). 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响. 生态学报, 34, 4223-4233.] | |
| [64] | Yang Y, Ouyang SN, Gessler A, Wang XY, Na RS, He HS, Wu ZF, Li MH (2022). Root carbon resources determine survival and growth of young trees under long drought in combination with fertilization. Frontiers in Plant Science, 13, 929855. DOI: 10.3389/fpls.2022.929855. |
| [65] | You R, Deng XW, Hu YT, Ouyang S, Chen L, Xiang WH (2023). Progress on physiological and ecological responses of trees to drought stress and rewatering. Scientia Silvae Sinicae, 59(11), 124-136. |
| [游韧, 邓湘雯, 胡彦婷, 欧阳帅, 陈亮, 项文化 (2023). 树木对干旱胁迫及复水的生理生态响应研究进展. 林业科学, 59(11), 124-136.] | |
| [66] | Zhang HX, Li XR, Guan DX, Wang AZ, Yuan FH, Wu JB (2021). Nitrogen nutrition addition mitigated drought stress by improving carbon exchange and reserves among two temperate trees. Agricultural and Forest Meteorology, 311, 108693. DOI: 10.1016/j.agrformet.2021.108693. |
| [67] | Zhang PP (2020). Response of Tree Non-structural Carbohydrates to Drought and Its Regulation Mechanism. PhD dissertation, East China Normal University, Shanghai. |
| [张佩佩 (2020). 树木非结构性碳水化合物对干旱的响应及其调控机制. 博士学位论文, 华东师范大学, 上海.] | |
| [68] | Zhang QZ, Zhang JY, Shi ZL, Kang BY, Tu HK, Zhu JY, Li HY (2023). Nitrogen addition and drought affect nitrogen uptake patterns and biomass production of four urban greening tree species in North China. Science of the Total Environment, 893, 164893. DOI: 10.1016/j.scitotenv.2023.164893. |
| [69] | Zhang T (2018). Effects of Drought Stress on Unstructured Carbohydrate of Robinia pseudoacacia and Pinus tabulaeformis seedlings. PhD dissertation, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing. |
| [张婷 (2018). 干旱胁迫对刺槐和油松幼苗非结构性碳水化合物的影响. 博士学位论文, 中国科学院大学中国科学院教育部水土保持与生态环境研究中心, 北京.] | |
| [70] | Zhao N, Liao YC, Huang GM, Liu WF, Shen FF, Duan HL (2021). The effects of lethal drought on non-structural carbohydrates in seedlings of 8 tree species. Journal of Tropical Biology, 12, 289-295. |
| [赵楠, 廖迎春, 黄国敏, 刘文飞, 沈芳芳, 段洪浪 (2021). 致死性干旱对8种树种幼苗非结构性碳水化合物的影响. 热带生物学报, 12, 289-295.] | |
| [71] |
Zhao YJ, Ouyang SN, Tie LH, Cui Y, Duan HL (2022). Visual analysis of effects of nutrients on plant drought responses based on bibliometrics. Subtropical Plant Science, 51, 405-416.
DOI |
| [赵永菊, 欧阳胜男, 铁烈华, 崔雍, 段洪浪 (2022). 基于文献计量学的养分添加影响植物干旱响应的可视化分析. 亚热带植物科学, 51, 405-416.] | |
| [72] |
Zhou GY, Zhou LY, Shao JJ, Zhou XH (2020). Effects of extreme drought on terrestrial ecosystems: review and prospects. Chinese Journal of Plant Ecology, 44, 515-525.
DOI URL |
|
[周贵尧, 周灵燕, 邵钧炯, 周旭辉 (2020). 极端干旱对陆地生态系统的影响: 进展与展望. 植物生态学报, 44, 515-525.]
