植物生态学报 ›› 2007, Vol. 31 ›› Issue (4): 607-612.DOI: 10.17521/cjpe.2007.0077
赵磊, 智颖飙, 李红丽, 安树青*(), 邓自发, 周长芳
收稿日期:
2006-07-19
接受日期:
2007-01-05
出版日期:
2007-07-19
发布日期:
2007-07-30
通讯作者:
安树青
作者简介:
*E-mail:anshq@nju.edu.cn基金资助:
ZHAO Lei, ZHI Ying-Biao, LI Hong-Li, AN Shu-Qing*(), DENG Zi-Fa, ZHOU Chang-Fang
Received:
2006-07-19
Accepted:
2007-01-05
Online:
2007-07-19
Published:
2007-07-30
Contact:
AN Shu-Qing
摘要:
克隆植物大米草 (Spartina anglica) 目前在我国出现了严重的自然衰退 (Dieback),为了阐明大米草衰退的机理,分析影响大米草形态可塑性的因素与自然衰退之间的相关性,以期为近缘植物互花米草 (S. alterniflora) 这一爆发种群的生物控制提供借鉴,对3种不同初始克隆分株数 (单克隆、三克隆和五克隆) 大米草的克隆生长、生物量累积与分配和异速生长特征进行了野外栽培试验。研究结果表明,初始克隆分株数对间隔子长度影响较弱;初始多克隆的分支强度高于初始单克隆;初始三克隆和五克隆在总生物量 (7.921 5~10.431 7 g 和 8.903 9~10.431 7 g)、地上生物量 (3.396 1~4.255 8 g 和3.618 4~4.338 9 g)、地下生物量 (4.286 9~5.206 6 g 和 5.298 8~6.079 3 g)和根状茎生物量 (1.318 6~1.767 7 g 和 1.499 1~2.038 7 g) 积累上均显著高于初始单克隆,不同初始克隆分株数条件下根生物量差异不显著;初始多克隆倾向于将资源更多地分配给根状茎,而初始单克隆倾向于将更多的资源分配给根系。由此推断,在不同初始克隆分株数条件下,大米草的形态可塑性和生物量分配格局的差异显示出在同样资源格局下,初始多克隆的克隆生殖能力较初始单克隆强。初始多克隆生长的大米草较初始单克隆生长的大米草更能占据优势生境,选择生境“觅养”的能力与克隆繁殖能力更强。
赵磊, 智颖飙, 李红丽, 安树青, 邓自发, 周长芳. 初始克隆分株数对大米草表型可塑性及生物量分配的影响. 植物生态学报, 2007, 31(4): 607-612. DOI: 10.17521/cjpe.2007.0077
ZHAO Lei, ZHI Ying-Biao, LI Hong-Li, AN Shu-Qing, DENG Zi-Fa, ZHOU Chang-Fang. EFFECTS OF INITIAL CLONE NUMBER ON MORPHOLOGICAL PLASTICITY AND BIOMASS ALLOCATION OF THE INVASIVE SPARTINA ANGLICA. Chinese Journal of Plant Ecology, 2007, 31(4): 607-612. DOI: 10.17521/cjpe.2007.0077
形态特征 Morphological characteristics | 单克隆 Single clone | 三克隆 Triple clones | 五克隆 Quinary clones |
---|---|---|---|
间隔子 Spacer length (cm) | 5.771 ± 1.093a | 5.829 ± 1.294a | 6.756 ± 1.376a |
分支强度 Branching intensity | 15.4 ± 7.3a | 21.6 ± 5.6b | 25.1 ± 9.3b |
根茎数 Rhizome number | 5.6 ± 2.6a | 13.2 ± 6.7b | 12.1 ± 5.5b |
根茎节数 Rhizome node number | 26.8 ± 7.4a | 41.9 ± 13.0b | 60.9 ± 27.7c |
根状茎总长 Rhizome total length (cm) | 31.3 ± 11.7a | 75.1 ± 34.9b | 77.6 ± 27.7b |
株高 Culm height (cm) | 23.82 ± 3.20a | 26.99 ± 3.41a | 26.15 ± 3.44a |
茎粗 Stem thickness (cm) | 0.420 ± 0.078a | 0.420 ± 0.115a | 0.406 ± 0.098a |
叶数 Leaf number | 16.6 ± 7.1a | 36.6 ± 15.3b | 43.3 ± 23.2b |
叶面积 Leaf area (cm2) | 6.4 ± 1.8a | 7.5 ± 2.1a | 6.8 ± 2.4a |
叶厚度 Leaf thickness (cm) | 0.047 ± 0.004a | 0.053 ± 0.010a | 0.048 ± 0.011a |
表1 不同初始克隆分株数的大米草形态变化特征
Table 1 Morphological characteristics of Spartina anglica under different initial clone numbers
形态特征 Morphological characteristics | 单克隆 Single clone | 三克隆 Triple clones | 五克隆 Quinary clones |
---|---|---|---|
间隔子 Spacer length (cm) | 5.771 ± 1.093a | 5.829 ± 1.294a | 6.756 ± 1.376a |
分支强度 Branching intensity | 15.4 ± 7.3a | 21.6 ± 5.6b | 25.1 ± 9.3b |
根茎数 Rhizome number | 5.6 ± 2.6a | 13.2 ± 6.7b | 12.1 ± 5.5b |
根茎节数 Rhizome node number | 26.8 ± 7.4a | 41.9 ± 13.0b | 60.9 ± 27.7c |
根状茎总长 Rhizome total length (cm) | 31.3 ± 11.7a | 75.1 ± 34.9b | 77.6 ± 27.7b |
株高 Culm height (cm) | 23.82 ± 3.20a | 26.99 ± 3.41a | 26.15 ± 3.44a |
茎粗 Stem thickness (cm) | 0.420 ± 0.078a | 0.420 ± 0.115a | 0.406 ± 0.098a |
叶数 Leaf number | 16.6 ± 7.1a | 36.6 ± 15.3b | 43.3 ± 23.2b |
叶面积 Leaf area (cm2) | 6.4 ± 1.8a | 7.5 ± 2.1a | 6.8 ± 2.4a |
