植物生态学报 ›› 2025, Vol. 49 ›› Issue (12): 2043-2053.DOI: 10.17521/cjpe.2024.0453 cstr: 32100.14.cjpe.2024.0453
卞嘉琛1, 王睿1,2,3, 高阳阳1,2,3, 梁雯君1,2,3, 晋红1, 张文轩1, 张晓荣1, 郝杰1,2,3, $\boxed{\hbox{王常慧}}$1,2,3, 董宽虎1,2,3,*(
), 刁华杰1,2,3,*(
)
收稿日期:2024-12-12
接受日期:2025-03-04
出版日期:2025-12-20
发布日期:2026-01-19
通讯作者:
*董宽虎(dongkuanhu@126.com);基金资助:
BIAN Jia-Chen1, WANG Rui1,2,3, GAO Yang-Yang1,2,3, LIANG Wen-Jun1,2,3, JIN Hong1, ZHANG Wen-Xuan1, ZHANG Xiao-Rong1, HAO Jie1,2,3, $\boxed{\hbox{WANG Chang-Hui}}$1,2,3, DONG Kuan-Hu1,2,3,*(
), DIAO Hua-Jie1,2,3,*(
)
Received:2024-12-12
Accepted:2025-03-04
Online:2025-12-20
Published:2026-01-19
Supported by:摘要:
氮添加对草地生态系统地上生产力(ANPP)和地下生产力(BNPP)具有显著的影响。然而群落ANPP和BNPP对氮添加的不同响应以及其在不同水平氮添加下的饱和响应阈值目前尚不清晰。因此, 该研究以晋北赖草(Leymus secalinus)草地为研究对象, 设置8个不同氮添加水平(0、1、2、4、8、16、24、32 g·m-2·a-1), 于2017-2021连续5年监测植物ANPP、BNPP和总初级生产力(NPP)的变化, 并计算植物生产力的稳定性、氮饱和阈值以及氮响应效率。结果表明: (1) ANPP和NPP均随氮添加水平的提高呈非线性增加的模式。ANPP和NPP的氮饱和响应阈值(2017-2021年)分别为25.7 g·m-2·a-1和21.3 g·m-2·a-1。(2)植物ANPP和BNPP对氮添加具有不同的敏感性, 其中ANPP的敏感性高于BNPP。NPP的变化主要是由ANPP的变化引起的, 这表明随着氮添加水平的提高, 植物生产力向地上分配增加。(3) ANPP的氮响应效率(NREANPP)随氮添加水平的提高呈指数下降趋势, 而BNPP和NPP的氮响应效率(NREBNPP、NRENPP)随氮添加水平的提高呈线性下降趋势。(4)结构方程模型分析发现, 土壤NO-3-N含量和土壤pH间接调控着施氮年限和氮添加对ANPP和BNPP的影响; 并且低氮和高氮添加对植物ANPP和BNPP具有不同的调控机制, 在低氮处理下, ANPP和BNPP主要受氮添加的直接影响; 而在高氮处理下, 土壤无机氮含量和pH间接调控氮添加对ANPP和BNPP的影响。该研究呈现了晋北赖草草地生态系统植物生产力随氮添加水平呈非线性响应的特征, 为氮沉降背景下提高草地生态系统的服务功能提供了数据支撑。
卞嘉琛, 王睿, 高阳阳, 梁雯君, 晋红, 张文轩, 张晓荣, 郝杰, $\boxed{\hbox{王常慧}}$, 董宽虎, 刁华杰. 不同水平氮添加对晋北赖草草地地上和地下净初级生产力的影响. 植物生态学报, 2025, 49(12): 2043-2053. DOI: 10.17521/cjpe.2024.0453
BIAN Jia-Chen, WANG Rui, GAO Yang-Yang, LIANG Wen-Jun, JIN Hong, ZHANG Wen-Xuan, ZHANG Xiao-Rong, HAO Jie, $\boxed{\hbox{WANG Chang-Hui}}$, DONG Kuan-Hu, DIAO Hua-Jie. Effect of different levels of nitrogen addition on aboveground and belowground net primary productivity in Leymus secalinus grassland in Northern Shanxi, China. Chinese Journal of Plant Ecology, 2025, 49(12): 2043-2053. DOI: 10.17521/cjpe.2024.0453
图1 晋北赖草草地研究地点2017-2021年降水量和气温。
Fig. 1 Annual precipitation and air temperature during 2017-2021 at the study site in Leymus secalinus grassland in Northern Shanxi.
