植物生态学报 ›› 2012, Vol. 36 ›› Issue (2): 117-125.DOI: 10.3724/SP.J.1258.2012.00117
收稿日期:
2011-06-02
接受日期:
2011-12-10
出版日期:
2012-06-02
发布日期:
2012-02-22
通讯作者:
张远东
作者简介:
* E-mail: zyd@caf.ac.cn
ZHANG Yuan-Dong*(), LIU Yan-Chun, LIU Shi-Rong, ZHANG Xiao-He
Received:
2011-06-02
Accepted:
2011-12-10
Online:
2012-06-02
Published:
2012-02-22
Contact:
ZHANG Yuan-Dong
摘要:
基于树木年轮学与标准地调查法, 研究了川西亚高山林区3种恢复森林类型生物量、蓄积量及生产力动态变化特征, 旨在尝试年轮学在森林生长过程反演中的运用, 并探索不同恢复模式下森林生物量和蓄积量的动态变化。结果表明, 不同恢复类型发育至20年以后, 均进入生长加速期, 平均胸径间差异逐渐显著, 人工云杉(Picea asperata)林胸径增长最快, 明显高于天然恢复的次生桦木(Betula spp.)林和次生针阔混交林。在恢复过程中, 次生针阔混交林一直保持最高的林分平均地上生物量与林分蓄积量, 其地上平均生物量一直显著高于人工云杉林(p < 0.05), 在20年以后显著高于次生桦木林(p < 0.05)。与人工云杉林相比, 次生桦木林在25年前具有相对较高的生物量, 而在25年之后则低于人工云杉林。在0-20年桦木林林分蓄积量略高于云杉林, 而20年以后, 云杉林蓄积量则超过桦木林。不同恢复类型的生产力大小对比显示, 30年之前, 次生针阔混交林>次生桦木林>人工云杉林, 30年之后, 针阔混交林生产力仍然最高, 而人工云杉林则超过次生桦木林。川西林区次生针阔混交林恢复模式在生物量和蓄积量积累方面均具有显著优势。
张远东, 刘彦春, 刘世荣, 张笑鹤. 基于年轮分析的不同恢复途径下森林乔木层生物量和蓄积量的动态变化. 植物生态学报, 2012, 36(2): 117-125. DOI: 10.3724/SP.J.1258.2012.00117
ZHANG Yuan-Dong, LIU Yan-Chun, LIU Shi-Rong, ZHANG Xiao-He. Dynamics of stand biomass and volume of the tree layer in forests with different restoration approaches based on tree-ring analysis. Chinese Journal of Plant Ecology, 2012, 36(2): 117-125. DOI: 10.3724/SP.J.1258.2012.00117
森林类型 Forest type | 海拔 Elevation (m) | 坡向 Slope aspect (°) | 坡度 Slope gradient (°) | 林分密度 Stand density (tree · hm-2) | 平均胸径 Mean DBH (cm) | 林龄 Stand age (a) | 样芯数 No. of cores |
---|---|---|---|---|---|---|---|
PSFI | 3 212 | NE 40 | 10 | 829.3 | 21.4 ± 6.2 | 43 | 47 |
PSFII | 3 261 | NE 45 | 15 | 914.5 | 20.1 ± 5.7 | 44 | 49 |
PSFIII | 3 252 | SE 70 | 10 | 964.7 | 19.7 ± 5.6 | 39 | 53 |
SBFI | 3 214 | NW 40 | 26 | 3 021.5 | 9.3 ± 3.4 | 49 | 104 |
SBFII | 3 238 | NW 25 | 20 | 3 086.1 | 11.2 ± 3.3 | 45 | 77 |
SBFIII | 3 326 | NE 20 | 18 | 2 788.1 | 10.1 ± 4.5 | 50 | 94 |
SMFI | 3 020 | NE 40 | 30 | 3 262.0 | 11.1 ± 3.4 | 36 | 93 |
SMFII | 2 990 | NE 20 | 20 | 3 188.1 | 9.5 ± 3.4 | 35 | 124 |
SMFIII | 3 345 | NE 15 | 20 | 3 032.7 | 11.7 ± 4.6 | 38 | 101 |
表1 川西亚高山地区调查样地的基本情况
Table 1 Basic information of sample plots of subalpine region in Western Sichuan
森林类型 Forest type | 海拔 Elevation (m) | 坡向 Slope aspect (°) | 坡度 Slope gradient (°) | 林分密度 Stand density (tree · hm-2) | 平均胸径 Mean DBH (cm) | 林龄 Stand age (a) | 样芯数 No. of cores |
---|---|---|---|---|---|---|---|
PSFI | 3 212 | NE 40 | 10 | 829.3 | 21.4 ± 6.2 | 43 | 47 |
PSFII | 3 261 | NE 45 | 15 | 914.5 | 20.1 ± 5.7 | 44 | 49 |