叶厚度 Leaf thickness (cm) | 0.047 ± 0.004a | 0.053 ± 0.010a | 0.048 ± 0.011a |
生物量分配Biomass allocation (%) | 单克隆Single clone | 三克隆Triple clones | 五克隆Quinary clones |
---|---|---|---|
地上生物量Above-ground biomass | 35.63 ± 9.24a | 44.70 ± 12.53a | 41.47 ± 9.06a |
根生物量Root biomass | 53.67 ± 7.77a | 37.85 ± 13.74b | 40.45 ± 9.12b |
根状茎生物量Rhizome biomass | 10.70 ± 4.02a | 17.46 ± 6.70b | 18.08 ± 7.50b |
表2 不同初始克隆分株数大米草的生物量分配
Table 2 Biomass allocations of Spartina anglica under different initial clone numbers
生物量分配Biomass allocation (%) | 单克隆Single clone | 三克隆Triple clones | 五克隆Quinary clones |
---|---|---|---|
地上生物量Above-ground biomass | 35.63 ± 9.24a | 44.70 ± 12.53a | 41.47 ± 9.06a |
根生物量Root biomass | 53.67 ± 7.77a | 37.85 ± 13.74b | 40.45 ± 9.12b |
根状茎生物量Rhizome biomass | 10.70 ± 4.02a | 17.46 ± 6.70b | 18.08 ± 7.50b |
[1] | An SQ, Wang ZS, Zhou CF, Li B, Shi SH, Yu DH, Deng ZF, Chen L (2006). Varying success of Spartina spp. invasions in China: genetic diversity or differentiation? Proceedings of the Third International Conference on Invasive Spartina. Cambridge Press, Cambridge, UK. |
[2] | Bazzaz FA, Grace J (1997). Plant Resource Allocation. Academic Press, New York. |
[3] |
Cain ML (1994). Consequences of foraging in clonal plant species. Ecology, 75, 933-944.
DOI URL |
[4] |
Callaway RM, Aschehoug ET (2000). Invasion plants versus new and old neighbors: a mechanism for exotic invasion. Science, 290, 521-523.
DOI URL PMID |
[5] | Chen ZY (陈中义), Li B (李博), Chen JK (陈家宽) (2004). Ecological consequences and management of Spartina spp. invasions in coastal ecosystems. Biodiversity Science (生物多样性), 12, 280-289. (in Chinese with English abstract) |
[6] | Chung CH (仲崇信) (1985). Brief history of S. anglica and research work abroad. Journal of Nanjing University (Research Advances in Spartina, Special Issue) (南京大学学报(米草研究进展专集), 1-30. (in Chinese with English abstract) |
[7] |
Costello DA, Lunt ID, Williams JE (2000). Effects of invasion by the indigenous shrub Acacia sophorae composition of coastal grasslands in Southeastern Australia. Biological Conservation, 96, 113-121.
DOI URL |
[8] |
de Kroon H, Hutchings MJ (1995). Morphological plasticity in clonal plants: the foraging reconsidered. Journal of Ecology, 83, 143-152.
DOI URL |
[9] | Deng ZF (邓自发), An SQ (安树青), Zhi YB (智颖飙), Zhou CF (周长芳), Chen L (陈琳), Zhao CJ (赵聪蛟), Fang SB (方淑波), Li HL (李红丽) (2006). Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alterniflora Loisel. Acta Ecologica Sinica (生态学报), 26, 2678-2686. (in Chinese with English abstract) |
[10] | Dong M (董鸣) (1996). Clonal growth in plants in relation to resource heterogeneity: foraging behavior. Acta Botanica Sinica (植物学报), 38, 828-835. (in Chinese with English abstract) |
[11] | Dong M (董鸣), Zhang SM (张淑敏), Chen YF (陈玉福) (2000). Clonal plasticity in response to nutrient availability in the stoloniferous herb Duchesnea indica. Acta Botanica Sinica (植物学报), 42, 518-522. (in Chinese with English abstract) |
[12] |
Dukes JS (2002). Species composition and diversity affect grassland susceptibility and response to invasion. Ecological Applications, 12, 602-617.