| 因子 Factor | ANPP | BNPP | NPP | NH4+-N | NO-3-N | ST | SWC | pH |
|---|---|---|---|---|---|---|---|---|
| 年 Year (Y) | 12.732*** | 60.957*** | 42.353*** | 1164.145*** | 336.475*** | 648.398*** | 86.091*** | 45.046*** |
| 氮添加 Nitrogen addition (N) | 12.502*** | 3.222** | 10.075*** | 22.508*** | 75.519*** | 3.824** | 0.522 | 4.051** |
| 年×氮添加 Y × N | 0.832 | 0.931 | 0.776 | 22.805*** | 7.085*** | 0.413 | 0.535 | 0.456 |
表1 施肥年限、施氮水平及其交互作用对晋北赖草草地植物生产力和土壤理化性质影响的双因素方差分析(F值)
Table 1 Results (F value) of two factors analysis of variance of the effects of year, nitrogen addition, and their interactions on plant productivity and soil physicochemical properties of Leymus secalinus grassland in Northern Shanxi
| 因子 Factor | ANPP | BNPP | NPP | NH4+-N | NO-3-N | ST | SWC | pH |
|---|---|---|---|---|---|---|---|---|
| 年 Year (Y) | 12.732*** | 60.957*** | 42.353*** | 1164.145*** | 336.475*** | 648.398*** | 86.091*** | 45.046*** |
| 氮添加 Nitrogen addition (N) | 12.502*** | 3.222** | 10.075*** | 22.508*** | 75.519*** | 3.824** | 0.522 | 4.051** |
| 年×氮添加 Y × N | 0.832 | 0.931 | 0.776 | 22.805*** | 7.085*** | 0.413 | 0.535 | 0.456 |
图2 不同水平氮添加对晋北赖草草地土壤温度(A)、pH (B)、NH4+-N含量(C)、NO-3-N含量(D)的影响(平均值±标准误)。
Fig. 2 Effect of nitrogen addition on soil temperature (A), pH (B), NH4+-N content (C), and NO-3-N content (D) in Leymus secalinus grassland in Northern Shanxi (mean ± SE).
图3 2017-2021年晋北赖草草地植物净初级生产力随氮添加水平提高的响应阈值(平均值±标准误)。ANPP, 地上净初级生产力; BNPP, 地下净初级生产力; NPP, 净初级生产力。实线代表拟合方程显著(p < 0.05), 虚线代表拟合方程不显著(p > 0.05)。
Fig. 3 Threshold of net primary productivity with the increase of nitrogen addition levels in Leymus secalinus grassland in Northern Shanxi of 2017-2021 (mean ± SE). ANPP, aboveground net primary productivity; BNPP, belowground net primary productivity; NPP, net primary productivity. Solid line represents a significant fitted equation (p < 0.05), and dashed line represents an insignificant fitted equation (p > 0.05).
图4 晋北赖草草地地上净初级生产力氮响应效率(NREANPP, A)、地下净初级生产力氮响应效率(NREBNPP, B)和净初级生产力氮响应效率(NRENPP, C)与氮添加水平的关系(平均值±标准误)。
Fig. 4 Response efficiency of aboveground net primary productivity (NREANPP, A), underground net primary productivity (NREBNPP, B), and net primary productivity (NRENPP, C) under different nitrogen addition levels in Leymus secalinus grassland in Northern Shanxi (mean ± SE).
图5 2017-2021年不同水平氮添加下晋北赖草草地植物生产力的年际变化(A-C)及时间稳定性(D-F) (平均值±标准误)。N0、N1、N2、N4、N8、N16、N24、N32分别代表施氮量为0、1、2、4、8、16、24、32 g∙m-2∙a-1。*, p < 0.05; **, p < 0.01; ns, p > 0.05。
Fig. 5 Annual variation (A-C) and temporal stability (D-F) of plant productivity in Leymus secalinus grassland under different nitrogen (N) addition levels in Northern Shanxi (mean ± SE). ANPP, aboveground net primary productivity; BNPP, belowground net primary productivity; NPP, net primary productivity; N0, N1, N2, N4, N8, N16, N24, N32 represent N addition levels are 0, 1, 2, 4, 8, 16, 24, 32 g∙m-2∙a-1, respectively. *, p < 0.05; **, p < 0.01; ns, p > 0.05.
