植物生态学报 ›› 2011, Vol. 35 ›› Issue (6): 605-614.DOI: 10.3724/SP.J.1258.2011.00605
彭守璋1, 赵传燕1,*(), 许仲林2, 王超2, 柳逸月1
收稿日期:
2011-01-24
接受日期:
2011-03-31
出版日期:
2011-01-24
发布日期:
2011-06-30
通讯作者:
赵传燕
作者简介:
* E-mail: nanzhr@lzb.ac.cn
PENG Shou-Zhang1, ZHAO Chuan-Yan1,*(), XU Zhong-Lin2, WANG Chao2, LIU Yi-Yue1
Received:
2011-01-24
Accepted:
2011-03-31
Online:
2011-01-24
Published:
2011-06-30
Contact:
ZHAO Chuan-Yan
摘要:
根据Hutchinson的n维超体积概念以及物种与资源利用之间的关系, 构建了青海云杉(Picea crassifolia)在三维环境资源空间中的生物-地理模型, 并利用该模型模拟了青海云杉的潜在分布及其对环境资源的利用状况。结果表明: 青海云杉在生长季平均气温、多年平均降水量及太阳直接辐射三维环境资源空间上的最佳配置为9 ℃、360 mm和1.9 × 103 kW·h·m-2; 用三元方程式的拟合结果在大范围上预测了青海云杉的潜在分布区, 并给出了其在对应地理位置上的生长状况。
彭守璋, 赵传燕, 许仲林, 王超, 柳逸月. 黑河上游祁连山区青海云杉生长状况及其潜在分布区的模拟. 植物生态学报, 2011, 35(6): 605-614. DOI: 10.3724/SP.J.1258.2011.00605
PENG Shou-Zhang, ZHAO Chuan-Yan, XU Zhong-Lin, WANG Chao, LIU Yi-Yue. Potential distribution of Qinghai spruce and assessment of its growth status in the upper reaches of the Heihe River in the Qilian Mountains of China. Chinese Journal of Plant Ecology, 2011, 35(6): 605-614. DOI: 10.3724/SP.J.1258.2011.00605
图2 研究区和青海云杉分布区在多年生长季平均气温梯度上所占栅格数的分布图。
Fig. 2 Distribution of grids for both study area and Picea crassifolia area with the gradient of average air temperature in growing season.
图3 研究区和青海云杉分布区在多年平均降水量梯度上所占栅格数的分布图。
Fig. 3 Distribution of grids for both study area and Picea crassifolia forest area with the gradient of average annual precipitation.
图6 青海云杉分布频数在年平均降水量和生长季平均气温梯度上的拟合图。
Fig. 6 Fitting of Picea crassifolia distribution frequency with the gradients of average annual precipitation and average air temperature in growing season.
图7 青海云杉分布频数在年平均降水量和太阳辐射梯度上的拟合图。
Fig. 7 Fitting of Picea crassifolia distribution frequency with the gradients of average annual precipitation and solar radiation.
图8 青海云杉分布频数在年平均降水量、生长季平均气温及太阳辐射梯度上的散点图。
Fig. 8 Scatter plots of Picea crassifolia distribution frequency with the gradients of average annual precipitation, average air temperature in growing season and solar radiation.
[1] |
Austin MP, Meyers JA (1996). Current approaches to modelling the environmental niche of eucalypts: implications for management of forest biodiversity. Forest Ecology and Management, 85, 95-106.
DOI URL |
[2] |
Beaumont LJ, Hughes L, Poulsen M (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling, 186, 251-270.
DOI URL |
[3] |
Beniston M (2003). Climatic change in mountain regions: a review of possible impacts. Climatic Change, 59, 5-31.
DOI URL |
[4] |
Busing RT, White PS, MacKenzie MD (1993). Gradient analysis of old spruce-fir forests of the Great Smoky Mountains circa 1935. Canadian Journal of Botany, 71, 951-958.
DOI URL |
[5] |
Carpenter G, Gillison AN, Winter J (1993). DOMAIN: a flexible modeling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2, 667-680.
DOI URL |
[6] | Chang XX (常学向), Zhao AF (赵爱芬), Wang JY (王金叶), Chang ZQ (常宗强), Jin BW (金博文) (2002). Precipitation characteristic and interception of forest in Qilian Mountain. Plateau Meteorology (高原气象), 21, 274-280. (in Chinese with English abstract) |
[7] | Che ZX (车宗玺), Liu XD (刘贤德), Jing WM (敬文茂), Wang SL (王顺利), Luo LF (罗龙发), Ge SL (葛双兰) (2006). Vertical distribution characteristics and hydrological function analysis of bryophytes in Qilian Mountains forest areas. Journal of Soil and Water Conservation (水土保持学报), 20(6), 71-74. (in Chinese with English abstract) |
[8] |
Frescino TS, Edwards TC Jr, Moisen GG (2001). Modeling spatially explicit forest structural attributes using generalized additive models. Journal of Vegetation Science, 12, 15-26.
DOI URL |
[9] |
Guisan A, Zimmermann NE (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147-186.
DOI URL |
[10] | Hastie TJ, Tibshirani RJ (1990). Generalized Additive Models. Chapman and Hall London. |
[11] |
Hirzel AH, Hausser J, Chessel D, Perrin N (2002). Ecological- niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83, 2027-2036.
DOI URL |
[12] | Hutchinson GE (1957). Concluding remarks. Cold Spring Harbor Symposium Quantitative Biology, 22, 415-427. |
[13] |
Keuchel J, Naumann S, Heiler M, Siegmund A (2003). Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data. Remote Sensing of Environment, 86, 530-541.
DOI URL |
[14] | Liu XC (刘兴聪) (1992). Picea Crassifolia (青海云杉). Lanzhou University Press, Lanzhou. |
[15] | Mackenzie A, Ball AS, Virdee SR (1998). Instant Notes in Ecology. BIOS Scientific Publishers London. |
[16] |
May RM, MacArthur RH (1972). Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences of the United States of America, 69, 1109-1113.
URL PMID |
[17] | McCullagh P, Nelder JA (1989). Generalized Liner Models 2nd edn. Chapman and Hall London. |
[18] | Peng SZ, Zhao CY, Zheng XL (2010). Study on the relationship between human activities and spatial distribution changes of Tamarix in Ejina oasis. International Geoscience and Remote Sensing Symposium (IGARSS), 6, 895-898. |
[19] |
Sesnie SE, Gessler PE, Finegan B, Thessler S (2008). Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sensing of Environment, 112, 2145-2159.
DOI URL |
[20] |
Stockwell DRB, Noble IR (1992). Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Mathematics and Computers in Simulation, 33, 385-390.
DOI URL |
[21] |
Walker PA, Cocks KD (1991). HABITAT: a procedure for modeling a disjoint environmental envelope for a plant or animal species. Global Ecology and Biogeography Letters, 1, 108-118.
DOI URL |
[22] | Wang JY (王金叶), Wang YH (王彦辉), Wang SL (王顺利), Yu PT (于澎涛), Zhang XL (张学龙), Ge SL (葛双兰) (2006). A preliminary study on the precipitation variation of complex watershed on forestry and grasses of Qilian Mountains. Forest Research (林业研究), 19, 416-422. (in Chinese with English abstract) |
[23] |
Whittaker RH (1972). Evolution and measurement of species diversity. Taxon, 21, 213-251.
DOI URL |
[24] |
Wilson RP (2010). Resource partitioning and niche hyper- volume overlap in free-living Pygoscelid penguins. Functional Ecology, 24, 646-657.
DOI URL |
[25] | Xu ZL, Zhao CY, Feng ZD (2009). A study of the impact of climate change on the potential distribution of Qinghai spruce (Picea crassifolia) in Qilian Mountains. Acta Ecologica Sinica (生态学报), 29, 278-285. |
[26] | Zhao CY (赵传燕), Bie Q (别强), Peng HH (彭焕华) (2010). Analysis of the niche space of Picea crassifolia on the northern slope of Qilian Mountains. Acta Geographica Sinica (地理学报), 65, 113-121. (in Chinese with English abstract) |
[27] |
Zhao CY, Nan ZR, Cheng GD (2005). Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian Mountains, China. Ecological Modelling, 189, 209-220.
DOI URL |
[28] |
Zhao CY, Nan ZR, Cheng GD, Zhang JH, Feng ZD (2006). GIS-assisted modelling of the spatial distribution of Qinghai spruce (Picea crassifolia) in the Qilian Mountains, northwestern China based on biophysical parameters. Ecological Modelling, 191, 487-500.
DOI URL |
[1] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[2] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[3] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[4] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[5] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[6] | 刘晓彤, 袁泉, 倪健. 中国植物分布模拟研究现状[J]. 植物生态学报, 2019, 43(4): 273-283. |
[7] | 杨军军, 封建民, 何志斌. 基于热比率法的青海云杉林蒸腾量估算[J]. 植物生态学报, 2018, 42(2): 195-201. |
[8] | 龚容, 高琼, 王亚林. 围封对温带半干旱典型草原群落种间关联的影响[J]. 植物生态学报, 2016, 40(6): 554-563. |
[9] | 陈世伟, 刘旻霞, 贾芸, 安琪, 安嫣菲. 甘南亚高山草甸围封地群落演替及植物光合生理特征[J]. 植物生态学报, 2015, 39(4): 343-351. |
[10] | 金佳鑫,江洪,彭威,张林静,卢学鹤,徐建辉,张秀英,王颖. 基于物种分布模型评价土壤因子对我国毛竹潜在分布的影响[J]. 植物生态学报, 2013, 37(7): 631-640. |
[11] | 周婧, 李巧云, 肖亮, 蒋建雄, 易自力. 芒和五节芒在中国的潜在分布[J]. 植物生态学报, 2012, 36(6): 504-510. |
[12] | 张鹏, 王刚, 张涛, 陈年来. 祁连山两种优势乔木叶片δ13C的海拔响应及其机理[J]. 植物生态学报, 2010, 34(2): 125-133. |
[13] | 马松梅, 张明理, 张宏祥, 孟宏虎, 陈曦. 利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J]. 植物生态学报, 2010, 34(11): 1327-1335. |
[14] | 赵传燕, 沈卫华, 彭焕华. 祁连山区青海云杉林冠层叶面积指数的反演方法[J]. 植物生态学报, 2009, 33(5): 860-869. |
[15] | 张涛, 安黎哲, 陈拓, 代春艳, 陈年来. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报, 2009, 33(4): 802-811. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19