DOI |
|
| [73] | Zhou XQ, Ouyang SN, Saurer M, Feng M, Bose AK, Duan HL, Gessler A (2024). Species-specific responses of C and N allocation to N addition: evidence from dual 13C and 15N labeling in three tree species. Science of the Total Environment, 927, 172164. DOI: 10.1016/j.scitotenv.2024.172164. |
| [1] | 李文竹, 栾军伟, 邸雅平, 王一, 陈志成, 聂秀青, 刘世荣. 模拟干旱对菌根介导下暖温带锐齿栎林土壤酶活性和土壤有机碳组分的影响[J]. , 2026, 50(菌根生态学): 0-. |
| [2] | 张法伟, 李红琴, 祝景彬, 樊博, 周华坤, 李英年, 梁乃申. 氮添加和降水改变对高寒草甸生态系统地上与地下碳储的影响[J]. 植物生态学报, 2025, 49(9): 1399-1409. |
| [3] | 刘影, 李疆枫, 吴佳琪, 王艺帆, 尹清琳, 王静. 干旱下草地植物糙隐子草根系和菌根真菌对土壤碳氮的影响[J]. 植物生态学报, 2025, 49(9): 1388-1398. |
| [4] | 王尧, 王耀彬, 陈子彦, 伊如汉, 白永飞, 赵玉金, 金晶炜. 连续干旱对蒙古高原草地恢复力和抵抗力的影响[J]. 植物生态学报, 2025, 49(7): 1070-1081. |
| [5] | 梁天豪, 熊德成, 刘源豪, 杜旭龙, 杨智杰, 黄锦学. 不同菌根类型树种的根系分泌物特征及其根际效应研究进展[J]. 植物生态学报, 2025, 49(7): 1038-1052. |
| [6] | 张斌, 张浩成, 乔天, 吕治兵, 许亚男, 李雪芹, 原向阳, 冯美臣, 张美俊. 接种丛枝菌根真菌对干旱胁迫燕麦非结构性碳水化合物及碳氮磷化学计量特征的影响[J]. 植物生态学报, 2025, 49(7): 1082-1095. |
| [7] | 唐远翔, 熊仕臣, 朱洪锋, 张新生, 游成铭, 刘思凝, 谭波, 徐振锋. 长期氮添加对四川盆地西缘常绿阔叶林优势树种凋落叶产量及碳氮磷归还的影响[J]. 植物生态学报, 2025, 49(5): 720-731. |
| [8] | 王秀媛, 申磊, 刘婷婷, 尉雯雯, 张帅, 张伟. ‘塞外红’苹果-大豆复合系统根系时空分布与种间竞争策略[J]. 植物生态学报, 2025, 49(5): 748-759. |
| [9] | 马富龙, 王雨晴, 郝瑜, 段继超, 刘霏霏, 席琳乔, 韩路. 海拔梯度对昆仑山北坡中部草原植物与土壤微生物群落结构与多样性的影响[J]. 植物生态学报, 2025, 49(5): 732-747. |
| [10] | 郝杰, 刁华杰, 苏原, 武帅楷, 高阳阳, 梁雯君, 牛慧敏, 杨倩雯, 常婕, 王袼, 许雯丽, 马腾飞, 董宽虎, $\boxed{\hbox{王常慧}}$. 降水调控农牧交错带盐渍化草地净初级生产力对氮添加及刈割的响应[J]. 植物生态学报, 2025, 49(5): 710-719. |
| [11] | 闫小莉, 刘贵梅, 李小玉, 江宇翔, 全小强, 王燕茹, 曲鲁平, 汤行昊. 不同氮添加水平和铵硝态氮配比环境下木荷幼苗光合及叶绿素荧光特性[J]. 植物生态学报, 2025, 49(4): 624-637. |
| [12] | 刘柯言, 韩璐, 宋午椰, 张初蕊, 胡旭, 许行, 陈立欣. 基于日光诱导叶绿素荧光探测干旱对黄土高原植被光合稳定性的影响[J]. 植物生态学报, 2025, 49(3): 415-431. |
| [13] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
| [14] | 邵畅畅, 段洪浪, 赵熙州, 丁贵杰. 树木干旱死亡点预测及致死生理机制研究进展[J]. 植物生态学报, 2025, 49(2): 221-231. |
| [15] | 王堃莹, 邱贵福, 刘子赫, 孟君, 刘宇轩, 贾国栋. 气候变化对不同退化程度小叶杨林分生长和内在水分利用效率的调节[J]. 植物生态学报, 2025, 49(2): 343-355. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19