植物生态学报 ›› 2006, Vol. 30 ›› Issue (1): 57-63.DOI: 10.17521/cjpe.2006.0008
所属专题: 稳定同位素生态学
收稿日期:
2005-03-28
接受日期:
2005-09-29
出版日期:
2006-03-28
发布日期:
2006-01-30
通讯作者:
黄建辉
作者简介:
*E-mail:jhhuang@ibcas.ac.cn基金资助:
SUN Shuang-Feng1,2, HUANG Jian-Hui1,*(), LIN Guang-Hui1, HAN Xing-Guo1
Received:
2005-03-28
Accepted:
2005-09-29
Online:
2006-03-28
Published:
2006-01-30
Contact:
HUANG Jian-Hui
摘要:
对三峡库区木鱼岛上马尾松(Pinus massoniana)、槲栎(Quercus aliena)和栓皮栎(Q. variabilis)组成的针阔混交林成林和幼林的光合速率(Pn)、气孔导度(Gs)、清晨和中午水势(ψpd和ψmd)以及叶片稳定碳同位素(δ13C)进行了测定。实验结果表明:针叶树马尾松Pn、Gs均低于阔叶树槲栎和栓皮栎(差异达到极显著水平,p<0.001),但马尾松内在水分利用效率(WUEi, Pn/Gs)却高于槲栎(p=0.003)和栓皮栎(p=0.025)。反映了裸子植物和被子植物木质部不同的水力特性。针阔叶树幼树的Pn和Gs高于成年树,但WUEi和δ13C却低于成年树。表明水分利用效率与水分在树体内传输的距离有关。幼树属于挥霍型水分利用策略,成年树属保守型水分利用策略。三峡大坝的建设所造成的生态环境的改变可能会对三峡库区针阔混交林的演替产生一定的影响,但这需要长期的研究。
孙双峰, 黄建辉, 林光辉, 韩兴国. 三峡库区岸边共存松栎树种水分利用策略比较. 植物生态学报, 2006, 30(1): 57-63. DOI: 10.17521/cjpe.2006.0008
SUN Shuang-Feng, HUANG Jian-Hui, LIN Guang-Hui, HAN Xing-Guo. CONTRASTING WATER USE STRATEGY OF CO-OCCURRING PINUS-QUERCUS TREES IN THREE GORGES RESERVOIR. Chinese Journal of Plant Ecology, 2006, 30(1): 57-63. DOI: 10.17521/cjpe.2006.0008
图1 3种植物不同生长阶段的光合速率、气孔导度和内在水分利用效率(平均值±标准误) 大写字母用来表示成年树不同树种间的差异,小写字母表示幼树不同树种间的差异,字母相同表示差异不显著。*表示同一树种成年与幼树间的差异水平(p<0.05)
Fig.1 Photosynthesis, stomatal conductance and intrinsic water use efficiency of mature and sapling of the three species (Means±SE) Different capitals indicate significant difference among mature trees, while different small letters show significant difference among saplings. * indicates the values between the same mature and sapling species is significant (p<0.05)
生长阶段 Age class | 物种 Species | 清晨水势ψpd | 中午水势ψmd | ψpd-ψmd |
---|---|---|---|---|
成年树Mature | 马尾松Pinus massoniana | -0.39±0.09A | -1.11±0.10A | 0.72 |
槲栎 Quercus aliena | -0.24±0.02A | -2.34±0.17B | 2.10 | |
栓皮栎Q. variabilis | -0.23±0.06A | -2.49±0.18B | 2.25 | |
幼树 Sapling | 马尾松Pinus massoniana | -0.31±0.01a | -0.97±0.08a | 0.67 |
槲栎 Quercus aliena | -0.19±0.03b | -1.52±0.17b* | 1.33 | |
栓皮栎Q. variabilis | -0.13±0.04b | -2.66±0.08c | 2.53 |
表1 植物不同生长阶段的清晨水势(ψpd, MPa)和午间水势(ψmd, MPa)
Table 1 Predawn leaf water potential values (ψpd, MPa) (Mean±SE) and midday leaf water potentials (ψmd, MPa) of the three species in different age classes (Mean±SE)
生长阶段 Age class | 物种 Species | 清晨水势ψpd | 中午水势ψmd | ψpd-ψmd |
---|---|---|---|---|
成年树Mature | 马尾松Pinus massoniana | -0.39±0.09A | -1.11±0.10A | 0.72 |
槲栎 Quercus aliena | -0.24±0.02A | -2.34±0.17B | 2.10 | |
栓皮栎Q. variabilis | -0.23±0.06A | -2.49±0.18B | 2.25 | |
幼树 Sapling | 马尾松Pinus massoniana | -0.31±0.01a | -0.97±0.08a | 0.67 |