图6 基于结构方程模型的低氮(A)和高氮(B)添加对晋北赖草草地植物地上净初级生产力(ANPP)和地下净初级生产力(BNPP)直接和间接的影响。蓝色和红色线条分别表示显著的正相关和负相关关系, 黑色虚线表示相关性不显著。箭头和线条的宽度与相关性大小成比例; 低氮添加: p = 0.373, 赤池信息量准则(AIC) = 51.36, χ2 = 5.36, df = 5; 高氮添加: p = 0.614, AIC = 45.22, χ2 = 7.22, df = 9。N addition, 氮添加水平; NH4+-N, 土壤铵态氮含量; NO-3-N, 土壤硝态氮含量; pH, 土壤pH; ST, 土壤温度; SWC, 土壤含水量; Year, 处理年限。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 6 Structural equation model of the directly and indirectly effects of low nitrogen addition (A) and high nitrogen (N) addition (B) on aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP). Blue and red lines represent significant positive and negative correlation, respectively, and black dashed line represents no significant correlation. Line width is proportional to the strength of the correlation. Low N addition: significance p = 0.373, Akaike Information Criterion (AIC) = 51.36, Chi-square = 5.36, df = 5; high N addition: p = 0.614, AIC = 45.22, Chi-square = 7.22, df = 9. NH4+-N, soil NH4+-N content; NO-3-N, soil NO-3-N content; pH, soil pH; ST, soil temperature; SM, soil water content. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
| [1] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI |
| [2] |
Cai JP, Luo WT, Liu HY, Feng X, Zhang YY, Wang RZ, Xu ZW, Zhang YG, Jiang Y (2017). Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland. Atmospheric Environment, 170, 312-318.
DOI URL |
| [3] |
de Graaf MCC, Bobbink R, Roelofs JGM, Verbeek PJM (1998). Differential effects of ammonium and nitrate on three heathland species. Plant Ecology, 135, 185-196.
DOI |
| [4] | Deng TT, Zhou GY, Xiao YM, Jin YT, Li CB (2024). Effects of long-term precipitation changes and nitrogen addition on species diversity and productivity of alpine grasslands in the Qinghai Tibet Plateau. Acta Agrestia Sinica, 32, 1448-1458. |
|
[邓彤彤, 周国英, 肖元明, 靳玉婷, 李长斌 (2024). 长期降水变化和氮添加对青藏高原高寒草原物种多样性和生产力的影响. 草地学报, 32, 1448-1458.]
DOI |
|
| [5] |
Dijkstra FA, Zhu B, Cheng WX (2021). Root effects on soil organic carbon: a double-edged sword. New Phytologist, 230, 60-65.
DOI PMID |
| [6] | Fan W, Meng R, Chen QS (2010). Effects of nitrogen additions on ground/underground biomass allocation of Stipa krylovii community. Animal Husbandry and Feed Science, 31(2), 74-75. |
| [樊维, 蒙荣, 陈全胜 (2010). 不同施氮水平对克氏针茅草原地上地下生物量分配的影响. 畜牧与饲料科学, 31(2), 74-75.] | |
| [7] | Fan YM, Li W, Wen ZM, Guo Q, Liu J, Yang X, Zheng C, Yang YT, Jiang YM, Zhang B (2021). Responses of grassland community biomass and root-shoot ratio to nitrogen addition in different restoration years on the Loess Plateau. Acta Ecologica Sinica, 41, 9824-9835. |
| [樊勇明, 李伟, 温仲明, 郭倩, 刘晶, 杨雪, 郑诚, 杨玉婷, 姜艳敏, 张博 (2021). 黄土区不同恢复年限草地群落生物量及根冠比对氮添加的响应. 生态学报, 41, 9824-9835.] | |
| [8] |
Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153-226.
DOI URL |
| [9] |
Geng XQ, Tang YK, Wang LN, Deng X, Zhang ZL, Zhou Y (2024). Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China. Chinese Journal of Plant Ecology, 48, 147-157.
