植物生态学报 ›› 2022, Vol. 46 ›› Issue (9): 1018-1026.DOI: 10.17521/cjpe.2022.0134
所属专题: 青藏高原植物生态学:种群生态学
董全民1,2(), 赵新全2,3, 刘玉祯1, 冯斌1, 俞旸1, 杨晓霞1, 张春平1, 曹铨1, 刘文亭1,*(
)
收稿日期:
2022-04-11
接受日期:
2022-07-22
出版日期:
2022-09-20
发布日期:
2022-10-19
通讯作者:
董全民,赵新全,刘玉祯,冯斌,俞旸,杨晓霞,张春平,曹铨,刘文亭
作者简介:
(qhdxlwt@163.com)基金资助:
DONG Quan-Min1,2(), ZHAO Xin-Quan2,3, LIU Yu-Zhen1, FENG Bin1, YU Yang1, YANG Xiao-Xia1, ZHANG Chun-Ping1, CAO Quan1, LIU Wen-Ting1,*(
)
Received:
2022-04-11
Accepted:
2022-07-22
Online:
2022-09-20
Published:
2022-10-19
Contact:
DONG Quan-Min,ZHAO Xin-Quan,LIU Yu-Zhen,FENG Bin,YU Yang,YANG Xiao-Xia,ZHANG Chun-Ping,CAO Quan,LIU Wen-Ting
About author:
(qhdxlwt@163.com)Supported by:
摘要:
种子大小和种子数量变异是植物适合度研究的核心问题, 探究不同大型草食动物对嵩草(Kobresia spp.)草地优势种种子大小与数量的影响, 有助于了解其繁殖策略和种群更新机制。该研究依托青藏高原高寒草地-家畜系统适应性管理技术平台, 对不放牧(对照)、牦牛单牧、藏羊单牧、牦牛藏羊1:2混牧、牦牛藏羊1:4混牧、牦牛藏羊1:6混牧6个放牧处理下矮生嵩草(K. humilis)的种子大小和数量特征, 种子大小和数量与生殖性状的关系, 种子大小和数量的权衡关系进行研究。结果显示: 1)放牧处理增加矮生嵩草种子大小15%以上, 增加种子数量30%以上; 除了牦牛藏羊1:2混牧处理, 其他放牧处理与对照相比种子大小变异系数降低15%以上, 种子数量变异系数降低25%以上。2) Pearson相关分析结果显示, 放牧处理下矮生嵩草种子数量、种子大小与生殖相关性状均呈正相关关系。3)放牧处理增加了矮生嵩草种子大小与数量的权衡, 单条生殖枝质量是影响种子大小与数量权衡的重要性状。研究表明, 即使是中度放牧, 家畜依旧是矮生嵩草资源获取的限制性因子; 长期的放牧改变了矮生嵩草性状间的潜在联系和权衡关系, 稳定了种子大小和种子数量特征, 并通过提高种子大小和种子数量的方式优化繁殖策略, 提高了子代的竞争力和适合度。
董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系. 植物生态学报, 2022, 46(9): 1018-1026. DOI: 10.17521/cjpe.2022.0134
DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland. Chinese Journal of Plant Ecology, 2022, 46(9): 1018-1026. DOI: 10.17521/cjpe.2022.0134
图2 放牧实验小区面积示意图。CK, 不放牧; M1, 牦牛藏羊1:2混牧; M2, 牦牛藏羊1:4混牧; M3, 牦牛藏羊1:6混牧; S, 藏羊单独放牧; Y, 牦牛单独放牧。
Fig. 2 Plots diagram and area of grazing experiments. CK, no grazing; M1, M2 and M3 representing yak and Xizang sheep grazing ratios with 1:2, 1:4 and 1:6; S, single Xizang sheep grazing; Y, single yak grazing.
