Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (2): 262-271.DOI: 10.17521/cjpe.2007.0030
Special Issue: 生态学研究的方法和技术
• Research Articles • Previous Articles Next Articles
NIU Shu-Li, HAN Xing-Guo, MA Ke-Ping, WAN Shi-Qiang()
Received:
2006-07-14
Accepted:
2006-12-20
Online:
2007-07-14
Published:
2007-03-30
Contact:
WAN Shi-Qiang
NIU Shu-Li, HAN Xing-Guo, MA Ke-Ping, WAN Shi-Qiang. FIELD FACILITIES IN GLOBAL WARMING AND TERRESTRIAL ECOSYSTEM RESEARCH[J]. Chin J Plant Ecol, 2007, 31(2): 262-271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0030
增温装置 Warming facilities | 优点 Advantages | 缺点 Disadvantages | 应用实例 Implication instances |
---|---|---|---|
温室/开顶箱 Greenhouse/open-top chamber | 简单易行,不需电力,经济 Low cost in construction and maintenance. No electric power needed | 不能模拟全球变暖条件下增温的日变化,影响小气候(光照、风速、湿度和降雨)和动物活动 Different diurnal patterns of temperature change from those under natural condition. Disturbance to microclimate (light, wind speed, humidity and rainfall) and animal activities | Chapin et al., Marion et al., Norby et al., Shaver et al., Klein et al., |
土壤加热管道和电缆 Heating fluid pipes and electric resistance cables | 能精确的控制土壤温度 Close control soil temperature | 不能模拟全球变暖增温的季节和日变化,空间加热不均匀,干扰土壤,影响土壤动物和微生物的活动,不能加热空气和植物地上部分 No temporal fluctuations of temperature increase. Spatial heterogeneity of warming effect. Disturbance on soil and soil fauna. No warming on air temperature and aboveground parts of plants | van Cleve et al., Hiller et al., Peterjohn et al., Ineson et al., Bergh & Linder, Hartley et al., |
红外线反射器 Infrared reflectors | 能模拟全球变暖的增温机制和日变化,对土壤及植被无物理干扰 Better simulation of diurnal warming patterns. No physical distrubance on soil and plants | 只能夜间增温,影响夜间小气候和动物活动以及清晨露水的输入 No warming during daytime. Possiblely affect animal activities and dew input | Zeiher et al., Luxmoore et al., Beier et al., Emmett et al., |
红外线辐射器 Infrared radiators | 能模拟全球变暖的增温机制和日变化,对土壤及植被无物理干扰,不改变小气候状况 No disturbance on windspeed, soil and plant | 耗费电力较多,在没有电力的地方和森林生态系统使用受到限制 Expensive in terms of energy cost. Limited use in forest ecosystems and area without electric power | Harte et al., Bridgham et al., Luo et al., Wan et al., Noormets et al., Kimball, |
Table 1 The comparison among field warming facilities
增温装置 Warming facilities | 优点 Advantages | 缺点 Disadvantages | 应用实例 Implication instances |
---|---|---|---|
温室/开顶箱 Greenhouse/open-top chamber | 简单易行,不需电力,经济 Low cost in construction and maintenance. No electric power needed | 不能模拟全球变暖条件下增温的日变化,影响小气候(光照、风速、湿度和降雨)和动物活动 Different diurnal patterns of temperature change from those under natural condition. Disturbance to microclimate (light, wind speed, humidity and rainfall) and animal activities | Chapin et al., Marion et al., Norby et al., Shaver et al., Klein et al., |
土壤加热管道和电缆 Heating fluid pipes and electric resistance cables | 能精确的控制土壤温度 Close control soil temperature | 不能模拟全球变暖增温的季节和日变化,空间加热不均匀,干扰土壤,影响土壤动物和微生物的活动,不能加热空气和植物地上部分 No temporal fluctuations of temperature increase. Spatial heterogeneity of warming effect. Disturbance on soil and soil fauna. No warming on air temperature and aboveground parts of plants | van Cleve et al., Hiller et al., Peterjohn et al., Ineson et al., Bergh & Linder, Hartley et al., |
红外线反射器 Infrared reflectors | 能模拟全球变暖的增温机制和日变化,对土壤及植被无物理干扰 Better simulation of diurnal warming patterns. No physical distrubance on soil and plants | 只能夜间增温,影响夜间小气候和动物活动以及清晨露水的输入 No warming during daytime. Possiblely affect animal activities and dew input | Zeiher et al., Luxmoore et al., Beier et al., Emmett et al., |
红外线辐射器 Infrared radiators | 能模拟全球变暖的增温机制和日变化,对土壤及植被无物理干扰,不改变小气候状况 No disturbance on windspeed, soil and plant | 耗费电力较多,在没有电力的地方和森林生态系统使用受到限制 Expensive in terms of energy cost. Limited use in forest ecosystems and area without electric power | Harte et al., Bridgham et al., Luo et al., Wan et al., Noormets et al., Kimball, |
