植物生态学报 ›› 2025, Vol. 49 ›› Issue (2): 232-243.DOI: 10.17521/cjpe.2024.0164 cstr: 32100.14.cjpe.2024.0164
吴闫宁1, 郝珉辉1,*(), 何怀江2, 张春雨1, 赵秀海1
收稿日期:
2024-05-20
接受日期:
2024-09-28
出版日期:
2025-02-20
发布日期:
2025-02-20
通讯作者:
*郝珉辉: (haomh@bjfu.edu.cn)基金资助:
WU Yan-Ning1, HAO Min-Hui1,*(), HE Huai-Jiang2, ZHANG Chun-Yu1, ZHAO Xiu-Hai1
Received:
2024-05-20
Accepted:
2024-09-28
Online:
2025-02-20
Published:
2025-02-20
Supported by:
摘要: 森林是陆地生态系统最大的碳库, 促进森林“保碳增汇”是实现“双碳”目标的关键途径。生物多样性是生态系统功能形成和维持的重要基础, 阐明森林生物多样性与碳汇功能关系及其作用机制是提高森林碳汇能力的重要前提。然而, 在温带森林演替过程中, 生物多样性对森林碳汇功能的相对贡献及其背后的生态学过程并不清楚。该研究以长白山原始红松(Pinus koraiensis)阔叶混交林及其次生林为研究对象, 基于森林大样地两期群落调查数据, 结合不同树种的功能性状数据计算森林功能多样性和功能组成, 分别用于反映生态位互补效应和质量比率效应, 同时运用森林初始地上碳储量反映植被绿量效应, 通过结构方程模型检验不同多样性效应对森林碳储量和固碳速率的影响, 并探讨其随森林演替的变化。结果表明, 生物多样性对森林碳汇功能的影响机制随森林演替而变化。在次生杨桦林阶段(演替早期), 生态位互补效应、质量比率效应以及植被绿量效应共同影响森林碳汇功能; 在次生针阔混交林阶段(演替中期), 质量比率效应是影响森林碳汇功能的主要机制; 而在原始红松阔叶混交林阶段(演替顶极), 质量比率效应和植被绿量效应对碳汇的影响更为显著。此外, 局域环境对森林碳储量和固碳速率也有显著影响。该研究在功能性状维度上, 揭示了长白山森林演替过程中, 生物多样性与碳汇功能关系及其作用机理, 研究结果有助于理解温带森林碳汇功能的维持机制, 同时为东北地区次生林的生态修复以及碳汇功能提升提供科学理论支持。
吴闫宁, 郝珉辉, 何怀江, 张春雨, 赵秀海. 长白山森林功能多样性与地上碳汇功能的关系及其随演替的变化. 植物生态学报, 2025, 49(2): 232-243. DOI: 10.17521/cjpe.2024.0164
WU Yan-Ning, HAO Min-Hui, HE Huai-Jiang, ZHANG Chun-Yu, ZHAO Xiu-Hai. Relationships between functional diversity and aboveground carbon sink functions and their changes with forest succession in Changbai Mountains, China. Chinese Journal of Plant Ecology, 2025, 49(2): 232-243. DOI: 10.17521/cjpe.2024.0164
样地 Plot | 建立年份 Year of establishment | 演替阶段 Successional stage | 样地位置 Location | 平均胸高断面积 Average basal area at breast height (m2·hm-2) |
---|---|---|---|---|
次生杨桦林 Secondary poplar-birch forest | 2005 | 早期阶段 Early stage | 42.32° N, 128.13° E | 23.81 |
次生针阔混交林 Secondary conifer-broadleaf mixed forest | 2005 | 中期阶段 Middle stage | 42.35° N, 128.13° E | 33.13 |
原始红松阔叶混交林 Primary Korean pine-broadleaf mixed forest | 2007 | 顶极阶段 Climax stage | 42.23° N, 128.08° E | 55.33 |
表1 长白山森林3个样地基本信息
Table 1 Basic information of the three forest plots in Changbai Mountains
样地 Plot | 建立年份 Year of establishment | 演替阶段 Successional stage | 样地位置 Location | 平均胸高断面积 Average basal area at breast height (m2·hm-2) |
---|---|---|---|---|
次生杨桦林 Secondary poplar-birch forest | 2005 | 早期阶段 Early stage | 42.32° N, 128.13° E | 23.81 |
次生针阔混交林 Secondary conifer-broadleaf mixed forest | 2005 | 中期阶段 Middle stage | 42.35° N, 128.13° E | 33.13 |
原始红松阔叶混交林 Primary Korean pine-broadleaf mixed forest | 2007 | 顶极阶段 Climax stage | 42.23° N, 128.08° E | 55.33 |
图1 长白山森林样地环境因子的主成分(ENV)排序图。圆点表示20 m × 20 m的样方, 黑色箭头表示环境因子。SD, 土壤深度; SOM, 土壤有机质含量; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量。
Fig. 1 Biplot of the principal component analysis for environmental factors (ENV) of the forest plots in Changbai Mountains. Dots represent the 20 m × 20 m quadrats, and black arrows depict the environmental factors. SD, soil depth; SOM, soil organic matter content; STN, soil total nitrogen content; STP, soil total phosphorus content; SWC, soil water content.
图2 长白山森林样地群落加权平均性状的主成分(FCom)排序图。圆点表示20 m × 20 m的样方, 黑色箭头表示功能性状的群落加权平均值。C/N, 叶片碳氮比; Hmax, 最大树高; LA, 叶面积; LDMC, 叶片干物质含量; LNC, 叶片氮含量; SLA, 比叶面积。
Fig. 2 Biplot of the principal component analysis for community weighted mean traits (FCom) of the forest plots in Changbai Mountain. Dots represent the 20 m × 20 m quadrats, and black arrows depict the community weighted mean traits. C/N, leaf carbon to nitrogen radio; Hmax, height maximum; LA, leaf area; LDMC, leaf dry matter content; LNC, leaf nitrogen content; SLA, specific leaf area.
图3 长白山森林样地不同演替阶段功能离散度、功能组成与森林碳汇功能的差异。AGCS, 地上碳储量; CRS, 固碳速率; FCom1, 功能组成第一主分量; FCom2, 功能组成第二主分量; FDis, 功能离散度。不同小写字母表示不同森林类型间差异显著(p < 0.05)。
Fig. 3 Difference in functional dispersion, functional composition, and forest carbon sink function in different forest successional stages in Changbai Mountains. AGCS, aboveground carbon storage; CRS, carbon sequestration; FCom1, the first principal component of functional composition; FCom2, the second principal component of functional composition; FDis, functional dispersion. Different lowercase letters indicate significant differences among different forest types (p < 0.05).
图4 长白山森林生物多样性与碳汇功能关系。A, 次生杨桦林。B, 次生针阔混交林。C, 原始红松阔叶混交林。CFI为比较拟合指数, SRMR为标准化均方根残差, 反映模型的拟合优度。红色路径线表示正相关关系, 绿色路径线表示负相关关系; 实线表示关系显著(p < 0.05), 虚线表示关系不显著(p ≥ 0.05)。路径线上的数字为标准化的路径系数, 线条粗细反映系数的大小。R2为决定系数, 反映被解释量的大小。方框内显示了因子载荷大于0.4的环境或功能性状因子, “↑”和“↓”分别表示主分量值随变量上升和下降。ALT, 海拔; ASP, 坡向; C/N, 叶片碳氮比; ENV1, 环境因子第一主分量; ENV2, 环境因子第二主分量; FCom1, 功能组成第一主分量; FCom2, 功能组成第二主分量; FDis, 功能离散度; Hmax, 最大树高; LA, 叶面积; LDMC, 叶片干物质含量; LN, 叶片氮含量; SLA, 比叶面积; SOM, 土壤有机质含量; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量。
Fig. 4 Relationships between forest biodiversity and carbon sink function in Changbai Mountains. A, Secondary poplar-birch forest. B, Secondary conifer-broadleaf mixed forest. C, Primary Korean pine-broadleaf mixed forest. CFI represents the comparative fit index, and SRMR represents standardized root mean square residual. Red arrows represent positive effects, while green arrows represent negative effects. The solid lines represent significant relationships (p < 0.05), while dashed lines represent insignificant relationships (p ≥ 0.05). The values next to the lines are the standardized path coefficients, and the line thickness is proportional to the standardized path coefficient. R2 represents the percentage of the response variations explained by the explanatory variables. The box displays the environmental or functional trait factors with factor loadings greater than 0.4 where the “↑” and“↓” next to the letters indicate the increase and decrease of the principal component values with the variables. AGCS, aboveground carbon storage; ALT, altitude; ASP, aspect; C/N, leaf carbon to nitrogen ratio; CRS, carbon sequestration; ENV1, the first principal component of the environment; ENV2, the second principal component of the environment; FCom1, the first principal component of functional composition; FCom2, the second principal component of functional composition; FDis, functional dispersion; Hmax, height maximum; LA, leaf area; LDMC, leaf dry matter content; LN, leaf nitrogen content; SLA, specific leaf area; SOM, soil organic matter content; STN, soil total nitrogen content; STP, soil total phosphorus content; SWC, soil water content.
[1] | Albert CH, de Bello F, Boulangeat I, Pellet G, Lavorel S, Thuiller W (2012). On the importance of intraspecific variability for the quantification of functional diversity. Oikos, 121, 116-126. |
[2] | Bao SD (2000). Soil Agricultural Chemistry Analysis. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 中国农业出版社, 北京.] | |
[3] | Bonan GB (2008). Forests and climate change:forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449. |
[4] | Chiang JM, Spasojevic MJ, Muller-Landau HC, Sun I, Lin Y, Su S, Chen Z, Chen C, Swenson NG, McEwan RW (2016). Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia, 182, 829-840. |
[5] | Condés S, Del Rio M, Sterba H (2013). Mixing effect on volume growth of Fagus sylvatica and Pinus sylvestris is modulated by stand density. Forest Ecology and Management, 292, 86-95. |
[6] | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[7] | Da R, Fan C, Zhang C, Zhao X, von Gadow K (2023). Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. New Phytologist, 239, 75-86. |
[8] | Dalerum F, Cameron EZ, Kunkel K, Somers MJ (2012). Interactive effects of species richness and species traits on functional diversity and redundancy. Theoretical Ecology, 5, 129-139. |
[9] | Du L, Tian SC, Zhao N, Zhang B, Mu XH, Tang LS, Zheng XJ, Li Y (2024). Evaluating soil acidification risk and its effects on biodiversity-ecosystem multifunctionality relationships in the drylands of China. Forest Ecosystems, 11, 100178. DOI: 10.1016/j.fecs.2024.100178. |
[10] | Dupont-Leduc L, Power H, Fortin M, Schneider R (2024). Climate interacts with the trait structure of tree communities to influence forest productivity. Journal of Ecology, 112, 1758-1773. |
[11] | Fan XH (2018). Research on the Mechanism of Formation and Evolution of Typical Natural Forest Communities in Changbaishan. PhD Dissertation, Beijing Forestry University, Beijing. |
[范秀华 (2018). 长白山典型天然林群落形成与演变机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[12] | Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201. |
[13] | Forrester DI (2014). The spatial and temporal dynamics of species interactions in mixed-species forests: from pattern to process. Forest Ecology and Management, 312, 282-292. |
[14] | Forrester DI, Bauhus J (2016). A review of processes behind diversity-productivity relationships in forests. Current Forestry Reports, 2, 45-61. |
[15] | García-Palacios P, Shaw EA, Wall DH, Hättenschwiler S (2017). Contrasting mass-ratio vs. niche complementarity effects on litter C and N loss during decomposition along a regional climatic gradient. Journal of Ecology, 105, 968-978. |
[16] | Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910. |
[17] | Grime JP (2002). Declining plant diversity: empty niches or functional shifts? Journal of Vegetation Science, 13, 457-460. |
[18] | Hao MH, Dai Y, Yue QM, Fan CY, Zhang CY (2022). Relationship between functional diversity of broadleaved Korean pine forest and forest carbon sink function. Journal of Beijing Forestry University, 44(10), 68-76. |
[郝珉辉, 代莹, 岳庆敏, 范春雨, 张春雨 (2022). 红松阔叶林功能多样性与森林碳汇功能关系. 北京林业大学学报, 44(10), 68-76.] | |
[19] | Hao M, Messier C, Geng Y, Zhang C, Zhao X, von Gadow K (2020). Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. European Journal of Forest Research, 139, 959-968. |
[20] | Harms KE, Condit R, Hubbell SP, Foster RB (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
[21] | He HJ (2018). The Influence of Logging Disturbance on Carbon Storage and Carbon Balance of Coniferous and Broadleaved Mixed Forest in Jiaohe, Jilin Province. PhD Dissertation, Beijing Forestry University, Beijing. |