槲栎 Quercus aliena | -0.19±0.03b | -1.52±0.17b* | 1.33 | |
栓皮栎Q. variabilis | -0.13±0.04b | -2.66±0.08c | 2.53 |
图2 3种树木不同生长阶段叶片δP13PC的比较(平均值±标准误) 大写字母用来表示成年树叶片δP13PC值种间差异,小写字母表示幼树种间差异,字母相同表示差异不显著。*表示同一树种成年与幼树间的差异水平(p<0.05)
Fig.2 Foliar δP13PC of mature and saplings of the three species (Mean±SE) Different capitals indicate significant difference among mature trees, while different small letters show significant difference among saplings. * indicates the values between the same mature and sapling species is significant (p<0.05)
[1] |
Andrade JL, Meinzer FC, Goldstein G, Holbrook NM, Cavelier J, Jackson P, Silvera K (1998). Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest. Oecologia, 115,463-471.
DOI URL PMID |
[2] | Becker P, Meinzer FC, Wullschleger SD (2000). Hydraulic limitation of tree height: a critique. Functional Ecology, 14,4-11. |
[3] | Bloom AJ, Chapin FS Ш, Mooney HA (1985). Resource limitation in plants — an economic analogy. Annual Review of Ecology and Systematics, 16,363-392. |
[4] |
Bond BJ, Kavanagh KL (1999). Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiology, 19,503-510.
DOI URL PMID |
[5] | Bond WJ (1989). The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society, 36,227-249. |
[6] |
Castell C, Terradas J, Tenhunen JD (1994). Water relations, gas exchange, and growth of resprouts and mature plant shoots of Arbutus unedo L. & Quercus ilex L. Oecologia, 98,201-211.
DOI URL PMID |
[7] | Cavender-Bares J, Bazzaz FA (2000). Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia, 124,8-18. |
[8] | Chapin FS Ш, Schulze ED, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21,423-447. |
[9] | Chen WL (陈伟烈), Zhang XQ (张喜群), Liang SY (梁松筠), Jin YX (金义兴), Yang QX (杨启修) (1994). Plants and Composite Agricultural Ecosystems of the Three Gorges Reservoir Region (三峡库区的植物与复合农业生态系统). Science Press, Beijing. (in Chinese) |
[10] | Cheng RM (程瑞梅), Xiao WF (肖文发), Li JW (李建文), Ma J (马娟), Han JJ (韩景军) (2002). Analysis on forest plant diversity in the Three Gorges Reservoir Area. Chinese Journal of Applied Ecology (应用生态学报), 13,35-40. (in Chinese with English abstract) |
[11] | Damesin C, Rambal S (1995). Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree ( Quercus pubescens) during a severe summer drought. New Phytologist, 131,159-167. |
[12] | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33,507-559. |
[13] |
Donovan LA, Ehleringer JR (1991). Ecophysiological differences among juvenile and reproductive plants of several woody species. Oecologia, 86,594-597.
