植物生态学报 ›› 2013, Vol. 37 ›› Issue (8): 709-717.DOI: 10.3724/SP.J.1258.2013.00074
所属专题: 青藏高原植物生态学:种群生态学; 植物功能性状
收稿日期:
2013-01-15
接受日期:
2013-06-04
出版日期:
2013-01-15
发布日期:
2013-08-07
通讯作者:
赵成章
基金资助:
LI Yu,ZHAO Cheng-Zhang(),DONG Xiao-Gang,HOU Zhao-Jiang,MA Xiao-Li,ZHANG Qian
Received:
2013-01-15
Accepted:
2013-06-04
Online:
2013-01-15
Published:
2013-08-07
Contact:
ZHAO Cheng-Zhang
摘要:
枝条与叶片的生长关系是植物形成不同冠层结构充分利用空间资源的一种策略, 有利于植株通过构型调整增强自身的光合效率和竞争力, 以适应不同的生境条件。在石羊河上游高寒退化草地, 利用ArcGIS建立研究区域的数字高程模型(DEM), 并提取样地坡度数据, 采用标准化主轴估计(SMA)方法, 研究了不同坡度狼毒(Stellera chamaejasme)种群枝与叶的生长。结果表明: 随着坡度增大, 狼毒叶大小、枝长度和分枝数均呈逐渐减小趋势; 狼毒分枝数与枝长度、叶片数与枝长度均呈异速生长关系, 枝长度增加的速度大于叶片数增加的速度, 分枝数增加的速度大于枝长度增加的速度; 不同坡度间的比较显示, 较大坡度上狼毒分枝数与枝长度、叶片数与枝长度的异速斜率均较大, 在枝长度一定的条件下, 较大坡度的狼毒具有更大的叶片数与枝长度的比值和分枝数与枝长度的比值。坡度差异造成环境因子和植被群落环境的变化, 进而影响狼毒的资源利用策略, 表现为枝条与叶片构型以及二者之间关系的变化, 反映了毒杂草较强表型可塑性的适应机制。
李钰,赵成章,董小刚,侯兆疆,马小丽,张茜. 高寒草地狼毒枝-叶性状的坡度差异性. 植物生态学报, 2013, 37(8): 709-717. DOI: 10.3724/SP.J.1258.2013.00074
LI Yu,ZHAO Cheng-Zhang,DONG Xiao-Gang,HOU Zhao-Jiang,MA Xiao-Li,ZHANG Qian. Twig and leaf trait differences in Stellera chamaejasme with slope in alpine grassland. Chinese Journal of Plant Ecology, 2013, 37(8): 709-717. DOI: 10.3724/SP.J.1258.2013.00074
坡度分组 Slop group | 坡度范围 Slope range | 样方数 Number | 生物学特征 Biological characteristics | ||
---|---|---|---|---|---|
高度 Height (cm) | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | |||
A | 0°-10° | 27 | 16.7 ± 0.8a | 32 ± 1.3a | 9.24 ± 1.09a |
B | 10°-20° | 27 | 15.1 ± 0.5b | 28 ± 1.2c | 7.93 ± 1.43b |
C | 20°-30° | 26 | 13.8 ± 0.5c | 30 ± 1.2b | 8.07 ± 1.12b |
表1 样地分组和狼毒种群的生物学特征(平均值±标准误差)
Table 1 Plot groups and biological characteristics of Stellera chamaejasme population (mean ± SE)
坡度分组 Slop group | 坡度范围 Slope range | 样方数 Number | 生物学特征 Biological characteristics | ||
---|---|---|---|---|---|
高度 Height (cm) | 盖度 Coverage (%) | 地上生物量 Aboveground biomass (g·m-2) | |||
A | 0°-10° | 27 | 16.7 ± 0.8a | 32 ± 1.3a | 9.24 ± 1.09a |
B | 10°-20° | 27 | 15.1 ± 0.5b | 28 ± 1.2c | 7.93 ± 1.43b |
C | 20°-30° | 26 | 13.8 ± 0.5c | 30 ± 1.2b | 8.07 ± 1.12b |
坡度 Slope | 叶面积 Leaf area (mm2) | 叶片数 Leaf number | 枝长度 Twig length (cm) | 分枝数 Twig number |
---|---|---|---|---|
0°-10° | 28.45 ± 1.06 | 50 ± 2 | 18.5 ± 0.7 | 31 ± 1 |
10°-20° | 27.12 ± 1.21 | 49 ± 2 | 17.5 ± 0.5 | 30 ± 1 |
20°-30° | 25.53 ± 1.19 | 47 ± 1 | 16.8 ± 0.4 | 28 ± 1 |
p | 0.039 | 0.040 | 0.026 | 0.032 |
表2 不同坡度狼毒枝与叶性状(平均值±标准误差)
Table 2 Twig and leaf traits of Stellera chamaejasme in different slopes (mean ± SE)
坡度 Slope | 叶面积 Leaf area (mm2) | 叶片数 Leaf number | 枝长度 Twig length (cm) | 分枝数 Twig number |
---|---|---|---|---|
0°-10° | 28.45 ± 1.06 | 50 ± 2 | 18.5 ± 0.7 | 31 ± 1 |
10°-20° | 27.12 ± 1.21 | 49 ± 2 | 17.5 ± 0.5 | 30 ± 1 |
20°-30° | 25.53 ± 1.19 | 47 ± 1 | 16.8 ± 0.4 | 28 ± 1 |
p | 0.039 | 0.040 | 0.026 | 0.032 |
图1 狼毒枝长度与叶片数的关系。A, 坡度0°-10°。B, 坡度10°-20°。C, 坡度20°-30°。
Fig. 1 Relationship between twig length and leaf number of Stellera chamaejasme. A, Slope 0°-10°. B, Slope 10°-20°. C, Slope 20°-30°.
图2 狼毒枝长度与分枝数的关系。A, 坡度0°-10°。B, 坡度10°-20°。C, 坡度20°-30°。
Fig. 2 Relationship between twig length and twig number of Stellera chamaejasme. A, Slope 0°-10°. B, Slope 10°-20°. C, Slope 20°-30°.
坡度 Slope | 群落特征 Community characteristic | 土壤水分 Soil moisture (%) | ||
---|---|---|---|---|
盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
0°-10° | 79.67 ± 5.25a | 18.39 ± 0.37a | 98.29 ± 2.91a | 9.83 ± 0.22a |
10°-20° | 72.75 ± 3.61b | 17.62 ± 0.50b | 94.75 ± 3.44b | 9.15 ± 0.37b |
20°-30° | 68.75 ± 3.95c | 15.83 ± 0.81c | 89.66 ± 3.28c | 8.38 ± 0.20c |
表3 不同坡度样地的主要特征(平均值±标准误差)
Table 3 Main characteristics of plots in different slopes (mean ± SE)
坡度 Slope | 群落特征 Community characteristic | 土壤水分 Soil moisture (%) | ||
---|---|---|---|---|
盖度 Coverage (%) | 高度 Height (cm) | 地上生物量 Aboveground biomass (g·m-2) | ||
0°-10° | 79.67 ± 5.25a | 18.39 ± 0.37a | 98.29 ± 2.91a | 9.83 ± 0.22a |
10°-20° | 72.75 ± 3.61b | 17.62 ± 0.50b | 94.75 ± 3.44b | 9.15 ± 0.37b |
20°-30° | 68.75 ± 3.95c | 15.83 ± 0.81c | 89.66 ± 3.28c | 8.38 ± 0.20c |
[1] |
Brouat C, Gibernau M, Amsellem L, McKey D (1998). Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist, 139, 459-470.
DOI URL |
[2] |
Brouat C, McKey D (2001). Leaf-stem allometry, hollow stems, and the evolution of caulinary domatia in myrmecophytes. New Phytologist, 151, 391-406.
DOI URL |
[3] |
Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought-from genes to the whole plant. Functional Plant Biology, 30, 239-264.
DOI URL PMID |
[4] |
Chen XL, Liang Y, Qi W, Su M, Du GZ (2009). Studies on reproductive allocation, floral size and its trade-off with floral number of annual Gentiana. Acta Prataculturae Sinica, 18, 58-66. (in Chinese with English abstract)
DOI URL |
[ 陈学林, 梁艳, 齐威, 苏梅, 杜国祯 (2009). 一年生龙胆属植物的繁殖分配及其花大小、数量的权衡关系研究. 草业学报, 18, 58-66.]
DOI URL |
|
[5] |
Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414.
DOI URL |
[6] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
DOI URL PMID |
[7] | Falster DS, Warton DI, Wright IJ (2006). User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2.0. http://www.bio.mq.edu.au/ecology/SMATR/. Cited March 11, 2012. |
[8] | Gao FY, Zhao CZ, Shi FX, Sheng YP, Ren H, He GB (2011). Spatial pattern of Stellera chamaejasme population in degraded alpine grassland in northern slope of Qilian Mountains, China. Chinese Journal of Ecology, 30, 1312-1316. (in Chinese with English abstract) |
[ 高福元, 赵成章, 石福习, 盛亚萍, 任珩, 贺国宝 (2011). 祁连山北坡高寒草地狼毒种群格局. 生态学杂志, 30, 1312-1316.] | |
[9] |
Gibson AC (1998). Photosynthetic organs of desert plants. BioScience, 48, 911-920.
DOI URL |
[10] |
Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves. The American Naturalist, 110, 743-778.
DOI URL |
[11] | Gleason HA, Cronquist A (1991). Manual of Vascular Plants of Northeastern United States and Adjacent Canada. The New York Botanical Garden, Bronx. |
[12] |
Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra JP (2010). Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21, 300-317.
DOI URL |
[13] | He WM, Zhong ZC (2000). Morphological and growth responses of the climbing plant, Gynostemma pentaphyllum seedlings to varying light intensity. Acta Phytoecologica Sinica, 24, 375-378. (in Chinese with English abstract) |
[ 何维明, 钟章成 (2000). 攀援植物绞股蓝幼苗对光照强度的形态和生长反应. 植物生态学报, 24, 375-378.] | |
[14] |
Heuret P, Meredieu C, Coudurier T, Courdier F, Barthélémy D (2006). Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster (Pinaceae). American Journal of Botany, 93, 1577-1587.
DOI URL PMID |
[15] |
Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees. Journal of Ecology, 95, 376-382.
DOI URL |
[16] | Li T, Deng JM, Wang GX, Cheng DL, Yu ZL (2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats. Polish Journal of Ecology, 57, 659-667. |
[17] | Liu ZG, Cai YL, Li K (2008). Studies on the leaf size-twig size spectrum of subtropical evergreen board-leaved woody species. Journal of Plant Ecology (Chinese Version), 32, 363-369. (in Chinese with English abstract) |
[ 刘志国, 蔡永立, 李恺 (2008). 亚热带常绿阔叶林植物叶小枝的异速生长. 植物生态学报, 32, 363-369.] | |
[18] |
Maherali H, Delucia EH (2001). Influence of climate-driven shifts in biomass allocation on water transport and storage in ponderosa pine. Oecologia, 129, 481-491.
DOI URL PMID |
[19] |
Mcculloh KA, Sperry JS (2005). Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiology, 25, 257-267.
URL PMID |
[20] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[21] |
Normand F, Bissery C, Damour G, Lauri PÉ (2008). Hydraulic and mechanical stem properties affect leaf-stem allometry in mango cultivars. New Phytologist, 178, 590-602.
DOI URL PMID |
[22] | Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12. |
[23] |
Preston KA, Ackerly DD (2003). Hydraulic architecture and the evolution of shoot allometry in contrasting climates. American Journal of Botany, 90, 1502-1512.
URL PMID |
[24] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
[25] | Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242. |
[26] | Schmid B, Bazzaz FA, Weiner J (1995). Size dependency of sexual reproduction and of clonal growth in two perennial plants. Canadian Journal of Botany, 73, 1831-1837. |
[27] | Skidmore AK (1989). A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model. International Journal of Geographical Information Systems, 3, 323-334. |
[28] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL PMID |
[29] | Tang GA, Li FY, Liu XJ (2010). Tutorial of Digital Elevation Model. 2nd edn. Science Press, Beijing. 149. (in Chinese) |
[ 汤国安, 李发源, 刘学军 (2010). 数字高程模型教程. 第二版. 科学出版社, 北京. 149.] | |
[30] | Walter A, Schurr U (2005). Dynamics of leaf and root growth: endogenous control versus environmental impact. Annuals of Botany, 95, 891-900. |
[31] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
URL PMID |
[32] |
Weiner J, Fishman L (1994). Competition and allometry in Kochia scoparia. Annals of Botany, 73, 263-271.
DOI URL |
[33] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[34] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
URL PMID |
[35] |
Woodward FI, Lomas MR, Kelly CK (2004). Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 1465-1476.
DOI URL |
[36] |
Xu Y, Yang XD, Xie YM, Xu YL, Chang SX, Yan ER (2012). Twig size-number trade-off among woody plants in Tiantong region, Zhejiang Province of China. Chinese Journal of Plant Ecology, 36, 1268-1276. (in Chinese with English abstract)
DOI URL |
[ 许月, 杨晓东, 谢一鸣, 徐艺露, Chang SX, 阎恩荣 (2012). 浙江天童木本植物小枝的“大小-数量”权衡. 植物生态学报, 36, 1268-1276.]
DOI URL |
|
[37] |
Yagi T (2004). Within-tree variations in shoot differentiation patterns of 10 tall tree species in a Japanese cool temperate forest. Canadian Journal of Botany, 82, 228-243.
DOI URL |
[38] |
Yagi T (2006). Relationships between shoot size and branching patterns in 10 broad-leaved tall tree species in a Japanese cool-temperate forest. Canadian Journal of Botany, 84, 1894-1907.
DOI URL |
[39] |
Yang DM, Zhan F, Zhang HW (2012). Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China. Chinese Journal of Plant Ecology, 36, 281-291. (in Chinese with English abstract)
DOI URL |
[ 杨冬梅, 占峰, 张宏伟 (2012). 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报, 36, 281-291.]
DOI URL |
|
[40] | Zhang QW, Lei TW, Pan YH, Gao PL (2004). Rational computational method of soil erodibility and critical shear stress from experimental data. Journal of the Graduate School of the Chinese Academy of Sciences, 21, 468-475. (in Chinese with English abstract) |
[ 张晴雯, 雷廷武, 潘英华, 高佩玲 (2004). 细沟侵蚀可蚀性参数及土壤临界抗剪应力的有理(实验)求解方法. 中国科学院研究生院学报, 21, 468-475.] | |
[41] | Zhao CZ (2004). Degraded Grassland Causation and Its Ecological Restoration Technology and Countermeasures of Sunan County. PhD dissertation, Cold and Arid regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou. 32-39. (in Chinese with English abstract) |
[ 赵成章 (2004). 肃南县天然草地退化成因、治理技术与对策. 博士学位论文, 中国科学院寒区旱区环境与工程研究所, 兰州. 32-39.] | |
[42] | Zhao CZ, Gao FY, Sheng YP, Dong XG, Zhou W (2011). Fine-scale spatial distribution and spatial association of Stellera chamaejasme population. Arid Land Geography, 34, 492-498. (in Chinese with English abstract) |
[ 赵成章, 高福元, 盛亚萍, 董小刚, 周伟 (2011). 狼毒种群小尺度空间分布格局及空间关联性研究. 干旱区地理, 34, 492-498.] | |
[43] | Zhao CZ, Zhang QP (2010). The spatial pattern of soil seed bank of Stellera chamaejasme community in degraded grassland of the Qilian Mountains. Chinese Journal of Grassland, 32, 79-85. (in Chinese with English abstract) |
[ 赵成章, 张启鹏 (2010). 祁连山退化草地狼毒群落土壤种子库的空间格局. 中国草地学报, 32, 79-85.] |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[3] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[4] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[5] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[6] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[7] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[8] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[9] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[10] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[11] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[12] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[13] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[14] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[15] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19