Fig.3 Seasonal averages of air temperature, soil temperature at the depths of 10 cm and 30 cm in the control plots and warmed plots manipulated with infrared radiator (IR) and open-top chambers (OTC) Different capital letters represent statistically significant at p < 0.05 (Data from Global Change Multi-factor Experiment in Duolun, Inner Mongolia sponsored by Institute of Botany, Chinese Academy of Sciences)
[1] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mϕlgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenstrøm A, Stenstrøm M, Totland ϕ, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999). Response patterns of tundra plant species to experimental warming: a meta-analysis of the International Tundra Experiment. Ecological Monographs, 69,491-512. |
[2] | Beier C, Emmett B, Gundersen P, Tietema A, Penuelas J, Estiarte M, Gordon C, Gorissen A, Llorens L, Roda F, Williams D (2004). Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems, 7,583-597. |
[3] | Bergh J, Linder S (1999). Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Global Change Biology, 5,245-253. |
[4] | Bridgham SD, Pastor J, Updegraff K, Janssens JA, Malterer TJ (1995). Paper presented at the Ecological Society of America Annual Meeting, Snowbird, Utah, July 30 to August 3. |
[5] | Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76,694-711. |
[6] | Chapin PS III, Shaver GR (1985). Individualistic grow response of tundra plant species to environmental manipulations in the field. Ecology, 66,564-576. |
[7] |
Day TA, Ruhland CT, Grobe CW, Xiong F (1999). Growth and resproduction of Antarctic vascular plants in response to warming and UV radiation reduction in the field. Oecologia, 119,24-35.
URL PMID |
[8] | Debevec EM, Maclean SF (1993). Design of greenhouses for the manipulation of temperature in tundra plant communities. Arctic Antarctic and Alpine Research, 25,56-62. |
[9] | Dunne JA, Saleska SR, Fischer ML, Harte J (2004). Integrating experimental and gradient methods in ecological climate change research. Ecology, 85,904-916. |
[10] | Emmett BA, Beier C, Estiarte M, Tietema A, Kristensen HL, Williams D, Pe†uelas J, Schmidt I, Sowerby1 A (2004). The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems, 7,625-637. |
[11] |
Fang J, Chen A, Peng C, Zhao S, Ci L (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292,2320-2322.
URL PMID |
[12] | Fukami T, Wardle DA (2005). Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proceedings of the Royal Society of London Series B: Biology Sciences, 272,2105-2115. |
[13] | Gao Q, Yu M (1998). A model of regional vegetation dynamics and its application to the study of the Northeast China Transect (NECT) responses to global change. Global Biogeochemical Cycles, 12,329-344. |
[14] | Gao Q, Zhang XA (2000). A simulation study of the responses of the northeast China Transect to elevated CO2 and climate change. Ecological Applications, 7,470-483. |
[15] | Harte J, Torn MS, Chang FR, Feifarek B, Kinzig AP, Shaw R, SHen K (1995). Global warming and soil microclimate: results from a meadow-warming experiment. Ecological Applications, 5,132-150. |
[16] | Hartley AE, Neill C, Melillo JM, Crabtree R, Bowles FP (1999). Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf heath. Oikos, 86,331-343. |
[17] | Havstrøm M, Challaghan TV, Jonasson S (1993). Differential growth responses of Cassiope tetragona, an arctic dwarf-shrub, to environmental perturbations among three contrasting high and subarctic sites. Oikos, 66,389-402. |
[18] | Hiller SH, Sutton F, Grime JP (1994). A new technique for the experimental manipulation of temperature in plant communities. Functional Ecology, 8,755-762. |
[19] | Hobbie SE, Shevtsova A, Chapin PS III (1999). Plant response to species removal and experimental warming in Alaskan tussock tundra. Oikos, 84,417-434. |
[20] | Hollister RD, Webber PJ (2000). Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology, 6,835-842. |
[21] |
Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003). Nitrogen and climate change. Science, 302,1512-1513.
URL PMID |
[22] | Hungate BA, Stiling PD, Dijkstra P, Johnson DW, Ketterer ME, Hymus GJ, Hinkle CR, Drake BG (2004). CO2 elicits long-term decline in nitrogen fixation. Science, 304,1291. |
[23] | Ineson P, Benham DG, Poskitt J, Harrison AF, Taylor W, Woods C (1998). Effects of climate change on nitrogen dynamics in upland soils. II. A soil warming study. Global Change Biology, 4,153-162. |
[24] | IPCC (2001). Climate change 2001: the scientific basis: summary for policymakers. IPCC WGI Third Assessment Report. Shanghai Draft, 21 January 2001. |
[25] | Kennedy AD (1995). Simulated climate change: are passive greenhouses a valid microcosm for testing the biological effects of environmental perturbations? Global Change Biology, 1,29-42. |
[26] | Kimball BA (2005). Theory and performance of an infrared heater for warming ecosystems. Global Change Biology, 11,2041-2056. |
[27] | Klein JA, Harte J, Zhao XQ (2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7,1170-1179. |
[28] | Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11,1440-1451. |
[29] | Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Partaki DE, Shaw MR, Zak DR, Field CB (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54,731-739. |
[30] |
Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in tallgrass prairie. Nature, 413,622-625.
DOI URL PMID |
[31] | Luxmoore RJ, Hanson PJ, Beauchamp JJ, Joslin JD (1998). Passive nighttime warming facility for forest ecosystems research. Tree Physiology, 18,615-623. |
[32] | Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3 (Suppl. 1),20-32. |
[33] |
Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002). Soil warming and carbon-cycle feedbacks to the climate systems. Science, 298,2173-2176.
DOI URL PMID |
[34] | Musil CF, Schmidel U, Midgley GF (2004). Lethal effects of experimental warming approximating a future climate scenario on southern African quartz-field succulents: a pilot study. New Phytologist, 165,539-547. |
[35] | Nijs I, Kockelbergh F, Teughels H, Blum H, Hendrey G, Impens I (1996). Free Air Temperature Increase (FATI): a new tool to study global warming effects on plants in the field. Plant, Cell, and Environment, 19,495-502. |
[36] | Noormets A, Chen J, Bridgham S, Weltzin JF, Pastor J, Dewey B, LeMoine J (2004). The effects of infrared loading and water table on soil energy fluxes in northern peatlands. Ecosystems, 7,573-582. |
[37] | Norby RJ, Edwards NT, Riggs JS, Abner CH, Wullschleger SD, Gunderson CA (1997). Temperature-controlled open-top chambers for global change research. Global Change Biology, 3,259-267. |
[38] | Norby RJ, Luo Y (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, 162,281-293. |
[39] | NSFESP (National Science Foundation, Ecosystem Studies Program) (1991). Soil-warming experiments in global change research, Woods Hole, MA, September 27 and 28. |
[40] | Oechel WC, Vourlitis GL, Hastings SJ, Ault RP, JrBryant P (1998). The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Global Change Biology, 4,77-90. |
[41] | Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Megonigal JP, Olsrud M, Ryan MG, Wan S (2004). Below-ground process response to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 162,311-322. |
[42] | Peng SL, Ren H (2000). The North-South Transect of Eastern China (NSTEC) for global change studies. GCTE News, 16,6. |
[43] | Peterjohn WT, Melillo JM, Bowles FP, Steudler PA (1993). Soil warming and trace gas fluxes: experimental design and preliminary flux results. Oecologia, 93,18-24. |
[44] | Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 4,617-625. |
[45] | Richardson SJ, Hartley SE, Press MC (2000). Climate warming experiments, are tens a potential barrier to interpretation? Ecological Entomology, 25,367-370. |
[46] | Robinson CH, Woodey PA, Lee JA, Callaghan TV, Press MC (1998). Plant community responses to simulated environmental change at a high Arctic polar semi-desert. Ecology, 79,856-866. |
[47] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS, (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126,543-562.
