植物生态学报 ›› 2013, Vol. 37 ›› Issue (7): 691-698.DOI: 10.3724/SP.J.1258.2013.00072

• 综述 • 上一篇    

叶脉网络功能性状及其生态学意义

李乐1,曾辉1,2,郭大立3,*()   

  1. 1北京大学深圳研究生院城市人居环境科学与技术重点实验室, 广东深圳 518055
    2北京大学城市与环境学院生态学系, 北京 100871
    3中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室千烟洲生态试验站, 北京 100101
  • 收稿日期:2013-03-13 接受日期:2013-05-20 出版日期:2013-03-13 发布日期:2013-07-05
  • 通讯作者: 郭大立
  • 基金资助:
    中国科学院百人计划项目(KZZD-EW-TZ-11);国家自然科学基金项目(40971030)

Leaf venation functional traits and their ecological significance

LI Le1,ZENG Hui1,2,GUO Da-Li3,*()   

  1. 1Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
    2Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    3Qianyanzhou Ecological Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2013-03-13 Accepted:2013-05-20 Online:2013-03-13 Published:2013-07-05
  • Contact: GUO Da-Li

摘要:

叶脉网络结构是叶脉系统在叶片里的分布和排列样式。早期叶脉网络结构研究主要集中在其分类学意义上; 近年来叶脉网络功能性状及其在植物水分利用上的意义已成为植物生态学研究的热点。该文介绍了叶脉网络功能性状的指标体系(包括叶脉密度、叶脉直径、叶脉之间的距离、叶脉闭合度等), 综述了叶脉网络功能性状与叶脉系统功能(包括水分、养分和光合产物等物质运输、机械支撑和虫害防御等)的关系, 叶脉网络功能性状与叶片其他功能性状(包括比叶重、叶寿命、光合速率、叶片大小、气孔密度等)的协同变异和权衡关系, 以及叶脉网络功能性状随环境因子(包括水分、温度、光照等)的变化规律等方面的最新研究进展。此外, 叶脉网络功能性状的研究成果也被应用于古环境重建、城市交通规划、流域规划及全球变化研究中。由于叶脉网络功能性状是环境因子与系统发育共同作用的结果, 未来开展分子—叶片—植物—生态系统等多尺度的叶脉网络功能性状研究, 理清叶脉网络功能性状与气孔失水—茎干导水—根系吸水等植物水分利用的关系, 将为预测植物及生态系统对全球变化的响应提供新的启示。

关键词: 生物学网络, 叶片功能性状, 叶脉系统, 植物水分利用, 叶脉密度

Abstract:

Leaf venation is the distribution and arrangement pattern of a leaf vein system. Earlier studies of leaf venation mainly focused on its taxonomic significance. In recent years, studies of leaf venation functional traits and their significance in plant water relations have been popular topics of plant ecological research. In this paper, we introduced an index system of leaf venation functional traits (including vein density, vein diameter, distance between veins and loopiness of veins). We also reviewed three aspects of leaf venation functional trait studies: relations between leaf venation functional traits and leaf vein system functions (i.e., water-nutrient-photosynthetic product transport, mechanical support and herbivore defense), positive and negative correlations between leaf venation functional traits and other leaf functional traits (e.g., leaf mass per area, leaf lifespan, leaf photosynthetic rate, leaf size and stomatal density), as well as relations between leaf venation functional traits and environmental factors (e.g., precipitation, temperature and light). In addition, leaf venation functional traits can be employed in studies of palaeoclimate reconstructions, watershed and urban transportation planning, as well as global change studies. Since leaf venation functional traits are products of both environmental factors and genetic factors, future leaf venation functional trait studies at molecular-leaf-plant-ecosystem scales are needed, and analyses of plant water relations between leaf venation functional traits and traits of other plant tissues or organs (i.e., stomata, wood and root) also need to be improved. All of these studies show promise in providing new insights into predicting responses of plants and ecosystems to global changes.

Key words: biological networks, leaf functional traits, leaf vein system, plant water use, vein density