Chin J Plant Ecol ›› 2018, Vol. 42 ›› Issue (6): 629-639.DOI: 10.17521/cjpe.2018.0003
• Research Articles • Previous Articles Next Articles
ZHANG Yun1,2,YIN Ding-Cai1,*(),TIAN Kun1,2,ZHANG Wei-Guo1,HE Rong-Hua3,HE Wen-Qing3,SUN Jiang-Mei3,LIU Zhen-Ya1,2
Received:
2018-01-03
Revised:
2018-04-25
Online:
2018-06-20
Published:
2018-06-20
Contact:
Ding-Cai YIN
Supported by:
ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China[J]. Chin J Plant Ecol, 2018, 42(6): 629-639.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0003
Fig. 1 Meteorological data from the Lijiang Meteorological Station (1951-2010). PREC, precipitation; Tmean, monthly mean air temperature; Tmax, monthly maximum air temperature; Tmin, monthly minimum air temperature.
采样点 Sampling site | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 样本量(树/样芯) No. (tree/radii) |
---|---|---|---|---|
低海拔 Low altitude | 100.25° E | 27.13° N | 2 898 | 27/53 |
中海拔 Intermediate altitude | 100.23° E | 27.11° N | 3 309 | 35/70 |
高海拔 High altitude | 100.22° E | 27.10° N | 3 639 | 31/62 |
Table 1 Description of sampling sites
采样点 Sampling site | 经度 Longitude | 纬度 Latitude | 海拔 Altitude (m) | 样本量(树/样芯) No. (tree/radii) |
---|---|---|---|---|
低海拔 Low altitude | 100.25° E | 27.13° N | 2 898 | 27/53 |
中海拔 Intermediate altitude | 100.23° E | 27.11° N | 3 309 | 35/70 |
高海拔 High altitude | 100.22° E | 27.10° N | 3 639 | 31/62 |
统计特征 Statistic characters | L | M | H |
---|---|---|---|
样本量(树/样芯) Sample depth (tree/radii) | 25/50 | 31/62 | 29/58 |
序列长度 Time span (A.D) | 1925-2016 | 1889-2016 | 1945-2017 |
EPS > 0.85起始年/样芯数 Year since EPS > 0.85/cores | 1964/11 | 1901/7 | 1957/11 |
平均敏感度 Mean sensitivity | 0.28 | 0.17 | 0.16 |
公共区间(1967-2016)分析 Common interval analysis (1967-2016) | |||
标准差 Standard deviation | 0.23 | 0.16 | 0.14 |
信噪比 Signal-to-noise ratio | 10.1 | 44.9 | 13.0 |
样本总体代表性 Expressed population signal | 0.91 | 0.98 | 0.93 |
第一主成分方差解释量 Variance in first eigenvector (%) | 41.44 | 49.09 | 40.55 |
Table 2 Statistics of ring-width chronologies and common interval analysis
统计特征 Statistic characters | L | M | H |
---|---|---|---|
样本量(树/样芯) Sample depth (tree/radii) | 25/50 | 31/62 | 29/58 |
序列长度 Time span (A.D) | 1925-2016 | 1889-2016 | 1945-2017 |
EPS > 0.85起始年/样芯数 Year since EPS > 0.85/cores | 1964/11 | 1901/7 | 1957/11 |
平均敏感度 Mean sensitivity | 0.28 | 0.17 | 0.16 |
公共区间(1967-2016)分析 Common interval analysis (1967-2016) | |||
标准差 Standard deviation | 0.23 | 0.16 | 0.14 |
信噪比 Signal-to-noise ratio | 10.1 | 44.9 | 13.0 |
样本总体代表性 Expressed population signal | 0.91 | 0.98 | 0.93 |
第一主成分方差解释量 Variance in first eigenvector (%) | 41.44 | 49.09 | 40.55 |
L | M | |
---|---|---|
M | 0.629** | - |
H | 0.177 | 0.435** |
Table 3 Correlation coefficients of the residual chronologies in Picea likiangensis among three sampling sites in Yulong Snow Mountain (1967- 2016)
L | M | |
---|---|---|
M | 0.629** | - |
H | 0.177 | 0.435** |
Fig. 3 Response function analysis between the residual chronologies and climatic factors (1952-2010). L, low altitude; M, intermediate altitude; H, high altitude. p, previous year; pPG , post-growing season of previous year; JM, January through March of the current year; EG , early growing season; G , growing season; PG , post-growing season. *, p < 0.05.
Fig. 4 Moving interval response analysis between the residual chronologies and main climatic factors. Dotted lines indicate the 95% confidence level. L, low altitude; M, intermediate altitude; H, high altitude.