图4 放牧对高寒草地矮生嵩草种子大小(A)和种子数量(B)的影响(平均值±标准误)。CK, 不放牧; M1, 牦牛藏羊1:2混牧; M2, 牦牛藏羊1:4混牧; M3, 牦牛藏羊1:6混牧; S, 藏羊单独放牧; Y, 牦牛单独放牧。不同小写字母表示不同放牧处理之间差异显著(p < 0.05)。
Fig. 4 Effects of herbivore grazing assemblage on the seed size (A) and seed number (B) of Kobresia humilis in an alpine grassland (mean ± SE). CK, no grazing; M1, M2 and M3 representing yak and Xizang sheep grazing ratios with 1:2, 1:4 and 1:6; S, single Xizang sheep grazing; Y, single yak grazing. Different lowercase letters indicate significant difference among different grazing treatments (p < 0.05).
图5 高寒草地矮生嵩草种子大小(A)和种子数量(B)变异系数。CK, 不放牧; M1, 牦牛藏羊1:2混牧; M2, 牦牛藏羊1:4混牧; M3, 牦牛藏羊1:6混牧; S, 藏羊单独放牧; Y, 牦牛单独放牧。
Fig. 5 Coefficient variation of seed size (A) and seed number (B) of Kobresia humilis in alpine grassland. CK, no grazing; M1, M2 and M3 representing yak and Xizang sheep grazing ratios with 1:2, 1:4 and 1:6; S, single Xizang sheep grazing; Y, single yak grazing.
放牧处理 Grazing treatment | 种子性状 Seed trait | 生殖相关性状 Reproductive related trait | |||
---|---|---|---|---|---|
个体总质量 Total individual mass | 生殖枝质量占比 Proportion of reproductive branch mass | 单条生殖枝质量 Mass of single reproductive branch | 个体种子总质量 Total individual seed mass | ||
牦牛单独放牧 Single yak grazing (Y) | 种子大小 Seed size | 0.275 | 0.318 | 0.298 | 0.408* |
藏羊单独放牧 Single Xizang sheep grazing (S) | 0.076 | 0.039 | 0.172 | 0.241 | |
牦牛藏羊1:2混牧 Yak:Xizang sheep grazing ratio of 1:2 (M1) | 0.014 | 0.132 | 0.335 | 0.258 | |
牦牛藏羊1:4混牧 Yak:Xizang sheep grazing ratio of 1:4 (M2) | 0.181 | 0.112 | 0.535** | 0.391* | |
牦牛藏羊1:6混牧 Yak:Xizang sheep grazing ratio of 1:6 (M3) | 0.090 | 0.069 | 0.223 | 0.285 | |
不放牧 No grazing (CK) | 0.234 | 0.280 | -0.114 | 0.432* | |
Y | 种子数量 Seed number | 0.738** | 0.459* | 0.112 | 0.915** |
S | 0.299* | 0.746** | 0.273 | 0.937** | |
M1 | 0.553** | 0.495** | 0.352 | 0.929** | |
M2 | 0.706** | 0.532** | 0.062 | 0.869** | |
M3 | 0.779** | 0.386* | 0.245 | 0.910** | |
CK | 0.594** | 0.626** | -0.019 | 0.965** |
表1 种子数量和种子大小与矮生嵩草生殖相关性状的Pearson相关关系
Table 1 Pearson correlation between seed size, seed number and reproductive related traits of Kobresia humilis
放牧处理 Grazing treatment | 种子性状 Seed trait | 生殖相关性状 Reproductive related trait | |||
---|---|---|---|---|---|
个体总质量 Total individual mass | 生殖枝质量占比 Proportion of reproductive branch mass | 单条生殖枝质量 Mass of single reproductive branch | 个体种子总质量 Total individual seed mass | ||
牦牛单独放牧 Single yak grazing (Y) | 种子大小 Seed size | 0.275 | 0.318 | 0.298 | 0.408* |
藏羊单独放牧 Single Xizang sheep grazing (S) | 0.076 | 0.039 | 0.172 | 0.241 | |
牦牛藏羊1:2混牧 Yak:Xizang sheep grazing ratio of 1:2 (M1) | 0.014 | 0.132 | 0.335 | 0.258 | |
牦牛藏羊1:4混牧 Yak:Xizang sheep grazing ratio of 1:4 (M2) | 0.181 | 0.112 | 0.535** | 0.391* | |