PSFIII | 3 252 | SE 70 | 10 | 964.7 | 19.7 ± 5.6 | 39 | 53 |
SBFI | 3 214 | NW 40 | 26 | 3 021.5 | 9.3 ± 3.4 | 49 | 104 |
SBFII | 3 238 | NW 25 | 20 | 3 086.1 | 11.2 ± 3.3 | 45 | 77 |
SBFIII | 3 326 | NE 20 | 18 | 2 788.1 | 10.1 ± 4.5 | 50 | 94 |
SMFI | 3 020 | NE 40 | 30 | 3 262.0 | 11.1 ± 3.4 | 36 | 93 |
SMFII | 2 990 | NE 20 | 20 | 3 188.1 | 9.5 ± 3.4 | 35 | 124 |
SMFIII | 3 345 | NE 15 | 20 | 3 032.7 | 11.7 ± 4.6 | 38 | 101 |
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
---|---|---|---|---|---|
冷杉 Abies spp. | 干 Stem | W = 0.0139(D2H)1.0075 | R2 = 0.998 6 | Luo et al., 2002 | |
枝 Branch | W = 0.0014(D2H)1.0503 | R2 = 0.911 8 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0003(D2H)1.2032 | R2 = 0.934 1 | ||
胸径 DBH > 40 cm时, | W = 11.5060ln(D2H) - 74.7330 | R2 = 0.753 9 | |||
云杉 Picea spp. | 干 Stem | W = 0.0405D2.5680 | R2 = 0.989 0 | Luo et al., 2002 | |
枝 Branch | W = 0.0037D2.7386 | R2 = 0.945 0 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0014D2.9302 | R2 = 0.941 9 | ||
胸径 DBH > 40 cm时, | W = 29.5410lnD - 63.1500 | R2 = 0.757 4 | |||
桦木 Betula spp. | 干 Stem | W = 0.1411(D2H)0.7234 | R2 = 0.980 1 | Feng et al., 1999 | |
枝 Branch | W = 0.0072(D2H)1.0225 | R2 = 0.774 4 | |||
叶 Leaf | W = 0.0151(D2H)0.8085 | R2 = 0.828 1 | |||
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
槭树 Acer spp. | 干 Stem | W = 0.3274(D2H)0.7218 | R2 = 0.932 5 | Chen, 1983 | |
枝 Branch | W = 0.0135(D2H)0.7198 | R2 = 0.911 4 | |||
叶 Leaf | W = 0.0235(D2H)0.6929 | R2 = 0.891 7 | |||
杨木 Poplar spp. | 干 Stem | W = 0.0537(D2H)0.9270 | R2 = 0.987 0 | Zhu et al., 1988 | |
枝 Branch | W = 0.0125(D2H)0.9504 | R2 = 0.863 0 | |||
叶 Leaf | W = 0.0221(D2H)0.7583 | R2 = 0.786 0 | |||
其他阔叶树 Other broadleaf species | 干 Stem | W = 0.0097(D2H) + 5.8252 | R2 = 0.991 4 | Luo et al., 2002 | |
枝 Branch | W = 0.0510(D2H) + 3.5080 | R2 = 0.982 5 | |||
叶 Leaf | W = 0.0004(D2H) + 0.7563 | R2 = 0.933 3 |
附表I 川西亚高山次生林乔木地上生物量异速生长模型
Appendix I Allometric models for tree aboveground biomass in subalpine secondary forest in Western Sichuan
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
---|---|---|---|---|---|
冷杉 Abies spp. | 干 Stem | W = 0.0139(D2H)1.0075 | R2 = 0.998 6 | Luo et al., 2002 | |
枝 Branch | W = 0.0014(D2H)1.0503 | R2 = 0.911 8 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0003(D2H)1.2032 | R2 = 0.934 1 | ||
胸径 DBH > 40 cm时, | W = 11.5060ln(D2H) - 74.7330 | R2 = 0.753 9 | |||