Fig. 5 Redundancy analysis between climatic factors and residual chronologies (1952-2010). Only significant climatic factors (p < 0.05) are shown. The longer vector of climate factor indicates the greater contribution; correlation coefficients between the climatic factors and the chronologies are illustrated by the cosine of the angle between the two vectors. Vectors pointing in the same directions indicate a positive correlation, and in opposite directions indicate a negative correlation. Numbers represent the corresponding months, and T and P indicate the temperature and precipitation, respectively. L, low altitude; M, intermediate altitude; H, high altitude.
[1] | Bazzoffi P, Nieddu S ( 2011). Effects of waterlogging on the soil structure of some Italian soils in relation to the GAEC cross-compliance standard maintenance of farm channel networks and field convexity. Italian Journal of Agronomy, 6(Suppl.1), e9. DOI: 10.4081/ija.2011.6.s1.e9. |
[2] |
Berg A, Norg?rd G, Greve G ( 2008). Annual temperature reconstruction in the Central Hengduan Mountains, China, as deduced from tree rings. Dendrochronologia, 26, 97-107.
DOI URL |
[3] | Biondi F, Waikul K ( 2004). DENDROCLIM 2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences, 30, 303-311. |
[4] | Blasing TJ, Solomon AM, Ducick DN ( 1984). Response function revisited. Tree-Ring Bulletin, 44, 1-16. |
[5] |
Braak CJFT ( 1994). Canonical community ordination. Part I: Basic theory and linear methods. Ecoscience, 1, 127-140.
DOI URL |
[6] | Braak CJFT, Smilauer P ( 2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, New York. |
[7] | Cook ER, Holmes RL ( 1986). User’s Manual for Program ARSTAN:Laboratory of Tree-ring Research. University of Arizona Press, Tucson. |
[8] | Duan JP, Wang LL, Xu Y, Sun Y, Chen J ( 2010). Response of tree-ring width to climate change at different elevations on the east slope of Gongga Mountains. Geographical research, 29, 1940-1949. |
[ 段建平, 王丽丽, 徐岩, 孙毓, 陈津 ( 2010). 贡嘎山东坡不同海拔高度树轮宽度对气候变化的响应. 地理研究, 29, 1940-1949.] | |
[9] |
Fan ZX, Br?uning A, Cao KF, Zhu SD ( 2009). Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. Forest Ecology and Management, 258, 306-313.
DOI URL |
[10] | Fritts HC ( 1976). Tree Rings and Climate. Academic Press, London. |
[11] | Fritts HC ( 1991). Reconstruction Large Scale Climate Patterns from Tree Ring Data. The University of Arizona Press, Tucson. |
[12] |
Graumlich ( 1991). Subalpine tree growth, climate, and increasing CO2: An assessment of recent growth trends. Ecology, 72, 1-11.
DOI URL |
[13] | Guo BD, Zhang YD, Wang XC ( 2016). Response of Picea purpurea and Abies faxoniana tree rings at different slope aspects to rapid warming in western Sichuan, China. Chinese Journal of Applied Ecology, 27, 354-364. |
[ 郭滨德, 张远东, 王晓春 ( 2016). 川西高原不同坡向云、冷杉树轮对快速增温的响应差异. 应用生态学报, 27, 354-364.] | |
[14] | Guo GA, Li ZS, Zhang QB, Ma KP, Mu CL ( 2009). Dendroclimatological studies of Picea likiangensis and Tsuga dumosa in Lijiang, China. IAWA Journal, 30, 435-441. |
[15] |
Holmes RL ( 1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69-75.
DOI URL |
[16] | Jones RG, Hassell DC, Hudson D, Wilson S, Jenkins G, Mitchell J ( 2004). Generating High Resolution Climate Change Scenarios Using PRECIS. Met Office Hadley Center, Excter, UK. |
[17] | Larsson LA ( 2010). CDendro v. 7.3. Cybis Elektronik & Data AB. Saltsj?baden, Sweden. |
[18] | Li JY ( 1991). Studies on drought tolerance of some main tree species used in afforestation in Taihang Mountain region (IV)-Transpiration and stomatal response. Journal of Beijing Forestry University, 13(Suppl.2), 240-250. |
[ 李吉跃 ( 1991). 太行山区主要造林树种耐旱特性的研究(IV)—蒸腾作用与气孔调节. 北京林业大学学报, 13(Suppl.2), 240-250.] | |
[19] | Li T, He XY, Chen ZJ ( 2014). Tree-ring growth responses of Mongolian oak ( Quercus mongolica) to climate change in southern Northeast: A case study in Qianshan Mountains. Chinese Journal of Applied Ecology, 25, 1841-1848. |
[ 李腾, 何兴元, 陈振举 ( 2014). 东北南部蒙古栎径向生长对气候变化的响应——以千山为例. 应用生态学报, 25, 1841-1848.] | |
[20] |
Li ZS, Liu GH, Fu BJ, Zhang QB, Hu CJ, Luo SZ ( 2010). Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China. Chinese Journal of Plant Ecology, 34, 1045-1057.