DOI URL |
|
[耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹 (2024). 氮添加增加中国陆生植物生物量并降低其氮利用效率. 植物生态学报, 48, 147-157.]
DOI |
|
| [10] |
Jing MH, Jia XT, Zhang YL, Cao J, Zhou W, Wang J, Yu Q (2020). Effects of long-term nitrogen addition on community aboveground and belowground biomass and their ratio in a typical steppe of Inner Mongolia. Chinese Journal of Ecology, 39, 3185-3193.
DOI |
| [景明慧, 贾晓彤, 张运龙, 曹娟, 周伟, 王杰, 庾强 (2020). 长期氮添加对内蒙古典型草原植物地上、地下生物量及根冠比的影响. 生态学杂志, 39, 3185-3193.] | |
| [11] |
Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytologist, 214, 41-47.
DOI PMID |
| [12] | Kuai XY, Xing PF, Zhang XL, Wang CH, Dong KH (2019). Effects of short-term nitrogen addition on plant community diversity and productivity of grassland in agro-pastoral ecotone. Chinese Journal of Grassland, 41(5), 104-110. |
| [蒯晓妍, 邢鹏飞, 张晓琳, 王常慧, 董宽虎 (2019). 短期不同水平氮添加对农牧交错带草地植物群落多样性和生产力的影响. 中国草地学报, 41(5), 104-110.] | |
| [13] |
Li BH, Li GJ, Kronzucker HJ, Baluška F, Shi WM (2014). Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends in Plant Science, 19, 107-114.
DOI URL |
| [14] |
Li JZ, Lin S, Taube F, Pan QM, Dittert K (2011). Above and belowground net primary productivity of grassland influenced by supplemental water and nitrogen in Inner Mongolia. Plant and Soil, 340, 253-264.
DOI URL |
| [15] |
Liang XY, Zhang T, Lu XK, Ellsworth DS, BassiriRad H, You CM, Wang D, He PC, Deng Q, Liu H, Mo JM, Ye Q (2020). Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis. Global Change Biology, 26, 3585-3600.
DOI PMID |
| [16] |
Liu L, Wen Z, Liu S, Zhang XY, Liu XJ (2024). Decline in atmospheric nitrogen deposition in China between 2010 and 2020. Nature Geoscience, 17, 733-736.
DOI |
| [17] |
Lu M, Yang YH, Luo YQ, Fang CM, Zhou XH, Chen JK, Yang X, Li B (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189, 1040-1050.
DOI PMID |
| [18] | Luo WT, Griffin-Nolan RJ, Ma W, Liu B, Zuo XA, Xu C, Yu Q, Luo YH, Mariotte P, Smith MD, Collins SL, Knapp AK, Wang ZW, Han XG (2021). Plant traits and soil fertility mediate productivity losses under extreme drought in C3 grasslands. Ecology, 102, e03465. DOI: 10.1002/ecy.3465. |
| [19] |
Muraina TO, Xu C, Yu Q, Yang YD, Jing MH, Jia XT, Jaman MS, Dam Q, Knapp AK, Collins SL, Luo YQ, Luo WT, Zuo XA, Xin XP, Han XG, Smith MD (2021). Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 109, 1665-1675.
DOI URL |
| [20] |
Namuhan, Wang J, Yang GJ, Song YT, Yu YG, Wang JD, Wang XG, Shi YP, Shen Y, Han XG, Wuyunna, Zhang HY (2024). Mechanisms of biodiversity loss under nitrogen enrichment: unveiling a shift from light competition to cation toxicity. New Phytologist, 243, 1966-1979.
DOI PMID |
| [21] |
Peng YF, Chen HYH, Yang YH (2020). Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 34, 1979-1990.
DOI URL |
| [22] |
Shcherbak I, Millar N, Robertson GP (2014). Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 111, 9199-9204.
DOI PMID |
| [23] | Song QH (2016). The Environmental Adaptability of Biomass Allocation and Root Functional Traits of Stipa krylovii in Degraded Alpine Grassland. Master degree dissertation, Northwest Normal University, Lanzhou. |
| [宋清华 (2016). 高寒退化草地西北针茅生物量分配和根系功能性状的环境适应性. 硕士毕业论文, 西北师范大学, 兰州.] | |
| [24] |
Sun JM, Zhang B, Pan QM, Liu W, Wang XL, Huang JH, Chen DM, Wang CH, Han XG (2023). Non-linear response of productivity to precipitation extremes in the Inner Mongolia grassland. Functional Ecology, 37, 1663-1673.
DOI URL |
| [25] | Tian DS, Wang H, Sun J, Niu SL (2016a). Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity. Environmental Research Letters, 11, 024012. DOI: 10.1088/1748-9326/11/2/024012. |
| [26] |
Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, et al. (2016b). A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
DOI URL |
| [27] |
Wang J, Gao YZ, Zhang YH, Yang JJ, Smith MD, Knapp AK, Eissenstat DM, Han XG (2019). Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Global Change Biology, 25, 2958-2969.
DOI PMID |
| [28] | Wang XW, Niu MN, Zhang LW, Bai WM, Li GY, Chen AQ (2021). Effects of multi-level nitrogen addition on plant above- and below-ground biomass allocation in a typical temperate steppe. Journal of Henan Normal University (Natural Science Edition), 49(6), 39-46. |
| [王晓薇, 牛萌楠, 张丽薇, 白文明, 李国勇, 陈安群 (2021). 不同施氮水平对温带典型草原植物地上-地下生物量分配模式的影响. 河南师范大学学报(自然科学版), 49(6), 39-46.] | |
| [29] | Wang XY, Chen JG, Zhang YH, Bi HX (2024). Effects of different frequencies of nitrogen addition on chlorophyll in typical grassland in Inner Mongolia. Acta Ecologica Sinica, 44, 4854-4864. |
| [王晓燕, 陈俊刚, 张云海, 毕华兴 (2024). 不同频率氮添加对内蒙古典型草原植物叶绿素的影响. 生态学报, 44, 4854-4864.] | |
| [30] |
Wilcox KR, von Fischer JC, Muscha JM, Petersen MK, Knapp AK (2015). Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Global Change Biology, 21, 335-344.
DOI PMID |
| [31] |
Xiao LJ, Wang GC, Chang JF, Chen YY, Guo XW, Mao XL, Wang MM, Zhang S, Shi Z, Luo YQ, Cheng L, Yu KL, Mo F, Luo ZK (2023). Global depth distribution of belowground net primary productivity and its drivers. Global Ecology and Biogeography, 32, 1435-1451.
DOI URL |
| [32] | Xie DN, Yang DX, Duan L (2023). Response of forest ecosystems to decreasing atmospheric nitrogen deposition. Environmental Science, 44, 2681-2693. |
| [谢丹妮, 仰东星, 段雷 (2023). 森林生态系统对大气氮沉降降低的响应. 环境科学, 44, 2681-2693.] | |
| [33] | Xu ZW, Jiang L, Ren HY, Han XG (2024). Opposing responses of temporal stability of aboveground and belowground net primary productivity to water and nitrogen enrichment in a temperate grassland. Global Change Biology, 30, e17071. DOI: 10.1111/gcb.17071. |
| [34] |
Yahdjian L, Gherardi L, Sala OE (2011). Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. Journal of Arid Environments, 75, 675-680.
DOI URL |
| [35] | Yuan XB (2020). Effects of N Deposition on Plant Community Stability and Soil Microbial Nutrient Utilization Processes in Typical Grassland on Loess Plateau. PhD dissertation, Lanzhou University, Lanzhou. |
| [袁晓波 (2020). 氮沉降对黄土高原典型草原植物群落稳定性及土壤微生物养分利用过程的影响. 博士学位论文, 兰州大学, 兰州.] | |
| [36] |
Yang GJ, Hautier Y, Zhang ZJ, Lü XT, Han XG (2022). Decoupled responses of above- and below-ground stability of productivity to nitrogen addition at the local and larger spatial scale. Global Change Biology, 28, 2711-2720.
DOI URL |
| [37] |
Yang GJ, Stevens C, Zhang ZJ, Lü XT, Han XG (2023). Different nitrogen saturation thresholds for above-, below-, and total net primary productivity in a temperate steppe. Global Change Biology, 29, 4586-4594.
DOI URL |
| [38] | Yang JM (2022). Response Mechanisms of Soil Organic Carbon Fractions to Nitrogen Addition Gradient in an Alpine Meadow. Master degree dissertation, Southwest Minzu University, Chengdu. |
| [杨家明 (2022). 高寒草甸土壤有机碳组分对氮添加梯度的响应机制. 硕士学位论文, 西南民族大学, 成都.] | |
| [39] |
Yang SQ, Bao YJ, Ye JQ, Wu S, Zhang M, Xu MR, Zhao Y, Lyu XT, Han XG (2023). Comparison of photosynthetic-CO2 response process and models of Leymus chinensis under differing nitrogen addition and mowing conditions. Acta Prataculturae Sinica, 32, 160-172.
DOI |
|
[杨斯琪, 鲍雅静, 叶佳琦, 吴帅, 张萌, 徐梦冉, 赵钰, 吕晓涛, 韩兴国 (2023). 氮添加和刈割条件下羊草光合-CO2响应过程及模型比较研究. 草业学报, 32, 160-172.]
DOI |
|
| [40] |
Yang YH, Zhang DY, Wei B, Liu Y, Feng XH, Mao C, Xu WJ, He M, Wang L, Zheng ZH, Wang YY, Chen LY, Peng YF (2023). Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input. Chinese Journal of Plant Ecology, 47, 1-24.
DOI URL |
|
[杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰 (2023). 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制. 植物生态学报, 47, 1-24.]
DOI |
|
| [41] |
Zhang YH, Loreau M, Lü XT, He NP, Zhang GM, Han XG (2016). Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 22, 1445-1455.
DOI PMID |
| [1] | 瞿亭龙, 张新生, 唐远翔, 朱洪锋, 游成铭, 刘思凝, 徐振锋. 多水平氮添加对华西雨屏区杉木人工林凋落叶产量及碳氮磷归还的短期影响[J]. 植物生态学报, 2026, 50(预发表): 1-. |
| [2] | 张诚航, 卫星, 吴纯泽, 王裕尧, 李浩楠. 大气还原态氮干湿沉降下水曲柳和兴安落叶松菌根化苗木生长响应[J]. 植物生态学报, 2026, 50(菌根生态学): 0-. |
| [3] | 邹纪开, 吴佳怡, 谷云懿, 陈宝明. 不同形态氮添加与丛枝菌根真菌对外来入侵植物白花鬼针草竞争力的影响[J]. , 2026, 50(菌根生态学): 0-. |
| [4] | 汪子轩, 邢爱军, 陈子歆, 沈海花, 方精云. 长期氮添加对北方林林下植物功能性状的影响[J]. , 2026, 50(化学计量与功能性状): 0-. |
| [5] | 王睿, 贾会丽, 常玉良, 林茂, 栗国梁, 武帅楷, 苏原, 董宽虎, 王常慧. 不同水平氮添加下晋北赖草叶片化学计量特征及其对光合的影响[J]. 植物生态学报, 2026, 50(化学计量与功能性状): 1-. |
| [6] | 朱润铖, 蔡锡安, 黄娟. 植物防御相关挥发性有机物排放及对氮沉降的响应[J]. 植物生态学报, 2025, 49(5): 681-696. |
| [7] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
| [8] | 俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云. 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(6): 690-700. |
| [9] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
| [10] | 赵常提, 夏青霖, 田地, 陈冰瑞, 朱瑞德, 刘宵含, 俞果, 吉成均. 长期氮添加对温带落叶阔叶林优势植物叶片次生代谢产物的影响[J]. 植物生态学报, 2024, 48(12): 1576-1588. |
| [11] | 马斌, 佘维维, 秦欢, 宣瑞智, 宋春阳, 袁新月, 苗春, 刘靓, 冯薇, 秦树高, 张宇清. 氮水添加对黑沙蒿种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
| [12] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
| [13] | 陆啸飞, 覃张芬, 王斌, 旷远文. 氮添加对南亚热带常绿阔叶林林下植物-土壤植硅体碳的影响[J]. 植物生态学报, 2024, 48(10): 1302-1311. |
| [14] | 张学渊, 高翠萍, 汤靖磊, 朱毅, 田磊, 韩国栋, 任海燕. 内蒙古荒漠草原土壤CH4和CO2通量在不同冻融 阶段对增温和氮添加的响应[J]. 植物生态学报, 2024, 48(10): 1291-1301. |
| [15] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19