云杉 Picea spp. | 干 Stem | W = 0.0405D2.5680 | R2 = 0.989 0 | Luo et al., 2002 | |
枝 Branch | W = 0.0037D2.7386 | R2 = 0.945 0 | |||
叶 Leaf | 胸径 DBH < 40 cm时, | W = 0.0014D2.9302 | R2 = 0.941 9 | ||
胸径 DBH > 40 cm时, | W = 29.5410lnD - 63.1500 | R2 = 0.757 4 | |||
桦木 Betula spp. | 干 Stem | W = 0.1411(D2H)0.7234 | R2 = 0.980 1 | Feng et al., 1999 | |
枝 Branch | W = 0.0072(D2H)1.0225 | R2 = 0.774 4 | |||
叶 Leaf | W = 0.0151(D2H)0.8085 | R2 = 0.828 1 | |||
树种 Tree species | 地上部分器官 Aboveground organ | 异速生长模型 Allometric model | 决定系数 Determination coefficient | 文献来源 Origin of references | |
槭树 Acer spp. | 干 Stem | W = 0.3274(D2H)0.7218 | R2 = 0.932 5 | Chen, 1983 | |
枝 Branch | W = 0.0135(D2H)0.7198 | R2 = 0.911 4 | |||
叶 Leaf | W = 0.0235(D2H)0.6929 | R2 = 0.891 7 | |||
杨木 Poplar spp. | 干 Stem | W = 0.0537(D2H)0.9270 | R2 = 0.987 0 | Zhu et al., 1988 | |
枝 Branch | W = 0.0125(D2H)0.9504 | R2 = 0.863 0 | |||
叶 Leaf | W = 0.0221(D2H)0.7583 | R2 = 0.786 0 | |||
其他阔叶树 Other broadleaf species | 干 Stem | W = 0.0097(D2H) + 5.8252 | R2 = 0.991 4 | Luo et al., 2002 | |
枝 Branch | W = 0.0510(D2H) + 3.5080 | R2 = 0.982 5 | |||
叶 Leaf | W = 0.0004(D2H) + 0.7563 | R2 = 0.933 3 |
树种 Tree species | 材积公式 Volume equation (m3) |
---|---|
桦木 Betula spp. | $V = 0.00004894 \times {\left( {0.9839 \times D - 0.3303} \right)^{2.0173}} \times {\left( {\frac{{33.2727 - 1031.4484}}{{31.549 + D}}} \right)^{0.9388}}$ |
冷杉 Abies spp. | $V = 0.00006322 \times {\left( { - 0.1027 + 0.99576 \times D} \right)^{1.901}} \times {\left( {\frac{{45.79737 - 1837.226}}{{D + 38.40604}}} \right)^{0.963}}$ |
云杉 Picea spp. | $V = 0.00005679 \times {\left( {0.37388 + 0.9721 \times D} \right)^{1.852}} \times {\left( {\frac{D}{{1.129 + 0.0161 \times D}}} \right)^{1.0335}}$ |
杨树 Poplar spp. | $V = 0.00005275 \times {\left( { - 0.5162 + 1.0942 \times D} \right)^{1.94526}} \times {\left( {\frac{D}{{0.74623 + 0.0421 \times D}}} \right)^{0.93885}}$ |
槭树 Acer spp. | $V = 0.00005275 \times {\left( {0.49896 + 0.9661 \times D} \right)^{1.945}} \times {\left( {\frac{D}{{0.84118 + 0.0381}}} \right)^{0.93885}}$ |
附表II 川西主要树种一元立木材积表1)
Appendix II Table of one-way tree volume models of the main tree species in Western Sichuan1)
树种 Tree species | 材积公式 Volume equation (m3) |
---|---|
桦木 Betula spp. | $V = 0.00004894 \times {\left( {0.9839 \times D - 0.3303} \right)^{2.0173}} \times {\left( {\frac{{33.2727 - 1031.4484}}{{31.549 + D}}} \right)^{0.9388}}$ |
冷杉 Abies spp. | $V = 0.00006322 \times {\left( { - 0.1027 + 0.99576 \times D} \right)^{1.901}} \times {\left( {\frac{{45.79737 - 1837.226}}{{D + 38.40604}}} \right)^{0.963}}$ |
云杉 Picea spp. | $V = 0.00005679 \times {\left( {0.37388 + 0.9721 \times D} \right)^{1.852}} \times {\left( {\frac{D}{{1.129 + 0.0161 \times D}}} \right)^{1.0335}}$ |
杨树 Poplar spp. | $V = 0.00005275 \times {\left( { - 0.5162 + 1.0942 \times D} \right)^{1.94526}} \times {\left( {\frac{D}{{0.74623 + 0.0421 \times D}}} \right)^{0.93885}}$ |
槭树 Acer spp. | $V = 0.00005275 \times {\left( {0.49896 + 0.9661 \times D} \right)^{1.945}} \times {\left( {\frac{D}{{0.84118 + 0.0381}}} \right)^{0.93885}}$ |
图1 三种恢复森林类型不同径级的年平均生长率(平均值±标准误差)。PSF, 人工云杉林; SBF, 次生桦木林; SMF, 次生针阔混交林。同一森林类型内标相同小写字母者表示径级间差异不显著(p > 0.05)。
Fig. 1 Annual mean growth rate of different DBH classes for three recovery forest types (mean ± SE). DBH, diameter at breast height. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest. Values labelled by the same lowercase in each forest type are not significant different between diameter classes (p > 0.05).
图2 三种恢复森林类型林分平均胸径随林龄的变化。PSF, 人工云杉林; SBF, 次生桦木林; SMF, 次生针阔混交林。小图为0-15年平均胸径的放大图。
Fig. 2 Changes of stand mean diameter at breast height (DBH) with stand age for three recovery forest types. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad- leaved mixed forest. DBH change among 1-15 years is enlarged in the new small chart.
图3 三种恢复森林类型林分平均地上生物量与蓄积量的动态对比。 PSF, 人工云杉林; SBF, 次生桦木林; SMF, 次生针阔混交林。
Fig. 3 Dynamic comparisons of stand average aboveground biomass and volume among three recovery forest types. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest.
图4 三种恢复途径林分地上净第一性生产力的动态变化。PSF, 人工云杉林; SBF, 次生桦木林; SMF, 次生针阔混交林。数据是3种恢复林型净第一性生产力的5年滑动平均值。 为表达清晰, 原数据未在图中显示。
Fig. 4 Dynamic changes of aboveground net primary productivity for stands with three restoration approaches. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest. The data is five-year moving average of net primary productivity for three recovery forest types. Original data is not displayed in the chart for clarity.
图5 三种恢复森林类型林分密度与林龄的关系。PSF, 人工云杉林; SBF, 次生桦木林; SMF, 次生针阔混交林。
Fig. 5 Relationships between stand density and stand age of three recovery forest types. PSF, planted spruce (Picea asperata) forest; SBF, secondary birch (Betula spp.) forest; SMF, secondary coniferous and broad-leaved mixed forest. *, p < 0.05; **, p < 0.01.
[1] |
Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297, 999-1002.
DOI URL PMID |
[2] | Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z (2007). Climatic controls on the carbon and water balances of a boreal aspen forest, 1994-2003. Global Change Biology, 13, 561-576. |
[3] | Biondi F (1999). Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecological Applications, 9, 216-227. |
[4] | Brienen RJW, Zuidema PA (2006). The use of tree rings in tropical forest management: projecting timber yields of four Bolivian tree species. Forest Ecology and Management, 226, 256-267. |
[5] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[6] | Fang JY (方精云) (2000). Forest biomass carbon pool of middle and high latitudes in the north hemisphere is probably much smaller than present estimates. Acta Phytoecologica Sinica (植物生态学报), 24, 635-638. (in Chinese with English abstract) |
[7] | Grissino-Mayer HD (2003). A manual and tutorial for the proper use of an increment borer. Tree-Ring Research, 59, 63-79. |
[8] | Kljun N, Black TA, Griffis TJ, Barr AG, Gaumont-Guay D, Morgenstern K, McCaughey JH, Nesic Z (2006). Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems, 9, 1128-1144. |
[9] | Lin B (林波), Liu Q (刘庆), Wu Y (吴彦), Pang XY (庞学勇), He H (何海) (2003). Effect of forest litters on soil physical and chemical properties in subalpine coniferous forests of western Sichuan. China Journal of Applied & Environ- mental Biology (应用与环境生物学报), 9, 346-351. (in Chinese with English abstract) |
[10] | Liu YC (刘彦春), Zhang YD (张远东), Liu SR (刘世荣) (2010a). Aboveground biomass, ANPP and stem volume of birch stands in natural restoration process of subalpine secondary forest in western Sichuan. Acta Ecologica Sinica (生态学报), 30, 594-601. (in Chinese with English abstract) |
[11] | Liu YC (刘彦春), Zhang YD (张远东), Liu SR (刘世荣), Zhang XH (张笑鹤) (2010b). Changes of tree layer aboveground biomass, ANPP to altitudinal gradient in the subalpine secondary mixed forest of western Sichuan, China. Acta Ecologica Sinica (生态学报), 30, 5810-5820. (in Chinese with English abstract) |
[12] | Metsaranta JM, Lieffers VJ (2009). Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry, 82, 163-173. |
[13] | Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698-702. |
[14] | Picket STA (1989). Space for time substitution as an alternative to long-term studies. In: Likens GE ed. Long-Term Studies in Ecology: Approaches and Alternatives. Springer, New York, 110-135. |
[15] | Rozas V (2004). A dendroecological reconstruction of age structure and past management in an old-growth pollarded parkland in northern Spain. Forest Ecology and Management, 195, 205-219. |
[16] | Shi LX (史立新), Wang JX (王金锡), Su YM (宿以明), Hou GW (侯广维) (1988). The early succession process of vegetation at cut-over area of dark coniferous forest in Miyaluo, West Sichuan. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 12, 306-313. (in Chinese with English abstract) |
[17] | van Gemerden BS, Olff H, Parren MPE, Bongers F (2003). The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. Journal of Biogeography, 30, 1381-1390. |
[18] |
Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB (1978). The biota and the world carbon budget. Science, 199, 141-146.
DOI URL PMID |
[19] | Worbes M, Klinge H, Revilla JD, Martius C (1992). On the dynamics, floristic subdivision and geographical distribution of várzea forests in Central Amazonia. Journal of Vegetation Science, 3, 553-564. |
[20] | Xian JR (鲜骏仁), Zhang YB (张远彬), Wang KY (王开运), Hu TX (胡庭兴), Yang H (杨华) (2009). Carbon stock and its allocation in five forest ecosystems in the subalpine coniferous forest zone of western Sichuan Province, Southwest China. Chinese Journal of Plant Ecology (植物生态学报), 33, 283-290. (in Chinese with English abstract) |
[21] | Zhang J, Ge Y, Chang J, Jiang B, Jiang H, Peng CH, Zhu JR, Yuan WG, Qi LZ, Yu SQ (2007). Carbon storage by ecolo- gical service forests in Zhejiang Province, subtropical China. Forest Ecology and Management, 245, 64-75. |
[22] | Zhang YD (张远东), Liu SR (刘世荣), Zhao CM (赵常明) (2005a). Spatial pattern of subalpine forest restoration in West Sichuan. Chinese Journal of Applied Ecology (应用生态学报), 16, 1706-1710. (in Chinese with English abstract) |
[23] | Zhang YD (张远东), Zhao CM (赵常明), Liu SR (刘世荣) (2005b). The influence factors of sub-alpine forest restoration in Miyaluo, West Sichuan. Scientia Silvae Sinicae (林业科学), 41, 189-193. (in Chinese with English abstract) |
[24] | Zhao CM (赵常明), Chen QH (陈庆恒), Qiao YK (乔永康), Pan KW (潘开文) (2002). Dynamics of species diversity in the restoration process of artificial spruce conifer forest in the eastern edge of Qinghai-Tibetan Plateau. Acta Phytoecologica Sinica (植物生态学报), 26, 20-29. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[9] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[10] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[11] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[12] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[13] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[14] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[15] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19