DOI URL PMID |
[14] | Farquhar GD, O'Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9,121-137. |
[15] |
Hubbard RM, Bond BJ, Ryan MG (1999). Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees. Tree Physiology, 19,165-172.
DOI URL PMID |
[16] |
Kolb TE, Stone JE (2000). Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest. Tree Physiology, 20,1-12.
DOI URL PMID |
[17] | Levitt J (1980). Responses of Plants to Environmental Stresses. Academic Press, NewYork. |
[18] |
Llorens L, Penuelas J, Filella I (2003). Diurnal and seasonal variations in the photosynthetic performance and water relations of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum. Physiologia Plantarum, 118,84-95.
DOI URL PMID |
[19] | Martinez-Vilalta J, Sala A, Pinol J (2004). The hydraulic architecture of Pinaceae — a review. Plant Ecology, 171,3-13. |
[20] | McDowell NG, Phillips N, Lunch C, Bond BJ, Ryan MG (2002). An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiology, 22,763-774. |
[21] | Mediavilla S, Escudero A (2003). Mature trees versus seedlings: differences in leaf traits and gas exchange patterns in three co-occurring Mediterranean oaks. Annals of Forest Science, 60,455-460. |
[22] | Mediavilla S, Escudero A (2004). Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management, 187,281-294. |
[23] | Mencuccini M, Grace J (1996). Developmental patterns of above-ground hydraulic conductance in a Scots pine ( Pinus sylvestris L.) age sequence. Plant, Cell and Environment, 19,939-948. |
[24] |
Mencuccini M, Grace J, Fioravanti M (1997). Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiology, 17,105-13.
DOI URL PMID |
[25] |
Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Cermak J (2003). Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 23,237-245.
DOI URL PMID |
[26] |
Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47,235-242.
DOI URL |
[27] |
Sperry JS, Hacke UG, Oren R, Comstock JP (2002). Water deficits and hydraulic limits to leaf water supply. Plant, Cell and Environment, 25,251-263.
URL PMID |
[28] |
Stout DH, Sala A (2003). Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiology, 23,43-50.
DOI URL PMID |
[29] |
Walcroft AS, Silvester WB, Grace JC, Carson SD, Waring RH (1996). Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiology, 16,281-286.
URL PMID |
[30] |
Warren CR, Adams AM (2000). Water availability and branch length determine δ 13C in foliage of Pinus pinaster. Tree Physiology, 20,637-643.
URL PMID |
[31] |
Wu JG, Huang JH, Han XG, Xie ZQ, Gao XM (2003). Three-Gorges Dam—experiment in habitat fragmentation? Science, 300,1239-1240.
DOI URL PMID |
[32] |
Yang WQ, Murthy R, King P, Topa MA (2002). Diurnal changes in gas exchange and carbon partitioning in needles of fast- and slow-growing families of loblolly pine (Pinus taeda). Tree Physiology, 22,489-498.
URL PMID |
[1] | 邓蓓 王晓锋 廖君. 环境胁迫影响三峡库区消落带草本和木本植物生理生态特征的整合分析[J]. 植物生态学报, 2024, 48(5): 623-637. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[4] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[5] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[6] | 董琳琳, 普晓妍, 张璐璐, 宋亮, 鲁志云, 李苏. 亚热带森林附生地衣压力-体积曲线分析及其适用性[J]. 植物生态学报, 2021, 45(3): 274-285. |
[7] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[8] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[9] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[10] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[11] | 陈禹含, 罗亦夫, 孙鑫晟, 魏冠文, 黄文军, 罗芳丽, 于飞海. 根部水淹和土壤养分提升对三峡库区消落带水蓼生长和繁殖特性的影响[J]. 植物生态学报, 2020, 44(11): 1184-1194. |
[12] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[13] | 谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹. 桂西南喀斯特季雨林木本植物的水力安全[J]. 植物生态学报, 2019, 43(3): 227-237. |
[14] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[15] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19