牦牛藏羊1:6混牧 Yak:Xizang sheep grazing ratio of 1:6 (M3) | 0.090 | 0.069 | 0.223 | 0.285 | |
不放牧 No grazing (CK) | 0.234 | 0.280 | -0.114 | 0.432* | |
Y | 种子数量 Seed number | 0.738** | 0.459* | 0.112 | 0.915** |
S | 0.299* | 0.746** | 0.273 | 0.937** | |
M1 | 0.553** | 0.495** | 0.352 | 0.929** | |
M2 | 0.706** | 0.532** | 0.062 | 0.869** | |
M3 | 0.779** | 0.386* | 0.245 | 0.910** | |
CK | 0.594** | 0.626** | -0.019 | 0.965** |
图6 不同放牧处理矮生嵩草种子数量与种子大小的权衡关系图。CK, 不放牧; M1, 牦牛藏羊1:2混牧; M2, 牦牛藏羊1:4混牧; M3, 牦牛藏羊1:6混牧; S, 藏羊单独放牧; Y, 牦牛单独放牧。
Fig. 6 Trade-off relationship between seed size and seed number of Kobresia humilis under different grazing treatments. CK, no grazing; M1, M2 and M3 representing yak and Xizang sheep grazing ratios with 1:2, 1:4 and 1:6; S, single Xizang sheep grazing; Y, single yak grazing.
图7 不同放牧处理矮生嵩草生殖相关性状与种子数量与种子大小权衡的变量投影重要性(VIP)。CK, 不放牧; M1, 牦牛藏羊1:2混牧; M2, 牦牛藏羊1:4混牧; M3, 牦牛藏羊1:6混牧; S, 藏羊单独放牧; Y, 牦牛单独放牧。RMP, 生殖枝质量占比; SRM, 单条生殖枝质量; TM, 个体总质量; TSM, 个体种子总质量。虚线表示VIP = 1。
Fig. 7 Variable importance in projection values (VIP) of seed size and seed number trade-off by reproductive related traits under different grazing treatments. CK, no grazing; M1, M2 and M3 representing yak and Xizang sheep grazing ratios with 1:2, 1:4 and 1:6; S, single Xizang sheep grazing; Y, single yak grazing. RMP, proportion of reproductive branch mass; SRM, mass of single reproductive branch; TM, total individual mass; TSM, total individual seed mass. The dotted line indicates VIP = 1.
[1] |
Coomes DA, Grubb PJ (2003). Colonization, tolerance, competition and seed-size variation within functional groups. Trends in Ecology & Evolution, 18, 283-291.
DOI URL |
[2] |
Díaz S, Lavorel S, McIntyre S, Falczuk V, Casanoves F, Milchunas DG, Skerpe C, Rusch G, Sternberg M, Noy-Meir I, Landsberg J, Zhang W, Clark H, Campbell BD (2007). Plant trait responses to grazing—A global synthesis. Global Change Biology, 13, 313-341.
DOI URL |
[3] | Gómez JM (2004). Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution, 58, 71-80. |
[4] |
Han DY, Zhang W, Yiliyasi N, Yang YF (2021). Recruitment limitation of plant population regeneration. Chinese Journal of Plant Ecology, 45, 1-12.
DOI URL |
[韩大勇, 张维, 努尔买买提·依力亚斯, 杨允菲(2021). 植物种群更新的补充限制. 植物生态学报, 45, 1-12.] | |
[5] | Kisdi É, Geritz SAH (2003). Competition-colonization trade-off between perennial plants: exclusion of the rare species, hysteresis effects and the robustness of coexistence under replacement competition. Evolutionary Ecology Research, 5, 529-548. |
[6] |
Leishman MR, Murray BR (2001). The relationship between seed size and abundance in plant communities: model predictions and observed patterns. Oikos, 94, 151-161.
DOI URL |
[7] | Li JL, Li XL (2016). Research progress on environmental adaptability of Kobresia humilis in alpine meadow. Ecological Science, 35, 156-165. |
[李积兰, 李希来 (2016). 高寒草甸矮嵩草的环境适应性研究进展. 生态科学, 35, 156-165.] | |
[8] | Liu WT, Dong QM (2021). The Ecology of Seeds. Science and Technology Literature Press, Beijing. |
[刘文亭, 董全民 (2021). 种子生态学. 科学技术文献出版社, 北京.] | |
[9] |
Liu WT, Sun SX, Zhang CP, Lv SJ, Dong QM (2020). Linking plant spatial aggregation with reproductive traits and near- source seed dispersal: ecological adaptation to heavy grazing. Journal of Plant Ecology, 13, 489-498.
DOI URL |
[10] |
Liu WT, Wang TL, Zhang S, Ding LJ, Wei ZJ (2018). Grazing influences Stipa breviflora seed germination in desert grasslands of the Inner Mongolia Plateau. PeerJ, 6, e4447. DOI: 10.7717/peerj.4447.
DOI |
[11] | Liu WT, Wei ZJ, Lü SJ, Sun SX, Dai JZ, Yan BL (2015). Above-ground biomass in Stipa breviflora desert grassland at different organizational scales. Chinese Journal of Applied and Environmental Biology, 21, 912-918. |
[刘文亭, 卫智军, 吕世杰, 孙世贤, 代景忠, 闫宝龙 (2015). 短花针茅荒漠草原不同组织尺度地上生物量. 应用与环境生物学报, 21, 912-918.] | |
[12] |
Liu YZ, Sun CC, Liu WT, Yang XX, Feng B, Shi G, Zhang X, Li CD, Yang ZZ, Gao J, Zhang XF, Yu Y, Zhang CP, Dong QM (2022). Response of keystone species changes in alpin grassland plant communities to different herbivore assemblage grazing. Acta Ecologica Sinica, 18. DOI: 10.5846/stxb2021110072757.
DOI |
[刘玉祯, 孙彩彩, 刘文亭, 杨晓霞, 冯斌, 时光, 张雪, 李彩弟, 杨增增, 高婕, 张小芳, 俞旸, 张春平, 董全民 (2022). 高寒草地植物群落关键种对不同放牧家畜组合放牧的响应. 生态学报, 18. DOI: 10.5846/stxb2021110072757.]
DOI |
|
[13] |
Lönnberg K, Eriksson O (2013). Rules of the seed size game: contests between large-seeded and small-seeded species. Oikos, 122, 1080-1084.
DOI URL |
[14] |
Lu N, Fu BJ, Jin TT, Chang RY (2014). Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landscape Ecology, 29, 1697-1708.
DOI URL |
[15] |
MacKay J, Nikiforuk K, Szojka M, Little CJ, Fleri JR, Germain RM (2021). Animals connect plant species and resources in a meta-ecosystem. Landscape Ecology, 36, 1621-1629.
DOI URL |
[16] |
Maron JL, Pearson DE, Potter T, Ortega Y (2012). Seed size and provenance mediate the joint impacts of disturbance and seed predation on community assembly. Journal of Ecology, 100, 1492-1500.
DOI URL |
[17] |
Muller-Landau HC (2003). Seeds of understanding of plant diversity. Proceedings of the National Academy of Sciences of the United States of America, 100, 1469-1471.
PMID |
[18] |
Muller-Landau HC (2010). The tolerance-fecundity tradeoff and the maintenance of diversity in seed size. Proceedings of the National Academy of Sciences of the United States of America, 107, 4242-4247.
DOI PMID |
[19] |
Orr D, Bui A, Klope M, McCullough IM, Lee M, Motta C, Mayorga S, Konicek K, Young HS (2022). Context- dependent effects of shifting large herbivore assemblages on plant structure and diversity. Journal of Ecology, 110, 1312-1327.
DOI URL |
[20] |
Rees M, Westoby M (1997). Game-theoretical evolution of seed mass in multi-species ecological models. Oikos, 78, 116-126.
DOI URL |
[21] | Rosenthal JP, Kotanen PM (1994). Terrestrial plant tolerance to herbivory. Trends in Ecology & Evolution, 94, 145-148. |
[22] |
Shroff R, Vergara F, Muck A, Svatos A, Gershenzon J (2008). Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proceedings of the National Academy of Sciences of the United States of America, 105, 6196-6201.
DOI PMID |
[23] | Sun DC, Li YL, Zhao XY, Luo YY, Bi JD (2016). Effects of grazing and enclosure on net ecosystem carbon exchange in the Horqin sandy grassland. Journal of Desert Research, 36, 93-102. |
[孙殿超, 李玉霖, 赵学勇, 罗亚勇, 毕京东 (2016). 围封和放牧对科尔沁沙质草地净生态系统碳交换量的影响. 中国沙漠, 36, 93-102.] | |
[24] |
Wu GL, Shang ZH, Zhu YJ, Ding LM, Wang D (2015). Species- abundance-seed-size patterns within a plant community affected by grazing disturbance. Ecological Applications, 25, 848-855.
DOI URL |
[25] |
Xie LN, Chen WZ, Gabler CA, Han L, Guo HY, Chen Q, Ma CC, Gu S (2016). Effects of grazing intensity on seed production of Caragana stenophylla along a climatic aridity gradient in the Inner Mongolia steppe, China. Journal of Arid Land, 8, 890-898.
DOI URL |
[26] |
Yang XX, Dong QM, Chu H, Ding CX, Yu Y, Zhang CP, Zhang YF, Yang ZZ (2019). Different responses of soil element contents and their stoichiometry (C:N:P) to yak grazing and Tibetan sheep grazing in an alpine grassland on the eastern Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 285, 106628. DOI: 10.1016/j.agee.2019.106628.
DOI |
[27] |
Zhang H, Zhang Z (2008). Endocarp thickness affects seed removal speed by small rodents in a warm temperate broad-leafed deciduous forest, China. Acta Oecologica, 34, 285-293.
DOI URL |
[28] | Zhang YF, Yang XX, Dong QM, Zhang CP, Yu Y, Yang ZZ, Feng B, Chu H, Wei LN, Zhang XF (2019). Effects of mixed grazing of yak and Tibetan sheep on feed intake of grazing livestock and plant compensation growth. Acta Agrestia Sinica, 27, 1607-1614. |
[张艳芬, 杨晓霞, 董全民, 张春平, 俞旸, 杨增增, 冯斌, 褚晖, 魏琳娜, 张小芳 (2019). 牦牛和藏羊混合放牧对放牧家畜采食量和植物补偿性生长的影响. 草地学报, 27, 1607-1614.] | |
[29] |
Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564.
DOI URL |
[张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.]
DOI |
|
[30] |
Zunzunegui M, Ain-Lhout F, Jáuregui J, Barradas MD, Boutaleb S, Álvarez-Cansino L, Esquivias MP (2010). Fruit production under different environmental and management conditions of argan, Argania spinosa (L.). Journal of Arid Environments, 74, 1138-1145.
DOI URL |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[3] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[4] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[5] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[6] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[7] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[8] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[9] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
[10] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[11] | 李钰,赵成章,董小刚,侯兆疆,马小丽,张茜. 高寒草地狼毒枝-叶性状的坡度差异性[J]. 植物生态学报, 2013, 37(8): 709-717. |
[12] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[13] | 张敏, 朱教君, 闫巧玲. 光对种子萌发的影响机理研究进展[J]. 植物生态学报, 2012, 36(8): 899-908. |
[14] | 陈延松, 周守标, 欧祖兰, 徐忠东, 洪欣. 安徽万佛山自然保护区常见植物种子大小变异[J]. 植物生态学报, 2012, 36(8): 739-746. |
[15] | 周磊, 何洪林, 张黎, 孙晓敏, 石培礼, 任小丽, 于贵瑞. 基于数字相机图像的西藏当雄高寒草地群落物候模拟[J]. 植物生态学报, 2012, 36(11): 1125-1135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19