植物生态学报 ›› 2025, Vol. 49 ›› Issue (5): 732-747.DOI: 10.17521/cjpe.2024.0157 cstr: 32100.14.cjpe.2024.0157
所属专题: 草原与草业
马富龙1,2, 王雨晴3, 郝瑜3, 段继超4, 刘霏霏4, 席琳乔4, 韩路1,2,*()
收稿日期:
2024-05-13
接受日期:
2024-11-12
出版日期:
2025-05-20
发布日期:
2024-11-14
通讯作者:
*韩路(hlzky@163.com)基金资助:
MA Fu-Long1,2, WANG Yu-Qing3, HAO Yu3, DUAN Ji-Chao4, LIU Fei-Fei4, XI Lin-Qiao4, HAN Lu1,2,*()
Received:
2024-05-13
Accepted:
2024-11-12
Online:
2025-05-20
Published:
2024-11-14
Supported by:
摘要:
植物与土壤微生物在调节陆地生态系统功能和稳定性中起着至关重要的作用, 探讨植物、土壤微生物群落物种组成与多样性的海拔变化格局及其驱动机制对理解全球变化下陆地生态系统的响应与生物多样性维持机制意义深远。该研究以昆仑山北坡山地草原为对象, 在3个草原类型设置垂直梯度实验, 通过群落调查、室内实验与Illumina高通量测序技术并结合气候数据, 研究了干旱区山地草原植物、土壤微生物群落结构与多样性沿海拔梯度(2 200-3 800 m)的变化格局及其潜在关系。结果表明: 干旱区山地草原植物群落物种多样性、生物量与土壤细菌、真菌群落物种多样性及土壤养分含量沿海拔梯度呈单调递增格局, 至高寒草原最高; 土壤真菌对梯度环境变化较细菌敏感, 海拔梯度变化引起植物群落与土壤真菌群落发生了变化, 而土壤细菌群落结构未发生明显变化。植物群落物种多样性、生物量与土壤微生物群落物种多样性显著相关, 与细菌多样性的联系强于真菌。植物、土壤微生物群落物种多样性与年降水量、土壤养分(碳、磷、钾)含量呈显著正相关关系, 而与年平均气温呈显著负相关关系。格局分析表明, 海拔(地理距离)、气候因子对植物、土壤微生物多样性的解释率大于土壤因子, 海拔梯度引起的气候因子变化(年降水量、气温)是植物、土壤微生物群落变化的主导驱动因素, 但作用不同; 而土壤养分对植物、土壤微生物群落物种多样性也起着重要的作用。综上所述, 干旱区山地局域尺度上草原植物与土壤微生物群落的区域分布格局主要受海拔高度变化引起的气候因子与土壤因子共同调控。该研究揭示了干旱区气候因子是驱动山地草原生态系统植物、土壤微生物群落分布格局与结构变化的主导因子, 土壤微生物(尤其是细菌)多样性对提高草原群落生产力发挥重要作用。
马富龙, 王雨晴, 郝瑜, 段继超, 刘霏霏, 席琳乔, 韩路. 海拔梯度对昆仑山北坡中部草原植物与土壤微生物群落结构与多样性的影响. 植物生态学报, 2025, 49(5): 732-747. DOI: 10.17521/cjpe.2024.0157
MA Fu-Long, WANG Yu-Qing, HAO Yu, DUAN Ji-Chao, LIU Fei-Fei, XI Lin-Qiao, HAN Lu. Effects of altitude gradient on plant and soil microbial community structure and diversity in the middle part of the northern slope of the Kunlun Mountains, China. Chinese Journal of Plant Ecology, 2025, 49(5): 732-747. DOI: 10.17521/cjpe.2024.0157
环境因子 Environmental factor | 温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) | r |
---|---|---|---|---|
土壤水分含量 Soil moisture (%) | 8.22 ± 0.53c | 13.31 ± 0.68b | 17.89 ± 0.66a | 0.992** |
土壤密度 Soil density (g·cm-3) | 1.45 ± 0.01a | 1.35 ± 0.04b | 1.22 ± 0.02c | 0.984** |
土壤pH pH value of soil | 7.72 ± 0.02a | 7.73 ± 0.08a | 7.75 ± 0.04a | 0.185 |
总盐含量 Total salt content (g·kg-1) | 137.33 ± 12.32a | 94.19 ± 11.26b | 132.46 ± 6.54a | -0.247 |
有机质含量 Organic matter content (g·kg-1) | 2.52 ± 0.63c | 9.14 ± 0.34b | 24.20 ± 0.49a | 0.736* |
全氮含量 Total nitrogen content (mg·kg-1) | 0.21 ± 0.00c | 3.93 ± 0.00b | 5.03 ± 0.00a | 0.768* |
速效磷含量 Available phosphorus content (mg·kg-1) | 0.09 ± 0.01c | 0.55 ± 0.02b | 0.85 ± 0.05a | 0.673 |
速效钾含量 Available potassium content (mg·kg-1) | 106.74 ± 1.55c | 155.38 ± 2.62b | 180.94 ± 5.18a | 0.765* |
年平均气温 Mean annual air temperature (℃) | 7.97 ± 0.60a | 4.09 ± 0.20b | 1.13 ± 0.76c | -0.994** |
年降水量 Mean annual precipitation (mm) | 29 ± 0.0a | 33 ± 0.0b | 34 ± 0.1c | 0.999** |
风速 Wind speed (m·s-1) | 1.63 ± 0.06b | 1.93 ± 0.02b | 2.11 ± 0.19a | 0.969** |
水蒸气压 Water vapor pressure (kPa) | 0.50 ± 0.01a | 0.35 ± 0.01b | 0.28 ± 0.02c | -0.992** |
表1 昆仑山北坡中段草原主要环境因子及其与海拔的关系(平均值±标准差)
Table 1 Major environmental factors and their relationship with altitude in the middle section of the northern slope of the Kunlun Mountains (mean ± SD)