DOI URL |
[ 李宗善, 刘国华, 傅伯杰, 张齐兵, 胡婵娟, 罗淑政 ( 2010). 川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估. 植物生态学报, 34, 1045-1057.]
DOI URL |
|
[21] |
Li ZS, Zhang QB, Ma KP ( 2012). Tree-ring reconstruction of summer temperature for A.D.1475-2003 in the central Hengduan Mountains, Northwestern Yunnan, China. Climatic Change, 110, 455-467.
DOI URL |
[22] | Liang EY, Wang YF, Xu Y, Liu B, Shao XM ( 2010). Growth variations in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 24, 363-373. |
[23] | Lu HL, Shao QQ, Liu JY, Wang JB, Chen ZQ ( 2007). Temporo-?spatial distribution of summer precipitation over Qinghai-Tibet Plateau during the last 44 Years. Acta Geographica Sinica, 62, 946-958. |
[ 卢鹤立, 邵全琴, 刘纪远, 王军邦, 陈卓奇 ( 2007). 近44年来青藏高原夏季降水的时空分布特征. 地理学报, 62, 946-958.] | |
[24] | Meyer FD, Braker OU ( 2001). Climate response in dominant and suppressed spruce trees, Picea abies( L.) Karst, on a subalpine and lower montane site in Switzerland. écoscience, 8, 105-114. |
[25] | Panthi S, Br?uning A, Zhou ZK, Fan ZX ( 2018). Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, southwestern China. Dendrochronologia, 47, 1-9. |
[26] |
Payette S, Delwaide AC, Lavoie C ( 1996). Patterns of tree stem decline along a snow-drift gradient at treeline: A case study using stem analysis. Canadian Journal of Botany, 74, 1671-1683.
DOI URL |
[27] | Peng JF, Gou XH, Chen FH, Fang KY, Zhang F ( 2010). Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China’s Qinghai Province. Chinese Journal of Plant Ecology, 34, 517-525. |
[ 彭剑锋, 勾晓华, 陈发虎, 方克艳, 张芬 ( 2010). 坡向对海拔梯度上祁连圆柏树木生长的影响. 植物生态学报, 34, 517-525.] | |
[28] |
Qin L, Yuan YJ, Zhang RB, Wei WS, Yu SL, Fan ZA, Chen F, Zhang TW, Shang HM ( 2016). Tree-ring response to snow cover and reconstruction of century annual maximum snow depth for northern Tianshan Mountains, China. Geochronometria, 43, 9-17.
DOI URL |
[29] | Rolland C ( 1993). Tree ring and climate relationships for Abies alba in the internal Alps. Tree Ring Bulletin, 53, 1-11. |
[30] |
Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF ( 2009). Recent unprecedented tree-ring growth in Bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Science of the United States of America, 106, 20348-20353.
DOI URL |
[31] | Shao XM, Wu XD ( 1994). Tree-ring chronologies for Pinus armandi Franch from Huashan, China. Acta Geographica Sinica, 49, 174-181. |
[ 邵雪梅, 吴祥定 ( 1994). 华山树木年轮年表的建立. 地理学报, 49, 174-181.] | |
[32] | Takahashi K, Tokumitsu Y, Yasue K ( 2005). Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan. Ecological Research, 20, 445-451. |
[33] |
Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP ( 1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 400, 149-151.
DOI URL |
[34] |
van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT ( 2009). Widespread increase of tree mortality rates in the western United States. Science, 323, 521-524.
DOI URL |
[35] | Wu ZY (1987.Vegetation in Yunnan.Science Press, Beijing |
[ 吴征镒 ( 1987). 云南植被. 科学出版社,北京.] | |
[36] |
Xu N, Wang XC, Zhang YD, Liu SR ( 2013). Climate-growth relationships of Abies faxoniana from different elevations at Miyaluo, western Sichuan, China. Acta Ecologica Sinica, 33, 3742-3751.
DOI URL |
[ 徐宁, 王晓春, 张远东, 刘世荣 ( 2013). 川西米亚罗林区不同海拔岷江冷杉生长对气候变化的响应. 生态学报, 33, 3742-3751.]
DOI URL |
|
[37] | Xu YL, Huang XY, Zhang Y, Lin WT, Lin ED ( 2006). Statistical analyses of climate change scenarios over China in the 21st Century. Advances in Climate Change Research, 2, 50-53. |
[38] |
Yu DP, Liu JQ, Benard JL, Zhou L, Zhou WM, Fang XM, Wei YW, Jiang SW, Dai LM ( 2013). Spatial variation and temporal instability in the climate-growth relationship of Korean pine in the Changbai Mountain region of Northeast China. Forest Ecology and Management, 300, 96-105.
DOI URL |
[39] | Yu DP, Wang GG, Dai LM, Wang QL ( 2007). Dendroclimatic analysis of Betula ermanii forests at their upper limit of distribution in Changbai Mountain, Northeast China. Forest Ecology and Management, 240, 105-113. |
[40] | Yu J, Xu QQ, Liu WH, Luo CW, Yang JL, Li JQ, Liu QJ ( 2016). Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, northeast China. Chinese Journal of Plant Ecology, 40, 24-35. |
[ 于健, 徐倩倩, 刘文慧, 罗春旺, 杨君珑, 李俊清, 刘琪璟 ( 2016). 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应. 植物生态学报, 40, 24-35.] | |
[41] |
Yu JL, Zhang WG, Tian K, Song WH, Li QP, Yang R, Zhang Y ( 2017). Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La, southwestern China. Journal of Beijing Forestry University, 39(1), 43-51.
DOI URL |
[ 余佳霖, 张卫国, 田昆, 松卫红, 李秋平, 杨荣, 张贇 ( 2017). 普达措国家公园海拔上限3个针叶树种径向生长对气候变化的响应. 北京林业大学学报, 39(1), 43-51.]
DOI URL |
|
[42] | Zhang WG, Xiao DR, Tian K, Chen GL, He RH, Zhang Y ( 2017). Response of radial growth of three conifer species to climate at their respective upper distributional limits on Yulong Snow Mountain. Acta Ecologica Sinica, 37, 3796-3804. |
[ 张卫国, 肖德荣, 田昆, 陈广磊, 和荣华, 张贇 ( 2017). 玉龙雪山3个针叶树种在海拔上限的径向生长对气候变化的响应. 生态学报, 37, 3796-3804.] | |
[43] | Zhang WT, Jiang Y, Wang MC, Zhang LN, Dong MY ( 2015). Responses of radial growth in Larix principis-rupprechtii to climate change at different elevations on the southern slope of Luya Mountain. Acta Ecologica Sinica, 35, 6481-6488. |
[ 张文涛, 江源, 王明昌, 张凌楠, 董满宇 ( 2015). 芦芽山阳坡不同海拔华北落叶松径向生长对气候变化的响应. 生态学报, 35, 6481-6488.] | |
[44] | Zhang Y, Bergeron Y, Zhao XH, Drobyshev I ( 2015). Stand history is more important than climate in controlling red maple ( Acer rubrum L.) growth at its northern distribution limit in western Quebec, Canada. Journal of Plant Ecology, 8, 368-379. |
[45] | Zhang Y, Yin DC, Sun M, Li LP, Tian K, Zhang WG ( 2018). Radial growth response of two conifers to temperature and precipitation at upper forest limits in Shika Snow Mountain, Northwestern Yunnan Plateau. Acta Ecologica Sinica, 38, 1-7. |
[ 张贇, 尹定财, 孙梅, 李丽萍, 田昆, 张卫国 ( 2018). 滇西北石卡雪山2个针叶树种森林上限径向生长对温度和降水的相应. 生态学报, 38, 1-7.] | |
[46] |
Zhang Y, Yin DC, Sun M, Wang H, Tian K, Xiao DR, Zhang WG ( 2017). Variations of climate-growth response of major conifers at upper distributional limits in Shika Snow Mountain, Northwestern Yunnan Plateau, China. Forests, 8, 377. DOI: 10.3390/f8100377.
DOI URL |
[1] | Wei-Wei SHE Qin shugao Yan-Gui QIAO Yuqing Zhang. Effects of nitrogen and water addition on leaf nitrogen and phosphorus stoichiometry of dominant species in an Artemisia ordosica community [J]. Chin J Plant Ecol, 2024, 48(5): 590-600. |
[2] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[3] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[4] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[5] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[6] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[7] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[8] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[9] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[10] | WANG Xiao-Yue, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Changes of plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(4): 479-490. |
[11] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[12] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[13] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[14] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[15] | YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae [J]. Chin J Plant Ecol, 2023, 47(10): 1432-1440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn