植物生态学报 ›› 2005, Vol. 29 ›› Issue (4): 543-549.DOI: 10.17521/cjpe.2005.0073
李德军1,2,3, 莫江明1,*(), 方运霆1, 李志安1
收稿日期:
2004-01-05
接受日期:
2004-12-20
出版日期:
2005-01-05
发布日期:
2005-07-31
通讯作者:
莫江明
基金资助:
LI De-Jun1,2,3, MO Jiang-Ming1,*(), FANG Yun-Ting1, LI Zhi-An1
Received:
2004-01-05
Accepted:
2004-12-20
Online:
2005-01-05
Published:
2005-07-31
Contact:
MO Jiang-Ming
About author:
* E-mail: mojm@scib.ac.cn摘要:
探讨了南亚热带季风常绿阔叶林两种优势树种荷木(Schima superba)和黄果厚壳桂(Cryptocarya concinna)幼苗的生物量及其分配对氮沉降增加的响应。实验分为对照(CK)、T5、T10、T15和T30 5个处理,每个处理设置3次重复。所施氮肥为NH4NO3,以溶液方式喷施,5个处理浓度分别为0、0.12、0.24、0.36、0.72 mol N·L-1。每月喷施2次,5个样方1年喷施的总氮量分别相当于氮沉降率0、5、10、15、30 g N·m-2·a-1。经过11个月的施氮处理,两种幼苗对氮沉降的响应存在差异,其中黄果厚壳桂幼苗的基径、株高、全株生物量和相对生长速率除最高处理T30外,均高于对照,但荷木幼苗的基径、全株生物量和相对生长速率除T10外,均小于对照。氮处理也对生物量的分配产生了明显的影响,两种幼苗的叶重比以T30最低,表明高氮处理不利于幼苗叶片的生长;枝重比均以T30最高,反映了高氮处理的幼苗生物量分配到枝干的比例最高;根重比和根冠比均以对照样方幼苗的最高,表明氮处理抑制根的生长,分配到根部分的生物量下降。总的来看,经过11个月的处理,除最高处理T30外,氮处理仍对黄果厚壳桂幼苗的生长有促进作用,而对荷木幼苗的生长则趋向于一定程度的抑制效应,表明黄果厚壳桂幼苗更能耐受高氮条件。
李德军, 莫江明, 方运霆, 李志安. 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 2005, 29(4): 543-549. DOI: 10.17521/cjpe.2005.0073
LI De-Jun, MO Jiang-Ming, FANG Yun-Ting, LI Zhi-An. EFFECTS OF SIMULATED NITROGEN DEPOSITION ON BIOMASS PRODUCTION AND ALLOCATION IN SCHIMA SUPERBA AND CRYPTOCARYA CONCINNA SEEDLINGS IN SUBTROPICAL CHINA. Chinese Journal of Plant Ecology, 2005, 29(4): 543-549. DOI: 10.17521/cjpe.2005.0073
图1 模拟氮沉降对幼苗基径的影响
Fig.1 Effects of nitrogen deposition on stem base diameter of the subtropical tree seedlings CK: 0 T5:5 g N·m-2·a-1 T10: 10 g N·m-2·a-1 T15: 15 g N·m-2·a-1 T30: 30 g N·m-2·a-1
全株生物量 WPW(g) | 叶重比 LWR (g·g-1) | 枝重比 SBWR (g·g-1) | 根重比 RWR (g·g-1) | 根/冠 R/S | ||||
---|---|---|---|---|---|---|---|---|
荷木 Schima superba | ||||||||
CK | 7.07(0.31)b | 0.30(0.02)a | 0.37(0.01)c | 0.34(0.02)a | 0.53(0.06)a | |||
T5 | 5.01(0.60)b | 0.24(0.04)ab | 0.49(0.05)ab | 0.27(0.01)b | 0.40(0.02)b | |||
T10 | 11.85(1.39)a | 0.29(0.03)a | 0.41(0.01)bc | 0.30(0.02)ab | 0.42(0.04)ab | |||
T15 | 6.66(1.24)b | 0.31(0.02)a | 0.46(0.03)ab | 0.23(0.01)b | 0.31(0.02)b | |||
T30 | 4.25(0.27)b | 0.21(0.01)b | 0.51(0.02)a | 0.28(0.02)ab | 0.41(0.04)ab | |||
黄果厚壳桂 Cryptocarya concinna | ||||||||
CK | 4.59(0.73)b | 0.31(0.04) | 0.39(0.02)ab | 0.30(0.03)a | 0.44(0.05)a | |||
T5 | 6.51(1.22)ab | 0.36(0.03) | 0.36(0.02)b | 0.28(0.02)ab | 0.38(0.05)a | |||
T10 | 6.30(1.05)b | 0.34(0.01) | 0.42(0.01)a | 0.24(0.01)bc | 0.32(0.02)b | |||
T15 | 9.62(2.04)a | 0.36(0.01) | 0.43(0.02)a | 0.21(0.02)c | 0.29(0.02)b | |||
T30 | 3.92(1.09)b | 0.30(0.01) | 0.44(0.01)a | 0.26(0.02)abc | 0.36(0.02)ab |
表1 模拟氮沉降对幼苗生物量及其分配的影响
Table 1 Effects of N deposition on biomass and its allocation among leaves, stem and branches and root
全株生物量 WPW(g) | 叶重比 LWR (g·g-1) | 枝重比 SBWR (g·g-1) | 根重比 RWR (g·g-1) | 根/冠 R/S | ||||
---|---|---|---|---|---|---|---|---|
荷木 Schima superba | ||||||||
CK | 7.07(0.31)b | 0.30(0.02)a | 0.37(0.01)c | 0.34(0.02)a | 0.53(0.06)a | |||
T5 | 5.01(0.60)b | 0.24(0.04)ab | 0.49(0.05)ab | 0.27(0.01)b | 0.40(0.02)b | |||
T10 | 11.85(1.39)a | 0.29(0.03)a | 0.41(0.01)bc | 0.30(0.02)ab | 0.42(0.04)ab | |||
T15 | 6.66(1.24)b | 0.31(0.02)a | 0.46(0.03)ab | 0.23(0.01)b | 0.31(0.02)b | |||
T30 | 4.25(0.27)b | 0.21(0.01)b | 0.51(0.02)a | 0.28(0.02)ab | 0.41(0.04)ab | |||
黄果厚壳桂 Cryptocarya concinna | ||||||||
CK | 4.59(0.73)b | 0.31(0.04) | 0.39(0.02)ab | 0.30(0.03)a | 0.44(0.05)a | |||
T5 | 6.51(1.22)ab | 0.36(0.03) | 0.36(0.02)b | 0.28(0.02)ab | 0.38(0.05)a | |||
T10 | 6.30(1.05)b | 0.34(0.01) | 0.42(0.01)a | 0.24(0.01)bc | 0.32(0.02)b | |||
T15 | 9.62(2.04)a | 0.36(0.01) | 0.43(0.02)a | 0.21(0.02)c | 0.29(0.02)b | |||
T30 | 3.92(1.09)b | 0.30(0.01) | 0.44(0.01)a | 0.26(0.02)abc | 0.36(0.02)ab |
侧根最大长度 Maximum length of lateral roots (cm) | 主根长度 Taproot length (cm) | |
---|---|---|
荷木 Schima superba | ||
CK | 13.99(1.25) | 6.37(0.34)b |
T5 | 10.68(2.28) | 6.47(1.33)b |
T10 | 16.08(5.88) | 10.70(3.39)a |
T15 | 11.00(1.67) | 6.03(0.35)b |
T30 | 11.10(1.89) | 7.49(0.04)ab |
黄果厚壳桂 Cryptocarya concinna | ||
CK | 21.07(2.26)a | 14.24(1.78) |
T5 | 17.29(0.62)ab | 13.11(1.60) |
T10 | 14.20(1.89)bc | 12.11(1.89) |
T15 | 12.83(0.48)bc | 12.04(0.79) |
T30 | 10.68(2.83)c | 10.62(2.88) |
表2 主根最大长度和侧根长度
Table 2 Length of taproots and lateral roots
侧根最大长度 Maximum length of lateral roots (cm) | 主根长度 Taproot length (cm) | |
---|---|---|
荷木 Schima superba | ||
CK | 13.99(1.25) | 6.37(0.34)b |
T5 | 10.68(2.28) | 6.47(1.33)b |
T10 | 16.08(5.88) | 10.70(3.39)a |
T15 | 11.00(1.67) | 6.03(0.35)b |
T30 | 11.10(1.89) | 7.49(0.04)ab |
黄果厚壳桂 Cryptocarya concinna | ||
CK | 21.07(2.26)a | 14.24(1.78) |
T5 | 17.29(0.62)ab | 13.11(1.60) |
T10 | 14.20(1.89)bc | 12.11(1.89) |
T15 | 12.83(0.48)bc | 12.04(0.79) |
T30 | 10.68(2.83)c | 10.62(2.88) |
[1] | Aber JD, McDowell W, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in northern forest ecosystems, hypotheses revisited. BioScience, 48,921-934. |
[2] | Berger TW, Glatzel G (2001). Response of Quercus petraea seedlings to nitrogen fertilization. Forest Ecology and Management, 149,1-14. |
[3] | Binkley D, Son Y, Valentine WD (2000). Do forest receive occult inputs of nitrogen? Ecosystems, 3,321-331. |
[4] | Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196,43-56. |
[5] | Castro MS, Peterjohn WT, Melillo JM, Steudler PA (1994). Effects of nitrogen fertilization on the fluxes of N2O, CH4, andCO2 from soils in a Florida slash pine plantation. Canadian Journal of Forest Research, 24,9-13. |
[6] | Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998). Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecological Applications, 8,706-733. |
[7] | Galloway JN, Cowling EB (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31,64-71. |
[8] | Hall SH, Matson PA (1999). Nitrogen oxide emission after nitrogen additions in tropical forests. Nature, 400,152-155. |
[9] | Hao JM(郝吉明), Xie SD(谢绍东), Duan L(段雷), Ye XM(叶雪梅) (2001). Critical Load of Acid Deposition and Applications (酸沉降的临界负荷及其应用). Tsinghua University Press, Beijing. (in Chinese) |
[10] | Hättenschwiler S, Kørner C (1998). Biomass allocation and canopy development in spruce model ecosystems under elevated CO2 and increased N deposition. Oecologia, 113,104-114. |
[11] | He YG (何宜庚) (1983). Soils of Dinghushan Nature Reserve of Guangdong Province. Journal of South China Normal University (华南师范大学学报), 1,87-97. (in Chinese) |
[12] | Hou AM(侯爱敏), Peng SL(彭少麟), Zhou GY(周国逸) (2002). Tree-ring chemical changes and possible impacts of acid precipitation in Dinghushan, South China. Acta Ecologica Sinica (生态学报), 22,1552-1559. (in Chinese with English abstract) |
[13] | Huang ZF(黄展帆), Fan ZG(范征广) (1982). Climate of Dinghushan. Tropical and Subtropical Forest Ecosystem (热带亚热带森林生态系统研究), 1,11-16. (in Chinese) |
[14] | Huang ZL(黄忠良), Ding MM(丁明懋), Zhang ZP(张祝平) (1994). The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghushan. Acta Phytoecologica Sinica (植物生态学报), 18,194-199. (in Chinese with English abstract) |
[15] | Li DJ(李德军), Mo JM(莫江明), Fang YT(方运霆), Cai XA(蔡锡安), Xue JH(薛王景花), Xu GL(徐国良) (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica (生态学报), 24,876-882. (in Chinese with English abstract) |
[16] | Li DJ(李德军), Mo JM(莫江明), Fang YT(方运霆), Peng SL(彭少麟), Gundersen P (2003). Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica (生态学报), 23,1891-1900. (in Chinese with English abstract) |
