植物生态学报 ›› 2009, Vol. 33 ›› Issue (6): 1184-1190.DOI: 10.3773/j.issn.1005-264x.2009.06.019
顾舒平1,2, 尹黎燕1,3, 李洁琳1,2, 李伟1,4,*()
收稿日期:
2008-12-23
接受日期:
2009-05-15
出版日期:
2009-12-23
发布日期:
2009-11-30
通讯作者:
李伟
作者简介:
*(liwei@wbgcas.cn)基金资助:
GU Shu-Ping1,2, YIN Li-Yan1,3, LI Jie-Lin1,2, LI Wei1,4,*()
Received:
2008-12-23
Accepted:
2009-05-15
Online:
2009-12-23
Published:
2009-11-30
Contact:
LI Wei
摘要:
运用pH-drift的方法研究了在不同碱度条件下中华水韭(Isoetes sinensis)的沉水叶片昼夜CO2吸收的特征。结果表明中华水韭的沉水叶片具有昼夜吸收水中CO2的能力, 而不具备利用水中的HCO- 3的能力, 进一步证明了水生植物中华水韭的光合碳同化途径具有景天酸代谢(CAM)的特征。中华水韭沉水叶片光照条件下对水中CO2的吸收速率在一定的浓度范围内正相关于水中的CO2浓度。光照条件下, 中华水韭的pH-drift实验的pH补偿点分别为(8.1±0.3)和(7.9±0.1) mmol·L-1, 最终[CT]/Alk值为(1.009±0.01)和(1.022±0.004)。碱度对中华水韭夜晚CO2的吸收速率有显著的影响(F = 38.73, p< 0.000 1)。总碱度1.70 mmol·L-1溶液中的中华水韭沉水叶片在相对较低的CO2浓度(0.04±0.001 mmol·L-1)水平下即表现出对CO2的净吸收。调查了野外一处中华水韭沉水种群的生境pH值及CO2浓度的昼夜变化, 发现水体碱度约为1.59 mmol·L-1, 一昼夜的pH值波动不大, 平均为(6.1±0.04), 昼夜CO2浓度存在波动, 午夜水中的CO2浓度是午后的近3倍。
顾舒平, 尹黎燕, 李洁琳, 李伟. 不同碱度条件下中华水韭昼夜CO2气体交换的特征. 植物生态学报, 2009, 33(6): 1184-1190. DOI: 10.3773/j.issn.1005-264x.2009.06.019
GU Shu-Ping, YIN Li-Yan, LI Jie-Lin, LI Wei. DIURNAL CO<sub>2</sub> EXCHANGE RATES OF THE AQUATIC CRASSULACEAN ACID METABOLISM PLANT ISOETES SINENSIS PALMER AT DIFFERENT ALKALINITIES. Chinese Journal of Plant Ecology, 2009, 33(6): 1184-1190. DOI: 10.3773/j.issn.1005-264x.2009.06.019
图1 pH-drift实验的反应容器及配件 1: 恒温水浴系统 Constant temperature water bath 2: 磁力搅拌器 Magnetic stirring apparatus 3: 搅拌子(位于容器底部, 用一带空的圆片与植物隔开) Magnetic stirrer located beneath a perforated disc 4: pH电极(与data-logger连接) pH electrode (connected to the data-logger) 5: 恒温水进口 Inflow port 6: 恒温水出口 Outflow port
Fig. 1 Chamber with various components for the pH-drift experiment
碱度 Alkalinity (mmol·L-1) | 氯化钙 CaCl2 (mmol·L-1) | 硫酸镁 MgSO4 (mmol·L-1) | 碳酸氢钠NaHCO3 (mmol·L-1) | 碳酸氢钾KHCO3 (mmol·L-1) | 总离子强度 Ionic strength (mmol·L-1) | |
---|---|---|---|---|---|---|
低碱度 Low alkalinity | 0.85 | 0.63 | 0.28 | 0.70 | 0.15 | 3.85 |
高碱度 High alkalinity | 1.75 | 0.45 | 0.20 | 1.39 | 0.31 | 3.86 |
表1 反应介质的总碱度、各成分的浓度和总离子强度
Table 1 Alkalinity, chemical composition and ionic strength of the solution
碱度 Alkalinity (mmol·L-1) | 氯化钙 CaCl2 (mmol·L-1) | 硫酸镁 MgSO4 (mmol·L-1) | 碳酸氢钠NaHCO3 (mmol·L-1) | 碳酸氢钾KHCO3 (mmol·L-1) | 总离子强度 Ionic strength (mmol·L-1) | |
---|---|---|---|---|---|---|
低碱度 Low alkalinity | 0.85 | 0.63 | 0.28 | 0.70 | 0.15 | 3.85 |
高碱度 High alkalinity | 1.75 | 0.45 | 0.20 | 1.39 | 0.31 | 3.86 |
总碱度 Alk (mmol·L-1) | 最终pH Final pH | [CT] (mmol·L-1) | [CO2] (mmol·L-1) | [HCO- 3] (mmol·L-1) | CT/Alk |
---|---|---|---|---|---|
0.85 | 8.1 (0.3) | 0.858 (0.009) | 0.016 (0.006) | 0.834 (0.006) | 1.009 (0.01) |
1.70 | 7.9 (0.1) | 1.737 (0.007) | 0.045 (0.006) | 1.683 (0.002) | 1.022 (0.004) |
表2 中华水韭pH-drift实验最终的pH值及计算出的无机碳浓度
Table 2 Conditions and calculated carbon concentrations at the end of pH-drift experiments for Isoetes sinensis
总碱度 Alk (mmol·L-1) | 最终pH Final pH | [CT] (mmol·L-1) | [CO2] (mmol·L-1) | [HCO- 3] (mmol·L-1) | CT/Alk |
---|---|---|---|---|---|
0.85 | 8.1 (0.3) | 0.858 (0.009) | 0.016 (0.006) | 0.834 (0.006) | 1.009 (0.01) |
1.70 | 7.9 (0.1) | 1.737 (0.007) | 0.045 (0.006) | 1.683 (0.002) | 1.022 (0.004) |
图2 中华水韭两种碱度条件下的光合作用速率和[CT]、[CO2]关系图 线性回归的显著性检验Significance test of the linear regression: ○ R = 0.99, p < 0.000 1; ▼ R = 0.98, p < 0.000 1 Alk: Total alkalinity
Fig. 2 Photosynthetic rates of Isoetes sinensis as a function of total carbon (CT) and CO2 concentration at two different alkalinities
图3 中华水韭两种碱度条件下黑暗中CO2气体交换曲线 线性回归的显著性检验Significance test of the linear regression: ■ R = 0.88, p < 0.001; ▲ R = 0.78, p < 0.01) Alk: Total alkalinity
Fig. 3 CO2 response curve of Isoetes sinensis at two alkalinities in the dark
时间 Time | 温度 Temperature (℃) | pH | 总碱度Alk (mmol·L-1) | [CO2] (mmol·L-1) |
---|---|---|---|---|
13:43 | 29.9 (1.5) | 6.1 (0) | 1.16 | 0.86 (0.14) |
17:42 | 26.4 (0.2) | 6.2 (0) | 1.59 | 0.81 (0.06) |
0:35 | 25.2 (0.1) | 5.9 (0) | 1.90 | 2.21 (0.42) |
6:00 | 25.7 (0.1) | 6.1 (0) | 1.69 | 1.28 (0) |
表3 中华水韭生境水体温度、pH值、碱度以及CO2浓度的昼夜变化
Table 3 Diel changes in water temperature, pH, alkalinity and concentration of free CO2 in a habitat of Isoetes sinensis
时间 Time | 温度 Temperature (℃) | pH | 总碱度Alk (mmol·L-1) | [CO2] (mmol·L-1) |
---|---|---|---|---|
13:43 | 29.9 (1.5) | 6.1 (0) | 1.16 | 0.86 (0.14) |
17:42 | 26.4 (0.2) | 6.2 (0) | 1.59 | 0.81 (0.06) |
0:35 | 25.2 (0.1) | 5.9 (0) | 1.90 | 2.21 (0.42) |
6:00 | 25.7 (0.1) | 6.1 (0) | 1.69 | 1.28 (0) |
[1] | Allen ED, Spence DHN (1981). The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytologist, 87,269-283. |
[2] | Black MA, Maberly SC, Spence DHN (1981). Resistances to carbon dioxide fixation in four submerged freshwater macrophytes. New Phytologist, 89,557-568. |
[3] | Browse JA, Dromgoole FI, Brown JMA (1979). Photosynthesis in the aquatic macrophyte Egeria densa. III. Gas exchange studies. Australian Journal of Plant Physiology, 6,499-512. |
[4] | Denny P, Orr PT, Erskine DJC (1983). Potentiometric measurements of carbon dioxide flux of submerged aquatic macrophytes in pH-statted natural waters. Freshwater Biology, 13,507-519. |
[5] | Gran G (1952). Determination of the equivalence point in potentiometric titrations. Part II. Analyst, 77,661-671. |
[6] | Hao RM (郝日明), Huang ZY (黄致远), Liu XJ (刘兴剑), Wang ZL (王中磊), Xu HQ (徐惠强), Yao ZG (姚志刚) (2000). The natural distribution and characteristics of the rare and endangered plants in Jiangsu, China. Chinese Biodiversity (生物多样性), 8,153-162. (in Chinese with English abstract) |
[7] | Keeley JE (1998). CAM photosynthesis in submerged aquatic plants. Botanical Review, 64,121-175. |
[8] | Keeley JE, Bowes G (1982). Gas exchange characteristics of the submerged aquatic crassulacean acid metabolism plant, Isoetes howellii. Plant Physiology, 70,1455-1458. |
[9] | Keeley JE, Busch G (1984). Carbon assimilation characteristics of the aquatic CAM plant,Isoetes howellii. Plant Physiology, 76,525-530. |
[10] | Keeley JE, Rundel P (2003). Evolution of CAM and C 4carbon concentrating mechanisms. International Journal of Plant Sciences, 164,55-77. |
[11] | Keeley JE, Sandquist DR (1991). Diurnal photosynthesis cycle in CAM and non-CAM seasonal-pool aquatic macrophytes. Ecology, 72,716-727. |