环境因子 Environmental factor | 温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) | r |
---|---|---|---|---|
土壤水分含量 Soil moisture (%) | 8.22 ± 0.53c | 13.31 ± 0.68b | 17.89 ± 0.66a | 0.992** |
土壤密度 Soil density (g·cm-3) | 1.45 ± 0.01a | 1.35 ± 0.04b | 1.22 ± 0.02c | 0.984** |
土壤pH pH value of soil | 7.72 ± 0.02a | 7.73 ± 0.08a | 7.75 ± 0.04a | 0.185 |
总盐含量 Total salt content (g·kg-1) | 137.33 ± 12.32a | 94.19 ± 11.26b | 132.46 ± 6.54a | -0.247 |
有机质含量 Organic matter content (g·kg-1) | 2.52 ± 0.63c | 9.14 ± 0.34b | 24.20 ± 0.49a | 0.736* |
全氮含量 Total nitrogen content (mg·kg-1) | 0.21 ± 0.00c | 3.93 ± 0.00b | 5.03 ± 0.00a | 0.768* |
速效磷含量 Available phosphorus content (mg·kg-1) | 0.09 ± 0.01c | 0.55 ± 0.02b | 0.85 ± 0.05a | 0.673 |
速效钾含量 Available potassium content (mg·kg-1) | 106.74 ± 1.55c | 155.38 ± 2.62b | 180.94 ± 5.18a | 0.765* |
年平均气温 Mean annual air temperature (℃) | 7.97 ± 0.60a | 4.09 ± 0.20b | 1.13 ± 0.76c | -0.994** |
年降水量 Mean annual precipitation (mm) | 29 ± 0.0a | 33 ± 0.0b | 34 ± 0.1c | 0.999** |
风速 Wind speed (m·s-1) | 1.63 ± 0.06b | 1.93 ± 0.02b | 2.11 ± 0.19a | 0.969** |
水蒸气压 Water vapor pressure (kPa) | 0.50 ± 0.01a | 0.35 ± 0.01b | 0.28 ± 0.02c | -0.992** |
功能群 Functional group | 温性荒漠草原 Ds | 温性典型草原 Ws | 高寒草原 As | |||
---|---|---|---|---|---|---|
物种 Species | 重要值 IV | 物种 Species | 重要值 IV | 物种 Species | 重要值 IV | |
新疆绢蒿 Seriphidium rhodanthum | 0.452 | 寒生羊茅 Festuca kryloviana | 0.357 | 西山银穗草 Leucopoa olgae | 0.352 | |
驼绒藜 Krascheninnikovia ceratoides | 0.389 | 昆仑针茅 Stipa roborowskyi | 0.198 | 紫花针茅 Stipa purpurea | 0.236 | |
内蒙古旱蒿 Artemisia xerophytica | 0.058 | 藏新黄耆 Astragalus tibetanus | 0.160 | ![]() | 0.195 | |
合头草 Sympegma regelii | 0.030 | 新疆绢蒿 Seriphidium rhodanthum | 0.149 | 珠芽蓼 Polygonum viviparum | 0.122 | |
昆仑针茅 Stipa roborowskyi | 0.022 | 密穗早熟禾 Poa spiciformis | 0.018 | 寒生羊茅 Festuca kryloviana | 0.069 | |
骆驼蓬 Peganum harmala | 0.012 | 野葱 Allium chrysanthum | 0.050 | 二裂委陵菜 Potentilla bifurca | 0.064 | |
雾冰藜 Grubovia dasyphylla | 0.008 | 紫花针茅 Stipa purpurea | 0.037 | 车前 Plantago asiatica | 0.060 | |
倒披针叶虫实 Corispermum lehmannianum | 0.005 | 劲直鹤虱 Lappula stricta | 0.032 | 垂穗披碱草 Elymus nutans | 0.060 | |
垂穗披碱草 Elymus nutans | 0.019 | 高原委陵菜 Potentilla pamiroalaica | 0.052 | |||
半卧狗娃花 Aster semiprostratus | 0.008 | 矮火绒草 Leontopodium nanum | 0.046 | |||
车前 Plantago asiatica | 0.009 | 丘陵老鹳草 Geranium collinum | 0.037 | |||
蒲公英 Taraxacum mongolicum | 0.033 | |||||
新疆龙胆 Gentiana karelinii | 0.017 | |||||
肋柱花 Lomatogonium carinthiacum | 0.014 | |||||
一年生 Annual | 2 | 1 | 2 | |||
二年生、多年生 Biennial, perennial | 6 | 10 | 12 |
表2 昆仑山北坡中段山地草原植物群落组成沿海拔高度的分布
Table 2 Distribution of alpine meadow plant communities in the middle section of the northern slope of the Kunlun Mountains along an elevation gradient
功能群 Functional group | 温性荒漠草原 Ds | 温性典型草原 Ws | 高寒草原 As | |||
---|---|---|---|---|---|---|
物种 Species | 重要值 IV | 物种 Species | 重要值 IV | 物种 Species | 重要值 IV | |
新疆绢蒿 Seriphidium rhodanthum | 0.452 | 寒生羊茅 Festuca kryloviana | 0.357 | 西山银穗草 Leucopoa olgae | 0.352 | |
驼绒藜 Krascheninnikovia ceratoides | 0.389 | 昆仑针茅 Stipa roborowskyi | 0.198 | 紫花针茅 Stipa purpurea | 0.236 | |
内蒙古旱蒿 Artemisia xerophytica | 0.058 | 藏新黄耆 Astragalus tibetanus | 0.160 | ![]() | 0.195 | |
合头草 Sympegma regelii | 0.030 | 新疆绢蒿 Seriphidium rhodanthum | 0.149 | 珠芽蓼 Polygonum viviparum | 0.122 | |
昆仑针茅 Stipa roborowskyi | 0.022 | 密穗早熟禾 Poa spiciformis | 0.018 | 寒生羊茅 Festuca kryloviana | 0.069 | |
骆驼蓬 Peganum harmala | 0.012 | 野葱 Allium chrysanthum | 0.050 | 二裂委陵菜 Potentilla bifurca | 0.064 | |
雾冰藜 Grubovia dasyphylla | 0.008 | 紫花针茅 Stipa purpurea | 0.037 | 车前 Plantago asiatica | 0.060 | |
倒披针叶虫实 Corispermum lehmannianum | 0.005 | 劲直鹤虱 Lappula stricta | 0.032 | 垂穗披碱草 Elymus nutans | 0.060 | |
垂穗披碱草 Elymus nutans | 0.019 | 高原委陵菜 Potentilla pamiroalaica | 0.052 | |||
半卧狗娃花 Aster semiprostratus | 0.008 | 矮火绒草 Leontopodium nanum | 0.046 | |||
车前 Plantago asiatica | 0.009 | 丘陵老鹳草 Geranium collinum | 0.037 | |||
蒲公英 Taraxacum mongolicum | 0.033 | |||||
新疆龙胆 Gentiana karelinii | 0.017 | |||||
肋柱花 Lomatogonium carinthiacum | 0.014 | |||||
一年生 Annual | 2 | 1 | 2 | |||
二年生、多年生 Biennial, perennial | 6 | 10 | 12 |
指标 Index | 温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) |
---|---|---|---|
地上生物量 Aboveground biomass (kg·hm-2) | 1 133.36 ± 47.21b | 5 896.99 ± 256.07a | 7 293.66 ± 312.29a |
盖度 Coverage (%) | 46.33 ± 13.05b | 81.67 ± 7.77a | 96.00 ± 2.65a |
Patrick指数 Patrick index | 6.00 ± 0.58b | 8.00 ± 1.00b | 11.00 ± 1.00a |
Margalef指数 Margalef index | 1.80 ± 0.14b | 2.46 ± 0.15a | 2.59 ± 0.30a |
Shannon-Wiener指数 Shannon-Wiener index | 0.74 ± 0.03b | 0.88 ± 0.01a | 0.78 ± 0.06b |
Simpson指数 Simpson index | 0.67 ± 0.04b | 0.75 ± 0.03a | 0.76 ± 0.03a |
Pielou指数 Pielou index | 0.88 ± 0.20a | 0.89 ± 0.12a | 1.12 ± 0.12a |
表3 昆仑山北坡海拔对草原植物群落物种多样性的影响(平均值±标准差)
Table 3 Effect of altitude on species diversity of plant community in the mountain steppe on the northern slope of the Kunlun Mountains (mean ± SD)
指标 Index | 温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) |
---|---|---|---|
地上生物量 Aboveground biomass (kg·hm-2) | 1 133.36 ± 47.21b | 5 896.99 ± 256.07a | 7 293.66 ± 312.29a |
盖度 Coverage (%) | 46.33 ± 13.05b | 81.67 ± 7.77a | 96.00 ± 2.65a |
Patrick指数 Patrick index | 6.00 ± 0.58b | 8.00 ± 1.00b | 11.00 ± 1.00a |
Margalef指数 Margalef index | 1.80 ± 0.14b | 2.46 ± 0.15a | 2.59 ± 0.30a |
Shannon-Wiener指数 Shannon-Wiener index | 0.74 ± 0.03b | 0.88 ± 0.01a | 0.78 ± 0.06b |
Simpson指数 Simpson index | 0.67 ± 0.04b | 0.75 ± 0.03a | 0.76 ± 0.03a |
Pielou指数 Pielou index | 0.88 ± 0.20a | 0.89 ± 0.12a | 1.12 ± 0.12a |
图2 昆仑山北坡中段海拔高度对草原土壤细菌(A、C)、真菌(B、D)群落结构的影响。A、B中1、2和3表示不同土层, 分别为0-5、5-10和10-20 cm。As, 高寒草原; Ds, 温性荒漠草原; NMDS, 非度量多维尺度分析; Ws, 温性典型草原。
Fig. 2 Effect of altitude gradient on bacterial (A, C) and fungal (B, D) community composition in steppe soil on the northern slope of the Kunlun Mountains. In A, B, 1, 2 and 3 represent different soil layers, which is 0-5, 5-10, and 10-20 cm, respectively. As, alpine steppe; Ds, temperate desert steppe; NMDS, non-metric multidimensional scaling; Ws, temperate typical steppe.
海拔梯度 Altitude gradient | 细菌 Bacteria | 真菌 Fungi | ||||
---|---|---|---|---|---|---|
温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) | 温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) | |
OTUs | 1 290.50 ± 187.00c | 1 614.01 ± 63.81b | 1 943.72 ± 100.30a | 120.17 ± 14.51b | 264.67 ± 91.04b | 632.83 ± 416.39a |
ACE指数 ACE index | 1 301.92 ± 183.32c | 1 648.84 ± 56.51b | 2 005.83 ± 93.50a | 214.86 ± 102.59a | 286.46 ± 92.67a | 675.77 ± 419.56a |
Chao1指数 Chao1 index | 1 303.00 ± 187.16c | 1 641.54 ± 58.84b | 1 990.32 ± 98.93a | 144.10 ± 29.61b | 278.51 ± 93.90ab | 673.64 ± 421.20a |
Simpson指数 Simpson index | 0.996 ± 0.000a | 0.996 ± 0.001a | 0.996 ± 0.001a | 0.98 ± 0.001a | 0.93 ± 0.011ab | 0.84 ± 0.110b |
Shannon-Wiener指数 Shannon-Wiener index | 9.552 ± 0.174a | 9.495 ± 0.082a | 9.477 ± 0.204a | 5.343 ± 1.780a | 5.594 ± 0.256a | 6.130 ± 0.033a |
PD指数 PD index | 126.85 ± 15.41b | 142.62 ± 7.70b | 177.10 ± 4.45a | 30.18 ± 2.71c | 113.75 ± 56.06b | 226.39 ± 36.44a |
表4 昆仑山北坡海拔梯度对山地草原土壤微生物多样性的影响(平均值±标准差)
Table 4 Effect of the altitude gradient on soil microbial diversity in mountain steppes on the northern slope of the Kunlun Mountains (mean ± SD)
海拔梯度 Altitude gradient | 细菌 Bacteria | 真菌 Fungi | ||||
---|---|---|---|---|---|---|
温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) | 温性荒漠草原 Ds (2 200-2 600 m) | 温性典型草原 Ws (2 800-3 200 m) | 高寒草原 As (3 400-3 800 m) | |
OTUs | 1 290.50 ± 187.00c | 1 614.01 ± 63.81b | 1 943.72 ± 100.30a | 120.17 ± 14.51b | 264.67 ± 91.04b | 632.83 ± 416.39a |
ACE指数 ACE index | 1 301.92 ± 183.32c | 1 648.84 ± 56.51b | 2 005.83 ± 93.50a | 214.86 ± 102.59a | 286.46 ± 92.67a | 675.77 ± 419.56a |
Chao1指数 Chao1 index | 1 303.00 ± 187.16c | 1 641.54 ± 58.84b | 1 990.32 ± 98.93a | 144.10 ± 29.61b | 278.51 ± 93.90ab | 673.64 ± 421.20a |
Simpson指数 Simpson index | 0.996 ± 0.000a | 0.996 ± 0.001a | 0.996 ± 0.001a | 0.98 ± 0.001a | 0.93 ± 0.011ab | 0.84 ± 0.110b |
Shannon-Wiener指数 Shannon-Wiener index | 9.552 ± 0.174a | 9.495 ± 0.082a | 9.477 ± 0.204a | 5.343 ± 1.780a | 5.594 ± 0.256a | 6.130 ± 0.033a |
PD指数 PD index | 126.85 ± 15.41b | 142.62 ± 7.70b | 177.10 ± 4.45a | 30.18 ± 2.71c | 113.75 ± 56.06b | 226.39 ± 36.44a |
图3 昆仑山北坡中段环境因子与草原植物群落(A)、细菌(B)及真菌(C)多样性的关系。AB, 地上生物量; ACE, ACE指数; AK, 土壤速效钾含量; Alt, 海拔; AP, 土壤速效磷含量; Avt, 年平均气温; Chao1, Chao1指数; Coverage, 盖度; D, Simpson指数; D1, Margalef指数; E, Pielou指数; H', Shannon-Wiener指数; OM, 土壤有机质含量; OTU, 操作性分类单元数量; PD, 系统发育指数; Pre, 年降水量; S, Patrick指数; TDS, 土壤总盐含量; TN, 土壤全氮含量; Wap, 水蒸气压; Wis, 风速。
Fig. 3 Relationships between environmental factors and the diversity of grassland plants (A), bacteria (B), and fungi (C) on the northern slope of the Kunlun Mountains. AB, aboveground biomass; ACE, ACE index; AK, soil available potassium content; Alt, altitude; AP, soil available phosphorus content; Avt, annual average air temperature; Chao1, Chao1 index; D, Simpson index; D1, Margalef index; E, Pielou index; H', Shannon-Wiener index; OM, soil organic matter content; OTU, number of operational taxonomic units; PD, phylogenetic diversity index; Pre, annual precipitation; S, Patrick index; TDS, total soil salt content; TN, soil total nitrogen content; Wap, water vapor pressure; Wis, wind speed.
图4 昆仑山北坡中段山地草原植物群落与细菌(A、C)、真菌(B、D)多样性的关系。各指标详见图3。*, p < 0.05; **, p < 0.01。
Fig. 4 Relationships between plants and bacterial (A, C) and fungal (B, D) diversity in the mountain steppe on the northern slope of the Kunlun Mountains. See Fig. 3 for details of each index. *, p < 0.05; **, p < 0.01.
图5 昆仑山北坡中段环境因子与山地草原植物(A)、细菌(B)及真菌(C)的冗余分析(RDA)。AB, 地上生物量; ACE, ACE指数; AK, 土壤速效钾含量; Alt, 海拔; AP, 土壤速效磷含量; Avt, 年平均气温; Chao1, Chao1指数; Coverage, 盖度; D, Simpson指数; D1, Margalef指数; E, Pielou指数; H', Shannon-Wiener指数; OM, 土壤有机质含量; OTU, 操作性分类单元数量; PD, 系统发育指数; Pre, 年降水量; S, Patrick指数; TDS, 土壤总盐含量; TN, 土壤全氮含量; Wap, 水蒸气压; Wis, 风速。
Fig. 5 Redundancy analysis of environmental and biological factors on steppe plants (A), bacterial (B) and fungal (C) communities on the northern slope of the Kunlun Mountains. AB, aboveground biomass; ACE, ACE index; AK, soil available potassium content; Alt, altitude; AP, soil available phosphorus content; Avt, mean annual air temperature; Chao1, Chao1 index; E, Pielou index; D, Simpson index; D1, Margalef index; H', Shannon-Wiener index; OM, soil organic matter content; OTU, number of operational taxonomic units; PD, phylogenetic diversity index; Pre, mean annual precipitation; S, species richness (Patrick index); TDS, soil total salt content; TN, soil total nitrogen content; Wap, water vapor pressure; Wis, wind speed.
图6 昆仑山北坡中段环境因子对植物(A)、细菌(B)及真菌(C)多样性的相对贡献。
Fig. 6 Relative contribution of environmental factors on plant (A), bacteria (B) and fungi (C) diversity with variance decomposition analysis in north slope of the Kunlun Mountains.
图7 昆仑山北坡中段环境因子对草原植物(A)、细菌(B)及真菌(C)多样性的影响。AK, 土壤速效钾含量; Alt, 海拔; AP, 土壤速效磷含量; Avt, 年平均气温; OM, 土壤有机质含量; pH, 土壤pH; Pre, 年降水量; TDS, 土壤总盐含量; TN, 土壤全氮含量; Wap, 水蒸气压; Wis, 风速。
Fig. 7 Relative importance of environmental factors on steppe plants (A), bacterial (B) and fungal (C) diversity using random forest analysis on the northern slope of the Kunlun Mountains. AK, soil available potassium content; Alt, altitude; AP, soil available phosphorus content; Avt, mean annual air temperature; Pre, mean annual precipitation; OM, soil organic matter content; pH, soil pH; TDS, soil total salt content; TN, soil total nitrogen content; Wap, water vapor pressure; Wis, wind speed.
[1] | Bao SD (2000). Soil Agrochemical Analysis. China Agriculture Press, Beijing. 22-187. |
[ 鲍士旦 (2000). 土壤农化分析. 中国农业出版社, 北京. 22-187.] | |
[2] | Chen LT, Jiang L, Jing X, Wang JL, Shi Y, Chu HY, He JS (2021). Above- and belowground biodiversity jointly drives ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 30, 1418-1429. |
[3] | Chen YL, Xu TL, Veresoglou SD, Hu HW, Hao ZP, Hu YJ, Liu L, Deng Y, Rillig MC, Chen BD (2017). Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in Northern China. Soil Biology & Biochemistry, 110, 12-21. |
[4] | Cui YX, Bing HJ, Fang LC, Wu YH, Yu JL, Shen GT, Jiang M, Wang X, Zhang XC (2019). Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma, 338, 118-127. |
[5] |
Daleo P, Alberti J, Chaneton EJ, Iribarne O, Tognetti PM, Bakker JD, Borer ET, Bruschetti M, MacDougall AS, Pascual J, Sankaran M, Seabloom EW, Wang SP, Bagchi S, Brudvig LA, et al. (2023). Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass. Nature Communications, 14, 1809. DOI: 10.1038/s41467-023-37395-y.
PMID |
[6] |
Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011). Microbes do not follow the elevational diversity patterns of plants and animals. Ecology, 92, 797-804.
