植物生态学报 ›› 2025, Vol. 49 ›› Issue (5): 748-759.DOI: 10.17521/cjpe.2024.0177 cstr: 32100.14.cjpe.2024.0177
王秀媛1,2, 申磊1, 刘婷婷1, 尉雯雯1, 张帅1, 张伟1,*()
收稿日期:
2024-05-28
接受日期:
2024-10-09
出版日期:
2025-05-20
发布日期:
2024-10-11
通讯作者:
*张伟(bluesky2002040@163.com)基金资助:
WANG Xiu-Yuan1,2, SHEN Lei1, LIU Ting-Ting1, WEI Wen-Wen1, ZHANG Shuai1, ZHANG Wei1,*()
Received:
2024-05-28
Accepted:
2024-10-09
Online:
2025-05-20
Published:
2024-10-11
Supported by:
摘要:
为了解新型果豆复合系统种间竞争策略, 寻找兼顾生态效益与经济效益的果豆复合种植搭配, 设置‘塞外红’苹果(Malus pumila ‘Saiwaihong’) -大豆(Glycine max)种植模式。通过对‘塞外红’-大豆复合系统根长密度(RLD)、比根长(SRL)、根垂直中心、竞争能力指数、种间相对竞争能力的研究, 揭示‘塞外红’-大豆复合系统种间竞争策略。结果显示: 间作果树、大豆RLD均低于单作, SRL趋势相反。大豆根系主要分布在0-20 cm土壤深度、距果树150-200 cm处, 随土壤深度增加、距果树距离减少而减少。间作‘塞外红’根系主要分布在20-40 cm土壤深度, 随生育时期推移, 细根垂直中心下移幅度增大。‘塞外红’-大豆复合系统中各植物采取不同种间竞争策略。大豆细根通过提高SRL, 降低根质量的方式在复合系统表层土壤中成为强势竞争者; 间作‘塞外红’采取下移根系分布中心、延长根长、增加根质量的方式减少与间作大豆生态位重叠和资源竞争。‘塞外红’整体的种间相对竞争能力强于大豆, 但在表土层依然有大豆竞争能力指数强于‘塞外红’的情况发生。间作大豆产量比单作降低了34.12%, ‘塞外红’产量无显著差异, 复合系统土地当量比(LER)、收益当量比(IER)均大于1。说明‘塞外红’-大豆复合系统地下竞争较弱, 具有良好的间作优势, 适宜在新疆种植。研究结果可为干旱半干旱区农林复合系统种植选择提供参考。
王秀媛, 申磊, 刘婷婷, 尉雯雯, 张帅, 张伟. ‘塞外红’苹果-大豆复合系统根系时空分布与种间竞争策略. 植物生态学报, 2025, 49(5): 748-759. DOI: 10.17521/cjpe.2024.0177
WANG Xiu-Yuan, SHEN Lei, LIU Ting-Ting, WEI Wen-Wen, ZHANG Shuai, ZHANG Wei. Spatial and temporal distribution of root system and interspecific competition strategy in Malus pumila ‘Saiwaihong’ - Glycine max agroforestry system. Chinese Journal of Plant Ecology, 2025, 49(5): 748-759. DOI: 10.17521/cjpe.2024.0177
处理 Treatment | 追肥总量 Total topdressing (kg·hm-2) | 灌溉总量 Total irrigation (m3·hm-2) | 树高 Tree height (m) | 冠幅 Crown width (m) | |||
---|---|---|---|---|---|---|---|
水溶肥 Water soluble fertilizer | 尿素 Urea | 2020 | 2021 | 2020 | 2021 | ||
单作大豆 Sole | 120 | 150 | 3 600 | - | - | - | - |
间作大豆 Int | 120 | 150 | 2 400 | - | - | - | - |
单作‘塞外红’ M | 225 | - | 3 750 | 2.96 | 3.36 | 1.58 | 1.63 |
间作‘塞外红’ INT | 225 | - | 3 750 | 2.89 | 3.27 | 1.51 | 1.61 |
表1 ‘塞外红’苹果-大豆种植与田间管理信息表
Table 1 Planting and field management information of Malus pumila ‘Saiwaihong’ and Glycine max
处理 Treatment | 追肥总量 Total topdressing (kg·hm-2) | 灌溉总量 Total irrigation (m3·hm-2) | 树高 Tree height (m) | 冠幅 Crown width (m) | |||
---|---|---|---|---|---|---|---|
水溶肥 Water soluble fertilizer | 尿素 Urea | 2020 | 2021 | 2020 | 2021 | ||
单作大豆 Sole | 120 | 150 | 3 600 | - | - | - | - |
间作大豆 Int | 120 | 150 | 2 400 | - | - | - | - |
单作‘塞外红’ M | 225 | - | 3 750 | 2.96 | 3.36 | 1.58 | 1.63 |
间作‘塞外红’ INT | 225 | - | 3 750 | 2.89 | 3.27 | 1.51 | 1.61 |
图2 ‘塞外红’苹果-大豆单、间作根长密度(RLD)时空变化。R3, 大豆始荚期; R6, 大豆鼓粒期; V4, 大豆第四复叶展开期。图中黑色小写字母为单、间作‘塞外红’显著性比较结果, 红色大写字母为距果树200 cm处单、间作大豆显著性比较结果; 不同字母表示差异显著(p < 0.05)。本实验以大豆生育时间设定采样时间。
Fig. 2 Temporal and spatial variation of root length density (RLD) in sole-cropping and intercropping of Malus pumila ‘Saiwaihong’ and Glycine max. Int, intercropping soybean; INT, intercropping ‘Saiwaihong’; M, sole-cropped ‘Saiwaihong’; Sole, sole-cropped soybean. R3, beginning pod stage of soybean; R6, full seed stage of soybean; V4, fourth-node stage of soybean. The black lowercase letters are the results of the significance comparison between INT and M; the red uppercase letters are the results of the significance comparison between Int and Sole at the distance of 200 cm from the fruit trees; different letters indicate significant difference (p < 0.05). In this experiment, the sampling time was set based on the growth stage of soybean.
图3 ‘塞外红’苹果和大豆单、间作比根长(SRL)时空变化。R3, 大豆始荚期; R6, 大豆鼓粒期; V4, 大豆第四复叶展开期。图中黑色小写字母为单、间作‘塞外红’显著性比较结果, 红色大写字母为距果树200 cm处单、间作大豆显著性比较结果; 不同字母表示差异显著(p < 0.05)。本实验以大豆生育时间设定采样时间。
Fig. 3 Temporal and spatial variation of specific root length (SRL) in sole-cropping and intercropping of Malus pumila ‘Saiwaihong’ and Glycine max. Int, intercropping soybean; INT, intercropping ‘Saiwaihong’; M, sole-cropped ‘Saiwaihong’; Sole, sole-cropped soybean. R3, beginning pod stage of soybean; R6, full seed stage of soybean; V4, fourth-node stage of soybean. The black lowercase letters are the results of the significance comparison between INT and M; the red capital letters are the results of the significance comparison between Int and Sole at the distance of 200 cm from the fruit trees; different letters indicate significant difference (p < 0.05). In this experiment, the sampling time was set based on the growth stage of soybean.
图4 ‘塞外红’苹果-大豆复合系统细根垂直中心时空变化(平均值±标准差)。R3, 大豆始荚期; R6, 大豆鼓粒期; V4, 大豆第四复叶展开期。本实验以大豆生育时间设定采样时间。
Fig. 4 Temporal and spatial variation of fine root vertical center in Malus pumila ‘Saiwaihong’ + Glycine max agroforestry systems (mean ± SD). Int, intercropping soybean; INT, intercropping ‘Saiwaihong’; M, sole-cropped ‘Saiwaihong’; Sole, sole-cropped soybean. R3, beginning pod stage of soybean; R6, full seed stage of soybean; V4, fourth-node stage of soybean. In this experiment, the sampling time was set based on the growth stage of soybean.
图5 ‘塞外红’苹果-大豆复合系统竞争能力指数(平均值±标准差)。A, 垂直方向竞争能力指数。B, 水平方向竞争能力指数。Lms, ‘塞外红’对大豆的竞争能力指数; Lsm, 大豆对‘塞外红’的竞争能力指数。不同小写字母表示相同物种不同土层差异显著(p < 0.05); 不同大写字母表示不同物种同一土层差异显著(p < 0.05)。NA表示无数据。R3, 大豆始荚期; R6, 大豆鼓粒期; V4, 大豆第四复叶展开期。本实验以大豆生育时间设定采样时间。
Fig. 5 Competitiveness index of Malus pumila ‘Saiwaihong’ + Glycine max agroforestry system (mean ± SD). A, Competitiveness index of vertical. B, Competitiveness index of horizontal. Lms, competitiveness index from Malus pumila ‘Saiwaihong’ to soybean. Lsm, competitiveness index from soybean to Malus pumila ‘Saiwaihong’. Different lowercase letters indicate significant difference for the same species between different soil layers (p < 0.05); different uppercase letters indicate significant difference among different species in the same soil layer (p < 0.05). NA means no data. R3, beginning pod stage of soybean; R6, full seed stage of soybean; V4, fourth-node stage of soybean. In this experiment, the sampling time was set based on the growth stage of soybean.
年份 Year | 处理 Treatment | 株数 Plant number (plant·hm-2) | 单株荚数 Pods number (pod·plant-1) | 单荚粒数 Seeds number per pod (seed·pod-1) | 百粒质量 100 grain mass (g) | 总产量 Yield (kg·hm-2) | 土地当量比 LER | 收益当量比 IER | 种间相对竞争力 (大豆对‘塞外红’) Aggressivity (Asm) |
---|---|---|---|---|---|---|---|---|---|
2020 | Sole | 2.4 × 105 | 32.57 ± 5.36b | 2.31 ± 1.04a | 24.52 ± 2.47a | 4 427.53 ± 237.74a | - | - | - |
Int | 1.1 × 105 | 39.29 ± 6.77a | 2.94 ± 1.13a | 22.85 ± 1.36b | 2 903.41 ± 510.96b | - | - | - | |
M | 1 100 | - | - | - | - | - | - | - | |
INT | 1 100 | - | - | - | - | - | - | - | |
2021 | Sole | 2.4 × 105 | 31.06 ± 3.20b | 2.46 ± 0.89b | 25.76 ± 1.65a | 4 723.82 ± 384.95a | - | - | - |
Int | 1.1 × 105 | 38.32 ± 5.51a | 3.11 ± 1.48a | 23.84 ± 1.36b | 3 125.25 ± 420.19b | - | - | - | |
M | 1 100 | - | - | - | 5 560.02 ± 210.24a | 1.564 | 1.106 | -0.04 | |
INT | 1 100 | - | - | - | 5 015.68 ± 129.72a | - | - | - |
表2 单、间作大豆和‘塞外红’苹果产量及产量构成因子(平均值±标准差)
Table 2 Yield and yield components of Malus pumila ‘Saiwaihong’ and Glycine max in sole-cropping and intercropping systems (mean ± SD)
年份 Year | 处理 Treatment | 株数 Plant number (plant·hm-2) | 单株荚数 Pods number (pod·plant-1) | 单荚粒数 Seeds number per pod (seed·pod-1) | 百粒质量 100 grain mass (g) | 总产量 Yield (kg·hm-2) | 土地当量比 LER | 收益当量比 IER | 种间相对竞争力 (大豆对‘塞外红’) Aggressivity (Asm) |
---|---|---|---|---|---|---|---|---|---|
2020 | Sole | 2.4 × 105 | 32.57 ± 5.36b | 2.31 ± 1.04a | 24.52 ± 2.47a | 4 427.53 ± 237.74a | - | - | - |
Int | 1.1 × 105 | 39.29 ± 6.77a | 2.94 ± 1.13a | 22.85 ± 1.36b | 2 903.41 ± 510.96b | - | - | - | |
M | 1 100 | - | - | - | - | - | - | - | |
INT | 1 100 | - | - | - | - | - | - | - | |
2021 | Sole | 2.4 × 105 | 31.06 ± 3.20b | 2.46 ± 0.89b | 25.76 ± 1.65a | 4 723.82 ± 384.95a | - | - | - |
Int | 1.1 × 105 | 38.32 ± 5.51a | 3.11 ± 1.48a | 23.84 ± 1.36b | 3 125.25 ± 420.19b | - | - | - | |
M | 1 100 | - | - | - | 5 560.02 ± 210.24a | 1.564 | 1.106 | -0.04 | |
INT | 1 100 | - | - | - | 5 015.68 ± 129.72a | - | - | - |
[1] | Bai SH, Muqaddas B, Trueman SJ, Wilson R, Keller A, Shapcott A, Hannet G, Farrar MB, Komolong B, Wallace HM (2023). Root architecture, root biomass and nutrient cycling in a mixed-species agroforestry system. Land Degradation & Development, 34, 5096-5108. |
[2] | Beule L, Karlovsky P (2021). Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLoS ONE, 16, e0246919. DOI: 10.1371/journal.pone.0246919. |
[3] | Casper BB, Jackson RB (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570. |
[4] | Chen WY, Xiong DC, Shi SZ, Song TT, Cai YY, Guo RQ, Chen TT, Zheng X, Chen GS (2018). Effects of soil warming on fine root growth and morphology of Chinese fir (Cunninghamia lanceolata) seedlings. Acta Ecologica Sinica, 38, 5305-5314. |
[ 陈望远, 熊德成, 史顺增, 宋涛涛, 蔡瑛莹, 郭润泉, 陈廷廷, 郑欣, 陈光水 (2018). 土壤增温对杉木幼苗细根生长量及形态特征的影响. 生态学报, 38, 5305-5314.] | |
[5] |
Colom SM, Baucom RS (2020). Belowground competition can influence the evolution of root traits. The American Naturalist, 195, 577-590.
DOI PMID |
[6] |
Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 442. DOI: 10.3389/fpls.2013.00442.
PMID |
[7] |
Dong WL, Zhang LZ, Yu Y, Gou F, Mao LL (2011). Resource utilization in agro-forestry intercropping ecosystems. Chinese Agricultural Science Bulletin, 27(28), 1-8.
DOI |
[ 董宛麟, 张立祯, 于洋, 苟芳, 毛丽丽 (2011). 农林间作生态系统的资源利用研究进展. 中国农学通报, 27(28), 1-8.] | |
[8] |
Duan NB, Bai Y, Sun HH, Wang N, Ma YM, Li MJ, Wang X, Jiao C, Legall N, Mao LY, Wan SB, Wang K, He TM, Feng SQ, Zhang ZY, et al. (2017). Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 8, 249. DOI: 10.1038/s41467-017-00336-7.
PMID |
[9] | Fehr WR, Caviness CE (1977). Stages of Soybean Development.[2020-02-15]. https://dr.lib.iastate.edu/bitstreams/13bd0d8f-66ff-4d0e-a0e3-a70c2c47f6f3/download. |
[10] | Gao LB, Bi HX, Xu HS, Liao WC, Pan D, Ciren QX (2014). Spatio-temporal distribution of soil moisture in apple-soybean intercropping system on Loess Plateau of west Shanxi Province. Bulletin of Soil and Water Conservation, 34, 327-331. |
[ 高路博, 毕华兴, 许华森, 廖文超, 潘迪, 次仁曲西 (2014). 晋西苹果-大豆间作土壤水分的时空分布特征. 水土保持通报, 34, 327-331.] | |
[11] | Lai B, Tang MY, Chai ZP, Chen BL, Li QJ, Dong JH, Wang F, Tian CY (2014). Investigation and evaluation of the chemical fertilizer application situation of farmland in Xinjiang. Arid Zone Research, 31, 1024-1030. |
[ 赖波, 汤明尧, 柴仲平, 陈波浪, 李青军, 董巨河, 王飞, 田长彦 (2014). 新疆农田化肥施用现状调查与评价. 干旱区研究, 31, 1024-1030.] | |
[12] | Levins R (1968). Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press, Princeton, USA. |
[13] | Li BB, Wang XP, Li Z (2024). Plants extend root deeper rather than increase root biomass triggered by critical age and soil water depletion. Science of the Total Environment, 914, 169689. DOI: 10.1016/j.scitotenv.2023.169689. |
[14] | Liu HY, Lu CY, Wang SD, Ren F, Wang H (2021). Climate warming extends growing season but not reproductive phase of terrestrial plants. Global Ecology and Biogeography, 30, 950-960. |
[15] | Mao DL, Lei JQ, Pang YJ, Wang C, Zhou J, Rehemutula Z (2014). Changes of wind erosion and wind deposition on surfaces of newly reclaimed land in Cele County of Xinjiang Wei Autonomous Region. Bulletin of Soil and Water Conservation, 34(3), 61-68. |
[ 毛东雷, 雷加强, 庞营军, 王翠, 周杰, 再努拉•热和木吐拉 (2014). 新疆策勒县新开垦农田地表蚀积变化. 水土保持通报, 34(3), 61-68.] | |
[16] | McGilchrist CA (1965). Analysis of competition experiments. Biometrics, 21, 975-985. |
[17] | McIntyre BD, Riha SJ, Ong CK (1997). Competition for water in a hedge-intercrop system. Field Crops Research, 52, 151-160. |
[18] | Song ZB, Chi GJ, Zhang HW, Zhang TY, Yuan DH, Wang YJ (2022). High yield of Jinxiu Begonia apple cultivated in mountainous areas of northern Hebei Province. Northern Fruits, (1), 44-45. |
[ 宋占宝, 池桂杰, 张宏伟, 张天也, 袁德华, 王英俊 (2022). ‘锦绣海棠’苹果在冀北山地栽培的丰产性. 北方果树, (1), 44-45.] | |
[19] | Sun WT, Ma M, Dong T, Niu JQ, Yin XN, Liu XL (2021). Spatio-temporal dynamics of annual growth cycle of apple tree roots covered with plastic film in dryland. Gansu Agricultural Science and Technology, 52(10), 55-62. |
[ 孙文泰, 马明, 董铁, 牛军强, 尹晓宁, 刘兴禄 (2021). 旱地覆膜苹果树根系年生长周期的时空动态研究. 甘肃农业科技, 52(10), 55-62.] | |
[20] | Sun YB, Bi HX, Duan HQ, Peng RD, Wang JJ (2019). Fine-root morphological variation and below-ground competition of an apple-peanut intercropping system. Science of Soil and Water Conservation, 17(1), 48-56. |
[ 孙于卜, 毕华兴, 段航旗, 彭瑞东, 王晶晶 (2019). 苹果-花生间作系统细根形态变异及地下竞争. 中国水土保持科学, 17(1), 48-56.] | |
[21] | van Kessel C, Hartley C (2000). Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Research, 65, 165-181. |
[22] |
Voothuluru P, Wu YJ, Sharp RE (2024). Not so hidden anymore: advances and challenges in understanding root growth under water deficits. The Plant Cell, 36, 1377-1409.
DOI PMID |
[23] | Wang L, Gao PX, Zhong CG, Liu B, Hou L, Zhao YJ, Zhang SX, Zhang YY (2018). Growth dynamics and competitive strategies of fine roots in a walnut-wheat agroforestry system. Acta Ecologica Sinica, 38, 7762-7771. |
[ 王来, 高鹏翔, 仲崇高, 刘滨, 侯琳, 赵玉健, 张硕新, 张远迎 (2018). 核桃-小麦复合系统中细根生长动态及竞争策略. 生态学报, 38, 7762-7771.] | |
[24] | Wang XY, Yang T, Shen L, Zhang WL, Wan SM, Zhang W, Li LH (2021). Formation of factors influencing cotton yield in jujube-cotton intercropping systems in Xinjiang, China. Agroforestry Systems, 95, 177-189. |
[25] |
Wu JN, Liu WJ, Chen CF (2016). Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants. Scientific Reports, 6, 19502. DOI: 10.1038/srep19502.
PMID |
[26] | Wu SM (2017). Development advantages and direction of forestry and fruit industry in Xinjiang. Modern Agricultural Science and Technology, (5), 268-269. |
[ 吴松梅 (2017). 新疆林果业发展优势与方向. 现代农业科技, (5), 268-269.] | |
[27] | Xing YJ, Chen MH, Dao JC, Lin LX, Chen CY, Chen YL, Wang ZT (2024). Fine-root morphology of woody and herbaceous plants responds differently to altered precipitation: a meta-analysis. Forest Ecology and Management, 552, 121570. DOI: 10.1016/j.foreco.2023.121570. |
[28] | Xiong DC, Yang ZJ, Chen GS, Liu XF, Lin WS, Huang JX, Bowles FP, Lin CF, Xie JS, Li YQ, Yang YS (2018). Interactive effects of warming and nitrogen addition on fine root dynamics of a young subtropical plantation. Soil Biology & Biochemistry, 123, 180-189. |
[29] | Xu HS, Bi HX, Xi WM, Powell RL (2014). Root distribution variation of crops under walnut-based intercropping systems in the Loess Plateau of China. Pakistan Journal of Agricultural Sciences, 51, 773-778. |
[30] | Xu HS, Yun L, Bi HX, Gao LB, Bao B (2012). Fine root distribution and underground competition in walnut-soybean intercropping system. Chinese Journal of Ecology, 31, 1612-1616. |
[ 许华森, 云雷, 毕华兴, 高路博, 鲍彪 (2012). 核桃-大豆间作系统细根分布及地下竞争. 生态学杂志, 31, 1612-1616.] | |
[31] | Yun L, Bi HX, Ren Y, Wu J, Chen PP, Ma WJ (2008). Research on soil moisture relations among types of agroforestry system in the loess region. Bulletin of Soil and Water Conservation, 28(6), 110-114. |
[ 云雷, 毕华兴, 任怡, 吴坚, 陈攀攀, 马雯静 (2008). 黄土区果农复合系统种间水分关系研究. 水土保持通报, 28(6), 110-114.] | |
[32] | Yun L, Bi HX, Tian XL, Cui ZW, Zhou HZ, Gao LB, Liu LX (2011). Main interspecific competition and land productivity of fruit-crop intercropping in Loess Region of West Shanxi. Chinese Journal of Applied Ecology, 22, 1225-1232. |
[ 云雷, 毕华兴, 田晓玲, 崔哲伟, 周晖子, 高路博, 刘李霞 (2011). 晋西黄土区果农间作的种间主要竞争关系及土地生产力. 应用生态学报, 22, 1225-1232.] | |
[33] | Zhang HZ, Chen XW, Lei JJ, Qiao X, Zhao Q, Zhang XZ, Nuermaimaiti T (2015). Effect of apricot tree roots on the wheat roots and yield in apricot-wheat intercropping. Xinjiang Agricultural Sciences, 52, 802-807. |
[ 张宏芝, 陈兴武, 雷钧杰, 乔旭, 赵奇, 张新志, 努尔买买提·拖合尼牙孜 (2015). 杏麦间作模式下杏树根系对小麦根系及产量的影响. 新疆农业科学, 52, 802-807.] | |
[34] | Zhang P, Lyu ZZ, Zhang X, Zhao XP, Zhang YG, Gulzhanat T, Maisupova B, Adilbayeva Z, Cui ZJ (2019). Age structure of Malus sieversii population in Ili of Xinjiang and Kazakhstan. Arid Zone Research, 36, 844-853. |
[ 张苹, 吕昭智, 张鑫, 赵想平, 张永光, Gulzhanat T, Maisupova B, Adilbayeva Z, 崔志军 (2019). 新疆伊犁与哈萨克斯坦新疆野苹果(Malus sieversii (Ledeb.) Roem.)种群年龄结构. 干旱区研究, 36, 844-853.] | |
[35] | Zhang TF, Li XW, Fan C, Wei P, Liu YK, Su Y, Yang ZJ (2014). Morphology, biomass and changes in C and N contents of fine roots in top soil of Cinnamomum camphora plantations. Journal of Northwest A&F University (Natural Science Edition), 42(10), 103-110. |
[ 张腾飞, 李贤伟, 范川, 魏鹏, 刘运科, 苏宇, 杨正菊 (2014). 香樟人工林土壤表层细根形态特征、生物量及碳氮含量变化. 西北农林科技大学学报(自然科学版), 42(10), 103-110.] | |
[36] | Zhang W, Ahanbieke P, Wang BJ, Gan YW, Li LH, Christie P, Li L (2015). Temporal and spatial distribution of roots as affected by interspecific interactions in a young walnut/wheat alley cropping system in Northwest China. Agroforestry Systems, 89, 327-343. |
[1] | 牛云明, 贾国栋, 王欣, 刘子赫. 庐山不同海拔植物蒸腾水龄动态及用水策略[J]. 植物生态学报, 2024, 48(9): 1104-1117. |
[2] | 廖丹, 王艺彤, 雷晶晶, 王映霓, 张新娜, 王娟. 雌雄异株克隆植物髭脉槭对种间竞争的性别差异响应[J]. 植物生态学报, 2024, 48(12): 1623-1636. |
[3] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[4] | 陈林康, 赵平, 王顶, 向蕊, 龙光强. 玉米马铃薯秸秆混合腐解的非加性效应[J]. 植物生态学报, 2023, 47(12): 1728-1738. |
[5] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[6] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[7] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[8] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[9] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[10] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
[11] | 彭东海,杨建波,李健,邢永秀,覃刘东,杨丽涛,李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响[J]. 植物生态学报, 2014, 38(9): 959-969. |
[12] | 焦念元,杨萌珂,宁堂原,尹飞,徐国伟,付国占,李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响[J]. 植物生态学报, 2013, 37(11): 1010-1017. |
[13] | 葛蔚, 汪芳, 柴超. 氮和磷浓度对中肋骨条藻和锥状斯氏藻种间竞争的影响[J]. 植物生态学报, 2012, 36(7): 697-704. |
[14] | 葛俊, 邢福. 克隆植物对种间竞争的适应策略[J]. 植物生态学报, 2012, 36(6): 587-596. |
[15] | 马理辉,吴普特,汪有科. 黄土丘陵半干旱区密植枣林随树龄变化的根系空间分布特征[J]. 植物生态学报, 2012, 36(4): 292-301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19