植物生态学报 ›› 2012, Vol. 36 ›› Issue (2): 136-143.DOI: 10.3724/SP.J.1258.2012.00136
所属专题: 青藏高原植物生态学:种群生态学; 植物功能性状
收稿日期:
2011-07-20
接受日期:
2011-12-16
出版日期:
2012-07-20
发布日期:
2012-02-22
通讯作者:
张林
作者简介:
* E-mail: zhanglin@itpcas.ac.cn
HU Meng-Yao1,2, ZHANG Lin1,*(), LUO Tian-Xiang1, SHEN Wei1,2
Received:
2011-07-20
Accepted:
2011-12-16
Online:
2012-07-20
Published:
2012-02-22
Contact:
ZHANG Lin
摘要:
植物叶功能性状与环境因子的关系是近10年来植物生态学的研究热点。该文以广泛分布于青藏高原干旱、半干旱草地的优势植物种紫花针茅(Stipa purpurea)为研究对象, 沿降水梯度(69-479 mm)系统测定了日土、改则、珠峰、当雄和纳木错5个调查地点紫花针茅比叶面积(SLA)、单位重量和单位面积叶氮含量(Nmass, Narea)、叶密度和厚度等叶功能性状以及土壤全氮含量等因子, 试图验证干旱胁迫地区同一物种内SLA-Nmass关系沿降水梯度的策略位移现象是否具有普遍性, 并对是否出现策略位移现象提出可能的解释。研究结果表明: 1) SLA和Nmass与生长季温度和降水以及土壤全氮含量均没有显著关系, SLA与Nmass的关系在干旱半干旱区(年降水/蒸发比< 0.11)与半湿润区(年降水/蒸发比> 0.11)之间并没有出现典型的位移现象; 2)叶密度是决定半湿润区SLA变化的主导因子, 而叶厚度则是干旱半干旱区SLA变化的控制因子, 两者与SLA均呈负相关, 随着温度增加或降水减少, 叶厚度增加而叶密度降低, 导致SLA随温度和降水变化不明显; 3)半湿润区的叶密度增加引起Narea增加, 而干旱半干旱区的叶厚度增加并没有造成Narea的显著变化, 导致Narea沿降水梯度没有显著变化; 4)紫花针茅地上生物量与Narea具有显著正相关关系, 表明Narea的增加有助于提高植被生产力。结果表明, 在干旱胁迫下, 植物通过增加叶厚度来维持不变的Narea可能有助于保持与较湿润地区相似的光合生产和水分利用效率。叶厚度和叶密度对比叶面积的相对影响在干旱半干旱区与半湿润区之间发生转变, 这为进一步检测高寒草地植被的水分限制阈值提供了新思路。
胡梦瑶, 张林, 罗天祥, 沈维. 西藏紫花针茅叶功能性状沿降水梯度的变化. 植物生态学报, 2012, 36(2): 136-143. DOI: 10.3724/SP.J.1258.2012.00136
HU Meng-Yao, ZHANG Lin, LUO Tian-Xiang, SHEN Wei. Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Chinese Journal of Plant Ecology, 2012, 36(2): 136-143. DOI: 10.3724/SP.J.1258.2012.00136
研究地点 Study site | 纬度 Latitude (°) | 经度 Longitude (°) | 海拔 Altitude (m) | 年平均气温 AT (℃) | 生长季平均气温 GST (℃) | 年降水量 AP (mm) | 生长季降水量 GSP (mm) | 年降水量/年蒸发量 Ratio of rainfall to evaporation |
---|---|---|---|---|---|---|---|---|
当雄 Damxung | 30.50 | 91.05 | 4 480 | 1.66 | 9.78 | 479 | 402 | 0.25 |
纳木错 Namco | 30.77 | 90.98 | 4 730 | -0.40 | 7.99 | 404 | 338 | 0.27 |
珠穆朗玛峰 Mount Qomolangma | 28.21 | 86.56 | 4 276 | 2.50 | 10.73 | 282 | 271 | 0.10 |
改则 Gêrzê | 32.30 | 84.08 | 4 437 | 0.03 | 10.39 | 171 | 154 | 0.03 |
日土 Rutog | 33.40 | 79.72 | 4 286 | 0.50 | 11.64 | 69 | 59 | 0.07 |
表1 研究地点的地理位置及气候因子
Table 1 Locations and climatic factors of study sites
研究地点 Study site | 纬度 Latitude (°) | 经度 Longitude (°) | 海拔 Altitude (m) | 年平均气温 AT (℃) | 生长季平均气温 GST (℃) | 年降水量 AP (mm) | 生长季降水量 GSP (mm) | 年降水量/年蒸发量 Ratio of rainfall to evaporation |
---|---|---|---|---|---|---|---|---|
当雄 Damxung | 30.50 | 91.05 | 4 480 | 1.66 | 9.78 | 479 | 402 | 0.25 |
纳木错 Namco | 30.77 | 90.98 | 4 730 | -0.40 | 7.99 | 404 | 338 | 0.27 |
珠穆朗玛峰 Mount Qomolangma | 28.21 | 86.56 | 4 276 | 2.50 | 10.73 | 282 | 271 | 0.10 |
改则 Gêrzê | 32.30 | 84.08 | 4 437 | 0.03 | 10.39 | 171 | 154 | 0.03 |
日土 Rutog | 33.40 | 79.72 | 4 286 | 0.50 | 11.64 | 69 | 59 | 0.07 |
图1 西藏紫花针茅比叶面积(SLA)和单位重量叶氮含量(Nmass)的关系。
Fig. 1 Relationships between specific leaf area (SLA) and mass-based leaf N concentration (Nmass) in Stipa purpurea of Xizang.