[何怀江 (2018). 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响. 博士学位论文, 北京林学大学, 北京.] | |
[22] | Hoyle RH (2012). Handbook of Structural Equation Modeling. Guilford Press, New York. |
[23] | Huang CS, Xu Y, Zang RG (2024). Low functional redundancy revealed high vulnerability of the subtropical evergreen broadleaved forests to environmental change. Science of the Total Environment, 935, 173307. DOI: 10.1016/j.scitotenv.2024.173307. |
[24] |
Laliberté E, Legendre P (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[25] | Legendre P, Gauthier O (2014). Statistical methods for temporal and space-time analysis of community composition data. Proceedings of the Royal Society B: Biological Sciences, 281, 20132728. DOI: 10.1098/rspb.2013.2728. |
[26] | Li J, Chen X, Niklas KJ, Sun J, Wang Z, Zhong Q, Hu D, Cheng D (2022). A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 110, 248-261. |
[27] |
Li J, Hao MH, Fan CY, Zhang CY, Zhao XH (2023). Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of Northeast China. Chinese Journal of Plant Ecology, 47, 1507-1522.
DOI |
[李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海 (2023). 东北温带森林树种和功能多样性对生态系统多功能性的影响. 植物生态学报, 47, 1507-1522.]
DOI |
|
[28] | Liang JJ, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze ED, McGuire AD, Bozzato F, Pretzsch H, de-Miguel S, Paquette A, Hérault B, Scherer-Lorenzen M, Barrett CB, et al. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354, aaf8957. DOI: 10.1126/science.aaf8957. |
[29] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[30] |
Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252.
PMID |
[31] | Loreau M (2004). Does functional redundancy exist? Oikos, 104, 606-611. |
[32] |
Messier J, McGill BJ, Lechowicz MJ (2010). How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848.
DOI PMID |
[33] | Mokany K, Ash J, Roxburgh S (2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893. |
[34] | Pacala S, Kinzig AP (2002). Introduction to theory and the common ecosystem model//Kinzig AP, Pacala SW, Tilman D. The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions. Princeton University Press, Princeton. 169-174. |
[35] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
[36] | Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013. |
[37] |
Poorter L, Bongers L, Bongers F (2006). Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology, 87, 1289-1301.
DOI PMID |
[38] | Rosseel Y (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. |
[39] | Ruiz-Benito P, Ratcliffe S, Jump AS, Gómez-Aparicio L, Madrigal-González J, Wirth C, Kändler G, Lehtonen A, Dahlgren J, Kattge J, Zavala MA (2017). Functional diversity underlies demographic responses to environmental variation in European forests. Global Ecology and Biogeography, 26, 128-141. |
[40] | Teichert N, Lepage M, Sagouis A, Borja A, Chust G, Ferreira MT, Pasquaud S, Schinegger R, Segurado P, Argillier C (2017). Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems. Scientific Reports, 7, 17611. DOI: 10.1038/s41598-017-17975-x. |
[41] | Thomas SC, Bazzaz FA (1999). Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees. Ecology, 80, 1607-1622. |
[42] | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. |
[43] |
Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C (2016). Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 19, 638-647.