[12] | Li W (李伟), Yin LY (尹黎燕) (2008). The electrochemical methods measuring photosynthesis of submerged macrophytes. Journal of Wuhan Botanical Research (武汉植物学研究), 26,99-103. (in Chinese with English abstract) |
[13] | Maberly SC, Spence DHN (1983). Photosynthetic inorganic carbon use by freshwater plants. Journal of Ecology, 71,705-724. |
[14] | Mackereth FJH, Heron J, Talling JF (1978). Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association Scientific Publication, Cumbria, 34-42. |
[15] | Pang XA (庞新安) (2003). The Research on Photosynthetic Physiology and Habitat Characteristics of Isoetes sinensis Palmer in China (中华水韭光合生理特性及其栖息地生境特征研究). Master degree dissertation, Wuhan University, Wuhan, 44-45. (in Chinese with English abstract) |
[16] | Pang XA, Wang QF, Gituru WR, Liu H, Yang XL, Liu X (2003). A preliminary study of crassulacean acid metabolism (CAM) in the endangered aquatic quillwort Isöetes sinensis Palmer in China. Wuhan University Journal of Natural Sciences, 8,455-458. |
[17] | Smart RM, Barko JW (1985). Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany, 21,251-263. |
[18] | Smith FA, Walker NA (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO 2 and HCO- 3 and to carbon isotopic discrimination. New Phytologist, 86,245-259. |
[19] | Spence DHN, Maberly SC (1985). Occurrence and ecological importance of HCO- 3 use among aquatic higher plants. In: Lucas WJ, Berry JA eds. Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists, Rockville, Maryland, 125-143. |
[20] | Stumm W, Morgan JJ (1981). Aquatic Chemistry: an Introduction Emphasizing Chemical Equilibria in Natural Waters. John Wiley and Sons, New York, 780. |
[21] | Talling JF (1973). The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh waters. Freshwater Biology, 3,335-362. |
[22] | Taylor WC, Hickey RJ (1992). Habitat, evolution and speciation in Isoetes. Annals of the Missouri Botanical Garden, 79,613-622. |
[23] | Ting IP (1985). Crassulacean acid metabolism. Annual Review of Plant Physiology, 36,595-622. |
[24] | Vestergaard O, Sand-Jensen K (2000). Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany, 67,85-107. |
[25] | Yu YF (于永福) (1999). A milestone of wild plant conservation in China. Plants (植物杂志), 5,3-11. (in Chinese) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[5] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[6] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[7] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[8] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[9] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[10] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[11] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[12] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[13] | 韩吉梅, 张旺锋, 熊栋梁, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展[J]. 植物生态学报, 2017, 41(8): 914-924. |
[14] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[15] | 陈良华, 赖娟, 胡相伟, 杨万勤, 张健, 王小军, 谭灵杰. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19