环境因子 Environmental factor | 叶性状 Leaf trait | ||
---|---|---|---|
比叶面积 SLA (cm·g-1) | 单位重量叶氮含量 Nmass (mg·g-1) | 单位面积叶氮含量 Narea (g·m-2) | |
生长季平均气温 Mean air temperature in growing season (℃) | 0.21 | -0.29 | -0.46** |
年平均气温 Annual mean air temperature (℃) | 0.21 | -0.27 | -0.36* |
生长季降水量 Precipitation in growing season (mm) | 0.01 | 0.20 | 0.24 |
年降水量 Annual precipitation (mm) | 0.01 | 0.21 | 0.28 |
土壤全氮含量 Total N in soil (mg·g-1) | 0.19 | 0.18 | 0.50** |
表2 五个研究地点紫花针茅叶功能性状与环境因子的线性关系
Table 2 Correlation coefficients for linear relationships between climatic factors and leaf functional traits of Stipa purpurea in pooled data across the five study sites
环境因子 Environmental factor | 叶性状 Leaf trait | ||
---|---|---|---|
比叶面积 SLA (cm·g-1) | 单位重量叶氮含量 Nmass (mg·g-1) | 单位面积叶氮含量 Narea (g·m-2) | |
生长季平均气温 Mean air temperature in growing season (℃) | 0.21 | -0.29 | -0.46** |
年平均气温 Annual mean air temperature (℃) | 0.21 | -0.27 | -0.36* |
生长季降水量 Precipitation in growing season (mm) | 0.01 | 0.20 | 0.24 |
年降水量 Annual precipitation (mm) | 0.01 | 0.21 | 0.28 |
土壤全氮含量 Total N in soil (mg·g-1) | 0.19 | 0.18 | 0.50** |
图2 紫花针茅比叶面积(SLA)分别与叶厚度(A)和叶密度(B)的关系。 图A、B中趋势线分别基于干旱半干旱区和半湿润区的数据。
Fig. 2 Relationships of specific leaf area (SLA) with leaf thickness (A) and leaf density (B) of Stipa purpurea. Trends lines are for the data from the arid and semi-arid areas in Fig. 2A and the semi-humid areas in Fig. 2B, respectively.
图3 紫花针茅叶密度(A, B)、叶厚度(C, D)与生长季平均气温和降水量的关系。直线为所有观测数据趋势线。
Fig. 3 Relationships of (A, B) leaf density and (C, D) leaf thickness of Stipa purpurea with growing season mean temperature and precipitation. Trends lines are for all pooled data.
图4 紫花针茅单位面积叶氮含量(Narea)分别与叶密度(A)和叶厚度(B)的关系。直线为半湿润区趋势线。
Fig. 4 Relationships of area-based leaf N concentration (Narea) with leaf density (A) and leaf thickness (B) of Stipa purpurea. Trends lines are for the data from the semi-humid areas.
[1] | Farquhar GD, Buckley TN, Miller JM (2002). Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica, 36, 625-637. |
[2] | Field C, Mooney HA (1986). The photosynthesis-nitrogen relationship in wild plants. In: Givinish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK, 25-55. |
[3] | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977. |
[4] | Gouveia AC, Freitas H (2009). Modulation of leaf attributes and water use efficiency in Quercus suber along a rainfall gradient. Trees-Structure and Function, 23, 267-275. |
[5] | He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122. |
[6] |
He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY (2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90, 2779-2791.
DOI URL PMID |
[7] |
Hodgson JG, Montserrat-Martí G, Charles M, Jones G, Wilson P, Shipley B, Sharafi M, Cerabolini BEL, Cornelissen JHC, Band SR, Bogard A, Castro-Diez P, Guerrero- Campo J, Palmer C, Pérez-Rontomé MC, Carter G, Hynd A, Romo-Díez A, de Torres Espuny L, Pla FR (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108, 1337-1345.