DOI PMID |
[44] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[45] |
Wang XK, Feng ZW, Ouyang ZY (2001). Vegetation carbon storage and density of forest ecosystems in China. Chinese Journal of Applied Ecology, 12, 13-16.
PMID |
[王效科, 冯宗炜, 欧阳志云 (2001). 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 12, 13-16.] | |
[46] | Watzinger A, Prommer J, Spiridon A, Kisielinska W, Hood-Nowotny R, Leitner S, Wanek W, Resch C, Heiling M, Murer E, Formayer H, Wawra A, Miloczki J (2023). Functional redundant soil fauna and microbial groups and processes were fairly resistant to drought in an agroecosystem. Biology and Fertility of Soils, 59, 629-641. |
[47] |
Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, et al. (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674.
PMID |
[48] | Xia MJ, Wang XX, Hao MH, Zhao XH, Zhang CY (2021). Distribution pattern of functional traits and its response to topographic factors in a conifer and broad-leaved mixed forest in Jiaohe, Jilin province. Acta Ecologica Sinica, 41, 2794-2802. |
[夏梦洁, 王晓霞, 郝珉辉, 赵秀海, 张春雨 (2021). 吉林蛟河针阔混交林功能性状分布格局及其对地形因素的响应. 生态学报, 41, 2794-2802.] | |
[49] | Yu GR, Hao TX, Zhu JX (2022). Discussion on action strategies of China’s carbon peak and carbon neutrality. Bulletin of Chinese Academy of Sciences, 37, 423-434. |
[于贵瑞, 郝天象, 朱剑兴 (2022). 中国碳达峰、碳中和行动方略之探讨. 中国科学院院刊, 37, 423-434.] | |
[50] |
Yuan Z, Wang S, Gazol A, Mellard J, Lin F, Ye J, Hao Z, Wang X, Loreau M (2016). Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia, 182, 1175-1185.
PMID |
[51] | Yuan ZQ, Wang X, Mao ZK, Lin F, Ye J, Fang S, Wang XG, Hao ZQ (2022). Study on carbon sequestration rates of typical tree species in temperate forest. Journal of Beijing Forestry University, 44(10), 43-51. |
[原作强, 王星, 毛子昆, 蔺菲, 叶吉, 房帅, 王绪高, 郝占庆 (2022). 典型温带树种固碳速率研究. 北京林业大学学报, 44(10), 43-51.] | |
[52] | Zhang XY (2023). Abhere to the systematic concept and strengthen the construction of urban climate change adaptability. The Chinese People’s Political Consultative Conference, (20), 24-25. |
[张兴赢 (2023). 坚持系统观念加强城市气候变化适应能力建设. 中国政协, (20), 24-25.] | |
[53] | Zhao F, Hao M, Yue Q, Lin S, Zhao X, Zhang C, Fan X, von Gadow K (2024). Community diversity and composition affect ecosystem multifunctionality across environmental gradients in boreal and temperate forests. Ecological Indicators, 159, 111692. DOI: 10.1016/j.ecolind.2024.111692. |
[1] | 李冬梅 孙龙 韩宇 胡同欣 杨光 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响[J]. 植物生态学报, 2025, 49(3): 379-392. |
[2] | 袁鹤洋, 郝珉辉, 何怀江, 张春雨, 赵秀海. 长白山物种丰富度与物种组成对森林生产力的影响及其随演替的变化[J]. 植物生态学报, 2024, 48(12): 1602-1611. |
[3] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[4] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[5] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[6] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[7] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[8] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[9] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航. 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022, 46(5): 552-560. |
[14] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[15] | 赵晏平, 王忠武, 温都日根, 赵玉金, 白永飞. 基于Sentinel-2数据的草地植物功能多样性遥感反演及其与生产力的关系[J]. 植物生态学报, 2022, 46(10): 1234-1250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19