PMID |
[7] | Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M (2024). Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiological Research, 283, 127698. DOI: 10.1016/j.micres.2024.127698. |
[8] | Gong K, Jin GL, Yue YH, Han WQ, Liu WH (2019). Community characteristics of Bromus inermis on the northern slope of Tianshan Mountains. Xinjiang Agricultural Sciences, 56, 560-569. |
[ 宫珂, 靳瑰丽, 岳永寰, 韩万强, 刘文昊 (2019). 天山北坡野生无芒雀麦群落特征研究. 新疆农业科学, 56, 560-569.]
DOI |
|
[9] | Grishkan I, Nevo E (2012). Spatiotemporal dynamics of culturable microfungi in soil of Mount Hermon, Israel. Plant Biosystems, 146, 150-163. |
[10] | He L, Li ZL, Wang XM, Xie YW, Ye JS (2021). Lagged precipitation effect on plant productivity is influenced collectively by climate and edaphic factors in drylands. Science of the Total Environment, 755, 142506. DOI: 10.1016/j.scitotenv.2020.142506. |
[11] | He ZS, Gu XG, Jiang L, Xu DW, Liu JF, Li WZ, Chen WW (2022). Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of Eastern China. Journal of Beijing Forestry University, 44(7), 107-116. |
[ 何中声, 谷新光, 江蓝, 徐道炜, 刘金福, 李文周, 陈文伟 (2022). 戴云山南坡不同海拔森林土壤优势细菌群落特征及影响因素. 北京林业大学学报, 44(7), 107-116.] | |
[12] | Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021). Environmental stress destabilizes microbial networks. The ISME Journal, 15, 1722-1734. |
[13] |
Hu WG, Ran JZ, Dong LW, Du QJ, Ji MF, Yao SR, Sun Y, Gong CM, Hou QQ, Gong HY, Chen RF, Lu JL, Xie SB, Wang ZQ, Huang H, et al. (2021). Aridity-driven shift in biodiversity-soil multifunctionality relationships. Nature Communications, 12, 5350. DOI: 10.1038/s41467-021-25641-0.
PMID |
[14] | Kang EZ, Li Y, Zhang XD, Yan ZQ, Wu HD, Li M, Yan L, Zhang KR, Wang JZ, Kang XM (2021). Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Science of the Total Environment, 774, 145780. DOI: 10.1016/j.scitotenv.2021.145780. |
[15] | Kikvidze Z, Pugnaire FI, Brooker RW, Choler P, Lortie CJ, Michalet R, Callaway RM (2005). Linking patterns and processes in alpine plant communities: a global study. Ecology, 86, 1395-1400. |
[16] | Li WH, Ganjurjav H, Cao XJ, Yan YL, Li Y, Luo WR, Hu GZ, Danjiu LB, He SC, Gao QZ (2017). Effects of altitude on plant productivity and species diversity in alpine meadows of northern Tibet. Acta Prataculturae Sinica, 26(9), 200-207. |
[ 栗文瀚, 干珠扎布, 曹旭娟, 闫玉龙, 李钰, 罗文蓉, 胡国铮, 旦久罗布, 何世丞, 高清竹 (2017). 海拔梯度对藏北高寒草地生产力和物种多样性的影响. 草业学报, 26(9), 200-207.]
DOI |
|
[17] | Li Y, Feng XX, Zhao FZ, Guo YX, Wang J, Ren CJ (2021). Structure characteristics of soil microbial community in Quercus aliena var. acuteserrata forests at different altitudes in Qinling Mountains. Scientia Silvae Sinicae, 57(12), 22-31. |
[ 李益, 冯秀秀, 赵发珠, 郭垚鑫, 王俊, 任成杰 (2021). 秦岭太白山不同海拔锐齿栎林土壤微生物群落的变化特征. 林业科学, 57(12), 22-31.] | |
[18] |
Liu Y, Zhang J, Yang WQ (2009). Responses of alpine biodiversity to climate change. Biodiversity Science, 17, 88-96.
DOI |
[ 刘洋, 张健, 杨万勤 (2009). 高山生物多样性对气候变化响应的研究进展. 生物多样性, 17, 88-96.]
DOI |
|
[19] |
Liu Z, Li Q, Chen DD, Zhai WT, Zhao L, Xu SX, Zhao XQ (2015). Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau. Biodiversity Science, 23, 451-462.
DOI |
[ 刘哲, 李奇, 陈懂懂, 翟文婷, 赵亮, 徐世晓, 赵新全 (2015). 青藏高原高寒草甸物种多样性的海拔梯度分布格局及对地上生物量的影响. 生物多样性, 23, 451-462.]
DOI |
|
[20] |
Mariotte P (2014). Do subordinate species punch above their weight? Evidence from above- and below-ground. New Phytologist, 203, 16-21.
DOI PMID |
[21] | Ma KP, Huang JH, Yu SL, Chen LZ (1995). Plant community diversity in Dongling Mountain, Beijing, China: II. Species richness, evenness and species diversities. Acta Ecologica Sinica, 15, 268-277. |
[ 马克平, 黄建辉, 于顺利, 陈灵芝 (1995). 北京东灵山地区植物群落多样性的研究II. 丰富度、均匀度和物种多样性指数. 生态学报, 15, 268-277.] | |
[22] |
Marks CO, Muller-Landau HC, Tilman D (2016). Tree diversity, tree height and environmental harshness in eastern and western North America. Ecology Letters, 19, 743-751.
DOI PMID |
[23] | Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008). Scale effects and human impact on the elevational species richness gradients. Nature, 453, 216-219. |
[24] |
Pang DB, Wu MY, Zhao YR, Yang J, Dong LG, Wu XD, Chen L, Li XB, Ni XL, Li JY, Liang YL (2023). Soil microbial community characteristics and the influencing factors at different elevations on the eastern slope of Helan Mountain, Northwest China. Chinese Journal of Applied Ecology, 34, 1957-1967.
DOI |
[ 庞丹波, 吴梦瑶, 赵娅茹, 杨娟, 董立国, 吴旭东, 陈林, 李学斌, 倪细炉, 李静尧, 梁咏亮 (2023). 贺兰山东坡不同海拔土壤微生物群落特征及其影响因素. 应用生态学报, 34, 1957-1967.]
DOI |
|
[25] | Ren CJ, Zhang W, Zhong ZK, Han XH, Yang GH, Feng YZ, Ren GX (2018). Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 610-611, 750-758. |
[26] |
Reynolds JF, Smith DS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, et al. (2007). Global desertification: building a science for dryland development. Science, 316, 847-851.
DOI PMID |
[27] | Tian J, He NP, Hale L, Niu SL, Yu GR, Liu Y, Blagodatskaya E, Kuzyakov Y, Gao Q, Zhou JZ (2018). Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. Functional Ecology, 32, 61-70. |
[28] | Tian P, Razavi BS, Zhang XC, Wang QK, Blagodatskaya E (2020). Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Biology & Biochemistry, 141, 107662. DOI: 10.1016/j.soilbio.2019.107662. |
[29] | Wang CW, Ma LN, Zuo XA, Ye XH, Wang RZ, Huang ZY, Liu GF, Cornelissen JHC (2022). Plant diversity has stronger linkage with soil fungal diversity than with bacterial diversity across grasslands of Northern China. Global Ecology and Biogeography, 31, 886-900. |
[30] | Wang CT, Wang QJ, Long RJ, Jing ZC, Shi HL (2004). Changes in plant species diversity and productivity along an elevation gradient in an alpine meadow. Acta Phytoecologica Sinica, 28, 240-245. |
[ 王长庭, 王启基, 龙瑞军, 景增春, 史惠兰 (2004). 高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究. 植物生态学报, 28, 240-245.]
DOI |
|
[31] |
Wang JJ, Soininen J, He JZ, Shen J (2012). Phylogenetic clustering increases with elevation for microbes. Environmental Microbiology Reports, 4, 217-226.
DOI PMID |
[32] | Wang JC, Wang XM, Dong SQ, Zhang B, Wang Z, Zhou X, Gao Q (2023). Effects of the Grain for Green Project on bacteria and fungi community structure in the black soil of central Jilin Province, China. Journal of Agricultural Resources and Environment, 40, 917-926. |
[ 王玖程, 王兴明, 董思奇, 张冰, 王钊, 周雪, 高强 (2023). 吉林省中部地区退耕还林对黑土土壤细菌和真菌群落结构的影响. 农业资源与环境学报, 40, 917-926.] | |
[33] | Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A (2015). Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Functional Ecology, 29, 1341-1349. |
[34] | Willis KJ, Whittaker RJ (2002). Species diversity—Scale matters. Science, 295, 1245-1248. |
[35] | Wu ZY, Lin WX, Chen ZF, Fang CC, Zhang ZX, Wu LK, Zhou MM, Chen T (2013). Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest. Chinese Journal of Plant Ecology, 37, 397-406. |
[ 吴则焰, 林文雄, 陈志芳, 方长旬, 张志兴, 吴林坤, 周明明, 陈婷 (2013). 中亚热带森林土壤微生物群落多样性随海拔梯度的变化. 植物生态学报, 37, 397-406.]
DOI |
|
[36] | Xu HB, Su YL, Zhang L, Liu HM, Liu LY, Yang YW, Li L (2024). Effects of ten years enclosure on species diversity and spatial distribution pattern of dominant species in desert steppe communities. Acta Ecologica Sinica, 44, 4334-4341. |
[ 许宏斌, 苏艳龙, 张雷, 刘红梅, 刘丽英, 杨溢文, 李琳 (2024). 围封10年对荒漠草原群落物种多样性与优势种空间分布格局的影响. 生态学报, 44, 4334-4341.] | |
[37] | Xu S, Eisenhauer N, Ferlian O, Zhang JL, Zhou GY, Lu XK, Liu CS, Zhang DQ (2020). Species richness promotes ecosystem carbon storage: evidence from biodiversity- ecosystem functioning experiments. Proceedings of the Royal Society B: Biological Sciences, 287, 20202063. DOI: 10.1098/rspb.2020.2063. |
[38] |
Yang T, Adams JM, Shi Y, He JS, Jing X, Chen LT, Tedersoo L, Chu HY (2017). Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytologist, 215, 756-765.
DOI PMID |
[39] | Yang Y, Liu BR (2019). Testing relationship between plant productivity and diversity in a desertified steppe in Northwest China. PeerJ, 7, e7239. DOI: 10.7717/peerj.7239. |
[40] | Yang Y, Wei W, Wang L, Liu ZM (2023). Relationship between plant diversity, productivity and environmental factors at a transect scale in the dryland of China. Acta Ecologica Sinica, 43, 1563-1571. |
[ 杨永, 卫伟, 王琳, 刘泽漫 (2023). 中国旱区样带尺度植物多样性和生产力与环境因子的关系. 生态学报, 43, 1563-1571.] | |
[41] |
Yang YH, Rao S, Hu HF, Chen AP, Ji CJ, Zhu B, Zuo WY, Li XR, Shen HH, Wang ZH, Tang YH, Fang JY (2004). Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau. Biodiversity Science, 12, 200-205.
DOI |
[ 杨元合, 饶胜, 胡会峰, 陈安平, 吉成均, 朱彪, 左闻韵, 李轩然, 沈海花, 王志恒, 唐艳鸿, 方精云 (2004). 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系. 生物多样性, 12, 200-205.]
DOI |
|
[42] |
Yu JL, Xia JJ, Ma QL, Zhang C, Zhao J, Tanggood X, Yang YF (2021). Soil particle and moisture-related factors determine landward distribution of bacterial communities in a lateral riverside continuum of the Xilin River Basin. Soil Ecology Letters, 3, 303-312.
DOI |
[43] |
Zhang LH, Gao H, Wang JF, Zhao RF, Wang MM, Hao LY, Guo YF, Jiang XY, Zhong LF (2023). Plant property regulates soil bacterial community structure under altered precipitation regimes in a semi-arid desert grassland, China. Journal of Arid Land, 15, 602-619.
DOI |
[44] | Zuo YL, Yang XB, Li DH, Wu EH, Yang N, Li L, Zhang PC, Chen L, Li CD (2021). Effects of environmental variables on the species composition and distribution patterns of wild orchids in Hainan Island. Chinese Journal of Plant Ecology, 45, 1341-1349. |
[ 左永令, 杨小波, 李东海, 吴二焕, 杨宁, 李龙, 张培春, 陈琳, 李晨笛 (2021). 环境因子对海南岛野生兰科植物物种组成与分布格局的影响. 植物生态学报, 45, 1341-1349.]
DOI |
[1] | 韦鑫, 江蓝, 郑晨成, 朱静, 陈博, 李文周, 赖淑瑜, 刘金福, 何中声. 戴云山海拔梯度木本植物性系统分布特征及其影响因素[J]. 植物生态学报, 2025, 49(预发表): 0-. |
[2] | 邱丹妮, 彭清清, 张慧玲, 温辉辉, 吴福忠. 中亚热带常绿阔叶林典型乔木树种对蚂蚁群落季节性动态的影响[J]. 植物生态学报, 2025, 49(预发表): 1-. |
[3] | 李利平, 余堃, 陈芳淼, 陈强, 景雨航, 牛振国, 胡辰璐, 覃海宁, 黄慧萍, 田亦陈. 基于IUCN全球评估数据的中国高等植物红色名录指数[J]. 植物生态学报, 2025, 49(濒危植物的保护与恢复): 1-. |
[4] | 韦丹丹, 杜燕, 包维楷, 胡斌, 张瀚曰, 王瀚婕, 唐圆圆, 黄龙, 郭昌安, 刘鑫. 冬麻豆群落的地理分布、特征和分类[J]. 植物生态学报, 2025, 49(濒危植物的保护与恢复): 1-. |
[5] | 高雨轩, 苏艳军, 冯育才, 张军, 汪小全, 刘玲莉. 珍稀濒危孑遗植物银杉的研究与保护现状[J]. , 2025, 49(濒危植物的保护与恢复): 0-. |
[6] | 杜燕 刘鑫 张瀚曰 马少伟 包维楷. 中国高山松群系的群落特征[J]. 植物生态学报, 2025, 49(6): 816-824. |
[7] | 何斌 韩鹏宾 肖书礼 裴康迪 唐勤. 铁坚油杉林的群落类型及特征[J]. 植物生态学报, 2025, 49(6): 833-839. |
[8] | 李家湘, 刘文倩, 蒋国平, 赵丽娟, 徐永福, 吴磊, 喻勋林. 植被科学画符号系统设计和标准化绘图范式——以森林群落剖面图为例[J]. 植物生态学报, 2025, 49(6): 897-910. |
[9] | 王秀媛, 申磊, 刘婷婷, 尉雯雯, 张帅, 张伟. ‘塞外红’苹果-大豆复合系统根系时空分布与种间竞争策略[J]. 植物生态学报, 2025, 49(5): 748-759. |
[10] | 李冬梅, 孙龙, 韩宇, 胡同欣, 杨光, 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响[J]. 植物生态学报, 2025, 49(3): 379-392. |
[11] | 赵洪贤, 刘鹏, 史曼英, 徐铭泽, 贾昕, 田赟, 查天山. 毛乌素沙地典型固沙植物黑沙蒿和赖草叶片氮分配对最大净光合速率的影响[J]. 植物生态学报, 2025, 49(3): 460-474. |
[12] | 吴闫宁, 郝珉辉, 何怀江, 张春雨, 赵秀海. 长白山森林功能多样性与地上碳汇功能的关系及其随演替的变化[J]. 植物生态学报, 2025, 49(2): 232-243. |
[13] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[14] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[15] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19