DOI URL PMID |
[8] | Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytologist, 186, 708-721. |
[9] | Li YH (李永华), Luo TX (罗天祥), Lu Qi (卢琦), Tian XY (田晓娅), Wu B (吴波), Yang HH (杨恒华) (2005). Comparisons of leaf traits among 17 major plant species in Shazhuyu Sand Control Experimental Station of Qinghai Province. Acta Ecologica Sinica (生态学报), 25, 994-999. (in Chinese with English abstract) |
[10] | Luo TX, Li MC, Luo J (2011). Seasonal variations in leaf δ13C and nitrogen associated with foliage turnover and carbon gain for a wet subalpine fir forest in the Gongga Mountains, eastern Tibetan Plateau. Ecological Research, 26, 253-263. |
[11] | Luo TX, Zhang L, Zhu HZ, Daly C, Li MC, Luo J (2009). Correlations between net primary productivity and foliar carbon isotope ratio across a Tibetan ecosystem transect. Ecography, 32, 526-538. |
[12] |
Osunkoya OO, Daud SD, Wimmer FL (2008). Longevity, lignin content and construction cost of the assimilatory organs of Nepenthes species. Annals of Botany, 102, 845-853.
DOI URL PMID |
[13] | Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588. |
[14] | Prior LD, Bowman DMJS, Eamus D (2005). Intra-specific variation in leaf attributes of four savanna tree species across a rainfall gradient in tropical Australia. Australian Journal of Botany, 53, 323-335. |
[15] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of National Academy of Sciences of the United States of America, 101, 11001-11006. |
[16] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of National Academy of Sciences of the United States of America, 94, 13730-13734. |
[17] | Smith WK, Vogelmann TC, DeLucia EH., Bell DT, Shepherd KA (1997). Leaf form and photosynthesis. Bioscience, 47, 785-793. |
[18] | Song CQ (宋春桥), You SC (游松财), Ke LH (柯灵红), Liu GH (刘高焕), Zhong XK (钟新科) (2011). Spatio- temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology (植物生态学报), 35, 853-863. (in Chinese with English abstract) |
[19] |
Wei H, Wu B, Yang W, Luo T (2011). Low rainfall-induced shift in leaf trait relationship within species along a semi-arid sandy land transect in northern China. Plant Biology, 13, 85-92.
DOI URL PMID |
[20] | Wei HX (魏海霞) (2009). Mechanisms for Variations in Eco-physiological Characteristics of Sandy Plants along a Rainfall Gradient in Semi-arid Regions (半干旱区沙生植物沿降水梯度的生理生态变化机理研究). PhD dissertation, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[21] | Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. |
[22] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421. |
[23] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
[24] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot H, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[25] | Wright IJ, Westoby M (2002). Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist, 155, 403-416. |
[26] | Wu ZY (吴征镒) (1980). Chinese Vegetation (中国植被). Science Press, Beijing. (in Chinese) |
[27] | Yu HY, Luedeling E, Xu JC (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
[28] | Zhang L (张林), Jin DM (金冬梅) (2010). Principle methods of measuring leaf area of conifer trees. Beijing: Biodiversity Conservation and Research Progress in China, VIII. 46-50. (in Chinese with English abstract) |
[1] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[2] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[3] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[4] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[5] | 张治国, 魏海霞. 毛乌素沙地油蒿叶建成成本及相关叶性状沿降水梯度的变化[J]. 植物生态学报, 2019, 43(11): 979-987. |
[6] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[7] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[8] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[9] | 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展[J]. 植物生态学报, 2015, 39(2): 206-216. |
[10] | 杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应[J]. 植物生态学报, 2015, 39(1): 32-42. |
[11] | 张林, 阎恩荣, 魏海霞, 刘新圣, 沈维. 藏东南色季拉山林线过渡带7种灌木植物的叶氮回收潜力[J]. 植物生态学报, 2014, 38(12): 1325-1332. |
[12] | 黄海侠,杨晓东,孙宝伟,张志浩,阎恩荣. 浙江天童常绿植物当年生与往年生叶片性状的变异与关联[J]. 植物生态学报, 2013, 37(10): 912-921. |
[13] | 郭亚奇, 阿里穆斯, 高清竹, 段敏杰, 干珠扎布, 万运帆, 李玉娥, 郭红保. 灌溉条件下藏北紫花针茅光合特性及其对温度和CO2浓度的短期响应[J]. 植物生态学报, 2011, 35(3): 311-321. |
[14] | 路兴慧, 丁易, 臧润国, 邹正冲, 黄卢标. 海南岛热带低地雨林老龄林木本植物幼苗的功能性状分析[J]. 植物生态学报, 2011, 35(12): 1300-1309. |
[15] | 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明. 黔中喀斯特山区植物功能性状的变异与关联[J]. 植物生态学报, 2011, 35(10): 1000-1008. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19