[17] | Liu SR(刘世荣) (1992). Biogeochemical cycling characteristics of Dahurian Larch plantation ecosystem. Chinese Journal of Ecology (生态学杂志), 11(5),1-6. (in Chinese with English abstract) |
[18] | Magill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler PA (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3,238-253. |
[19] | Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997). Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecological Applications, 7,402-415. |
[20] | Matson PA, McDowell WH, Townsen AR, Vitousek PM (1999). The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry, 46,67-83. |
[21] | McNulty SG., Aber JD, Newman SD (1996). Nitrogen saturation in a high elevation New England spruce-fir stand. Forest Ecology and Management, 84,109-121. |
[22] | Nadelhoffer KJ, Emmett BA, Gundersen P, Kjϕnaas OJ, Koopmansk CJ, Schleppi P, Tietemak A, Wright RF (1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398,145-148. |
[23] | Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15,453-461. |
[24] | Nakaji T, Takenaga S, Kuroha M, Izuta T (2002). Photosynthetic response of Pinus densiflora seedlings to high nitrogen load. Environmental Sciences, 9,269-282. |
[25] | Persson H, Ahlstrøm K, Clemensson AL (1998). Nitrogen addition and removal at Gårdsjøn- effects on fine-root growth and fine-root chemistry. Forest Ecology and Management, 101,199-206. |
[26] | Ren R(任仁), Mi FJ(米丰杰), Bai NB(白乃彬) (2002). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University (北京工业大学学报), 26,90-95. |
[27] |
Schulze ED (1989). Air pollution and forest decline in a spruce (Picea abies) forest. Science, 244,776-783.
URL PMID |
[28] | Thimonier A, Dupouey JL, Bost F, Becker M (1994). Simultaneous eutrophication and acidification of a forest ecosystem in North-East France. New Phytologist, 126,533-539. |
[29] | Townsend AR, Braswell BH, Holland EA, Penner JE (1996). Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecological Applications, 6,804-814. |
[30] | van Breemen N, van Dijk HFG (1988). Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands. Environmental Pollution, 54,249-274. |
[31] | van Dijk HFG, de Louw MHJ, Roelofs JGM, Verburgh JJ (1990). Impact of artificial, ammonium-enriched rainwater on soils and young coniferous trees in a greenhouse. II. Effects on the trees. Environmental Pollution, 63,41-59. |
[32] | Vitousek PM (1984). Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65,285-298. |
[33] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7,737-750. |
[34] | Wu C(吴楚), Wang ZQ (王政权), Fan ZQ (范志强), Sun HL (孙海龙) (2004). Effects of different concentrations and form ratios of nitrogen on chlorophyl biosynthesis, photosynthesis, and biomass partitioning in Fraxinus mandshurica seedlings. Acta Phytoecologica Sinica (植物生态学报), 27,771-779. |
[35] |
Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Chen GX, Han SH, Hu F (2002). The Asian nitrogen case study. Ambio, 31,79-87.
URL PMID |
[36] | Zhou GY(周国逸), Yan JH(闫俊华) (2001). The influence of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems. Acta Ecologica Sinica (生态学报), 21,2002-2012. (in Chinese with English abstract) |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[10] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[11] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[12] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[13] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[14] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[15] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19