DOI URL |
[13] |
Geber MA, Watson MA, de Kroon H (1997a). Morphological plasticity in clonal plants: the foraging concept reconsidered. Journal of Ecology, 83, 143-152.
DOI URL |
[14] | Geber MA, Watson MA, de Kroon H (1997b). Development and resource allocation in perennial plants: the significance of organ preformation. In: Bazzaz FA, Grace J eds. Plant Resource Allocation. Academic Press, New York. |
[15] | Guan YJ (管永健), An SQ (安树青), Wang YJ (王云静) (2003). Ecological benefits and ecological consequences of exotic Spartina in China. Journal of Nanjing Forestry University (南京林业大学学报), 27(Suppl.), 95-101. (in Chinese with English abstract) |
[16] | Hutchings MJ, de Kroon H (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[17] |
Kelly CK (1990). Plant foraging: a marginal value mode and coiling response in Cuscuta subinclusa. Ecology, 71, 1916-1925.
DOI URL |
[18] | Li JH (李金花), Li ZQ (李镇清) (2002). Clonal morphological plasticity and biomass allocation pattern of Artemisia frigida and Potentilla acaulis under different grazing intensities. Acta Phytoecologica Sinica (植物生态学报), 26, 435-440. (in Chinese with English abstract) |
[19] | Li ZQ (李镇清) (1999). Architecture of clonal plants and morphological responses to habitat heterogeneity. Acta Botanica Sinica (植物学报), 41, 893-895. (in Chinese with English abstract) |
[20] |
Lovett DL (1981). Population dynamics and local specialization in a clonal perennial ( Ranunculus repens). I. The dynamics of ramets in contrasting habitats. Journal of Ecology, 69, 743-755.
DOI URL |
[21] | Luo XG (罗学刚), Dong M (董鸣) (2001). Architectural plasticity in response to light intensity in the stoloniferous herb Duchesnea indica Focke. Acta Phytoecologica Sinica (植物生态学报), 25, 494-497. (in Chinese with English abstract) |
[22] | Ranwell DS (1961). Spartina salt marshes in southern England. I. The effect of sheep grazing at the upper limits of Spartina marsh in Bridgwater Bay. Journal of Ecology, 49, 25-49. |
[23] | Schmid B (1990). Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evolutionary Trends in Plants, 4, 25-34. |
[24] |
Smith NS (1998). Variation in response to defoliation between population of Bouteloua curtipendula var. caespitosa with different livestock grazing histories. American Journal of Botany, 85, 1266-1272.
URL PMID |
[25] |
Sutherland WJ, Stillman RA (1988). The foraging tactics of plants. Oikos, 52, 239-244.
DOI URL |
[26] | Thompson JD, Gray AJ, McNeilly T (1990). The effects of density on the population dynamics of Spartina anglica. Acta Oecologica, 11, 669-682. |
[27] |
Waage JKA (2001). Global strategy to defeat invasive species. Science, 292, 1486.
DOI URL PMID |
[28] | Wang Q (王卿), An SQ (安树青), Ma ZJ (马志军), Zhao B (赵斌), Chen JK (陈家宽), Li B (李博) (2006). Invasive Spartina alterniflora: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 44, 559-588. (in Chinese with English abstract) |
[29] |
Watson MA, Geber MA, Jones CS (1995). Ontogenetic contingency and the expression of plant plasticity. Trends in Evolution and Ecology, 10, 474-475.
DOI URL |
[30] | Wu XW (吴晓雯), Luo J (罗晶), Chen JK (陈家宽), Li B (李博) (2006). Spatial patterns of invasive alien plant in China and its relationship with environmental and anthropological factors. Journal of Plant Ecology (Chinese Version) (formerly Acta Phytoecologica Sinica) (植物生态学报), 30, 576-584. (in Chinese with English abstract) |
[31] | Xu GW (徐国万), Zhou RZ (卓荣宗) (1985). Preliminary studies of introduced Spartina alterniflora Loisel in China. Journal of Nanjing University (Research Advances in Spartina, Special Issue) (南京大学学报(米草研究进展专集)), 212-225. (in Chinese with English abstract) |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[4] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[5] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[6] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[7] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[8] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[9] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[10] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[11] | 陈青青, 李德志. 根系隔离条件下的谷子亲缘识别[J]. 植物生态学报, 2015, 39(12): 1188-1197. |
[12] | 潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化[J]. 植物生态学报, 2015, 39(10): 971-979. |
[13] | 肖遥,陶冶,张元明. 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J]. 植物生态学报, 2014, 38(9): 929-940. |
[14] | 李西良,侯向阳,吴新宏,萨茹拉,纪磊,陈海军,刘志英,丁勇. 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应[J]. 植物生态学报, 2014, 38(5): 440-451. |
[15] | 毛伟, 李玉霖, 崔夺, 赵学勇, 张铜会, 李玉强. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态学报, 2014, 38(2): 125-133. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19