URL PMID |
[48] | Rykbost KA, Boersma L, Mack HJ. Schmisseur WE (1975). Yield response to soil warming: agronomic crops. Agronomy Journal, 67,733-738. |
[49] | Saleska SR, Shaw MB, Fischer ML, Dunne JA, Still CJ, Holman ML, Harte J (2002). Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Global Biogeochemical Cycles, 16, 1055, doi:10.1029/2001GB1573. |
[50] | Shaver GR, Canadell J, Chapin III FS, Gurevitch J, Harte J, Henry G, Ineson P, Jonasson S, Melillo J, Pitelka L, Rustad L (2000). Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience, 50,871-882. |
[51] | Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA, Rastetter EB, Nadelhoffer KJ, Giblin AE (1998). Biomass and CO2 flux in wet sedge tundra, response to nutrients, temperature, and light. Ecological Monographs, 68,75-99. |
[52] |
Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298,1987-1990.
URL PMID |
[53] | Shen KP, Harte J (2000). Ecosystem climate manipulations. In: Sala OE, Jackson RB, Mooney HA, Howarth RW eds. Methods in Ecosystem Science. Springer-Verlag Press, New York, 353-369. |
[54] | Stenstrom M, Gugerli F, Henry GHR (1997). Response of Saifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Global Change Biology, 3 (Suppl. 1),44-54. |
[55] | Suzuki S, Kudo G (1997). Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Global Change Biology, 3 (Suppl.1),108-115. |
[56] | van Cleve K, Dyrness CT, Viereck LA, Fox J, Chapin FS, Oeschel W (1983). Tiaga ecosystems in interior Alaska. BioScience, 33,39-44. |
[57] | van Cleve K, Oechel WC, Hom JL (1990). Response of black spruce ( Picea mariana) ecosystem to soil temperature modification in interior Alaska. Canadian Journal of Forest Research, 20,1530-1535. |
[58] | Verberg PSJ, Van Loon WKP, Lukewille A (1999). The climax soil-heating experiment: soil response after 2 years of treatment. Biology and Fertility of Soils, 28,271-276. |
[59] | Villalba R, Veblen T, Ogden J (1994). Climatic influences on the growth of subalpine trees in the Colorado front range. Ecology, 75,721-733. |
[60] | Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006). Plant community response to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences, 103,1342-1346. |
[61] | Wan S, Luo Y, Wallace LL (2002a). Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biology, 8,754-768. |
[62] |
Wan S, Yuan T, Bowdish S, Wallace L, Russell SD, Luo Y (2002b). Response of an allergic species, Ambrosia psilostochya, to experimental warming and clipping: implications for public health under global change. American Journal of Botany, 89,1843-1846.
URL PMID |
[63] | Wan SQ, Hui DF, Wallace L, Luo YQ (2005). Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19, GB2014, doi:10.1029/2004GB002315. |
[64] | Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000). Response of bog and fen plant communities to warming and water-table manipulations. Ecology, 81,3464-3478. |
[65] | Werkman BR, Callaghan TV, Welker JM (1996). Responses of bracken to increased temperature and nitrogen availability. Global Change Biology, 2,59-66. |
[66] | Zavaleta ES, Thomas BD, Chiariello NR, Asner GP, Shaw MR, Field CB (2003). Plants reverse warming effect on ecosystem water balance. Proceedings of the National Academy of Sciences, 100,9892-9893. |
[67] | Zeiher CA, Brown PW, Silvertooth JC, Matumba N, Milton N (1994). The effect of night temperature on cotton reproductive development. In: Silvertooth J ed. Cotton. College of Agriculture Report, the University of Arizona, Tucson USA. 89-96. |
[68] | Zhang XS (张新时), Gao Q(高琼), Yang DA(杨殿安), Zhou GS(周广胜), Ni J(倪健), Wang Q(王权) (1997). A gradient analysis and prediction on the northeast China transect (NECT) for global change study. Acta Botanica Sinica (植物学报), 39,785-799. (in Chinese with English abstract) |
[69] | Zhang XS(张新时), Yang DA(杨奠安) (1995). Allocation and study on global change transects in China. Quaternary Sciences (第四纪研究), 1,43-52. (in Chinese with English abstract) |
[70] | Zhao M, Zhou G (2005). Estimation of biomass and net primary productivity of major forest planted forests in China based on forest inventory data. Forest Ecology and Management, 207,295-313. |
[71] | Zhou G, Wang Y, Wang S (2002). Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. Journal of Vegetation Science, 13,361-368. |
[72] | Zhou GS(周广胜), Wang YH(王玉辉), Xu ZZ(许振柱), Zhou L(周莉), Jiang YL(蒋延玲) (2003). Advances of study on carbon cycles on the northeast China transect (NECT). Progress in Natural Science (自然科学进展), 13,917-922. (in Chinese) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn