Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (2): 94-106.DOI: 10.17521/cjpe.2018.0312
Special Issue: 生物多样性
• Research Articles • Previous Articles Next Articles
Received:
2018-12-13
Accepted:
2019-02-13
Online:
2019-02-20
Published:
2019-06-04
Contact:
JIN Guang-Ze
Supported by:
WEN Chun, JIN Guang-Ze. Effects of functional diversity on productivity in a typical mixed broadleaved-Korean pine forest[J]. Chin J Plant Ecol, 2019, 43(2): 94-106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0312
功能性状 Functional trait | 功能意义 Functional significance |
---|---|
木材密度 Wood density (WD) (g·mm-3) | 木材经济谱, 生长和生存之间的权衡, 水的运输和分配 Wood economic spectrum, trade-off between growth, transport and distribution of water |
最大高度 Maximum height (MH) (m) | 植物竞争活力与策略, 光生态位, 结构多样性 Plant competitive vigor and strategy, light niche, structural diversity |
比叶面积 Specific leaf area (SLA) (mm2·g-1) | 叶经济谱, 植物耐荫性 Leaf economic spectrum, plant shade tolerance |
叶面积 Leaf area (LA) (mm2) | 光竞争, 蒸腾速率 Light acquisition, transpiration rate |
叶片厚度 Leaf thickness (LT) (mm) | 储水能力, 蒸腾速率 Storage capacity, transpiration rate |
叶片干物质含量 Leaf dry matter content (LDMC) (mg·g-1) | 养分吸收, 结构物质 Nutrient absorption, structural substance |
叶片碳含量 Leaf carbon concentration (LCC) (mg·g-1) | 结构物质, 养分吸收 Structural substance, nutrient absorption |
叶片氮含量 Leaf nitrogen concentration (LNC) (mg·g-1) | 叶经济谱, 氮吸收 Leaf economic spectrum, nitrogen acquisition |
Table 1 Eight functional traits related to plant growth and community woody productivity and their significance
功能性状 Functional trait | 功能意义 Functional significance |
---|---|
木材密度 Wood density (WD) (g·mm-3) | 木材经济谱, 生长和生存之间的权衡, 水的运输和分配 Wood economic spectrum, trade-off between growth, transport and distribution of water |
最大高度 Maximum height (MH) (m) | 植物竞争活力与策略, 光生态位, 结构多样性 Plant competitive vigor and strategy, light niche, structural diversity |
比叶面积 Specific leaf area (SLA) (mm2·g-1) | 叶经济谱, 植物耐荫性 Leaf economic spectrum, plant shade tolerance |
叶面积 Leaf area (LA) (mm2) | 光竞争, 蒸腾速率 Light acquisition, transpiration rate |
叶片厚度 Leaf thickness (LT) (mm) | 储水能力, 蒸腾速率 Storage capacity, transpiration rate |
叶片干物质含量 Leaf dry matter content (LDMC) (mg·g-1) | 养分吸收, 结构物质 Nutrient absorption, structural substance |
叶片碳含量 Leaf carbon concentration (LCC) (mg·g-1) | 结构物质, 养分吸收 Structural substance, nutrient absorption |
叶片氮含量 Leaf nitrogen concentration (LNC) (mg·g-1) | 叶经济谱, 氮吸收 Leaf economic spectrum, nitrogen acquisition |
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 SD |
---|---|---|---|
凹凸度 Convexity | -1.91-2.36 | 0.01 | 0.40 |
海拔 Elevation (m) | 425.45-505.52 | 463.25 | 18.20 |
坡度 Slope (°) | 3.30-38.46 | 15.91 | 6.49 |
速效氮含量 Soil available nitrogen content (mg·kg-1) | 605.77-1 482.85 | 1 103.60 | 161.34 |
速效磷含量 Soil available phosphorus content (mg·kg-1) | 2.54-61.96 | 8.83 | 6.96 |
速效钾含量 Soil available potassium content (mg·kg-1) | 190.46-516.66 | 332.61 | 59.05 |
全氮含量 Soil total nitrogen content (g·kg-1) | 4.60-12.28 | 8.40 | 1.60 |
全磷含量 Soil total phosphorus content (g·kg-1) | 0.40-1.19 | 0.82 | 0.15 |
pH值 Soil pH | 5.34-6.29 | 5.77 | 0.16 |
有机碳含量 Soil organic carbon content (%) | 31.29-216.77 | 75.75 | 31.25 |
土壤容重 Soil bulk density (mg·m-3) | 0.41-0.87 | 0.62 | 0.10 |
体积含水率 Soil bulk moisture content (%) | 13.72-48.40 | 30.35 | 5.91 |
质量含水率 Soil mass moisture content (%) | 0.54-1.51 | 0.91 | 0.23 |
Table 2 Summary of environment variables in a 9 hm2 mixed broadleaved-Korean pine forest plot
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 SD |
---|---|---|---|
凹凸度 Convexity | -1.91-2.36 | 0.01 | 0.40 |
海拔 Elevation (m) | 425.45-505.52 | 463.25 | 18.20 |
坡度 Slope (°) | 3.30-38.46 | 15.91 | 6.49 |
速效氮含量 Soil available nitrogen content (mg·kg-1) | 605.77-1 482.85 | 1 103.60 | 161.34 |
速效磷含量 Soil available phosphorus content (mg·kg-1) | 2.54-61.96 | 8.83 | 6.96 |
速效钾含量 Soil available potassium content (mg·kg-1) | 190.46-516.66 | 332.61 | 59.05 |
全氮含量 Soil total nitrogen content (g·kg-1) | 4.60-12.28 | 8.40 | 1.60 |
全磷含量 Soil total phosphorus content (g·kg-1) | 0.40-1.19 | 0.82 | 0.15 |
pH值 Soil pH | 5.34-6.29 | 5.77 | 0.16 |
有机碳含量 Soil organic carbon content (%) | 31.29-216.77 | 75.75 | 31.25 |
土壤容重 Soil bulk density (mg·m-3) | 0.41-0.87 | 0.62 | 0.10 |
体积含水率 Soil bulk moisture content (%) | 13.72-48.40 | 30.35 | 5.91 |
质量含水率 Soil mass moisture content (%) | 0.54-1.51 | 0.91 | 0.23 |
假说 Hypothesis | 指数 Index | 平均值 Mean | 范围 Range |
---|---|---|---|
生物量比率假说 Mass ratio hypothesis | 木材密度的群落加权平均值 CWM of wood density (CWMWD) (g·mm-3) | 0.47 | 0.34-0.63 |
最大树高的群落加权平均值 CWM of maximum height (CWMMH) (m) | 17.24 | 4.59-43.01 | |
比叶面积的群落加权平均值 CWM of specific leaf area (CWMSLA) (mm2·g-1) | 254.30 | 158.29-392.23 | |
叶面积的群落加权平均值 CWM of leaf area (CWMLA) (mm2) | 33.87 | 8.20-74.54 | |
叶片厚度的群落加权平均值 CWM of leaf thickness (CWMLT) (mm) | 0.18 | 0.08-0.44 | |
叶干物质含量的群落加权平均值 CWM of leaf dry matter content (CWMLDMC) ( mg·g-1) | 0.29 | 0.19-0.38 | |
叶片碳含量的群落加权平均值 CWM of leaf carbon content (CWMLCC) ( mg·g-1) | 499.22 | 446.90-563.74 | |
叶片氮含量的群落加权平均值 CWM of leaf nitrogen content (CWMLNC) ( mg·g-1) | 23.56 | 17.49-32.38 | |
生态位互补假说 Niche complementarity hypothesis | 物种丰富度 Species richness (C) | 6.42 | 2-13 |
香农指数 Shannon index (H°) | 1.45 | 0.41-2.24 | |
辛普森指数 Simpson index (D) | 0.71 | 0.24-0.88 | |
均匀度指数 Evenness index (J) | 0.89 | 0.42-1.00 | |
多维功能均匀度指数 Multidimensional functional evenness index (FEve) | 0.72 | 0.21-0.99 | |
Rao二次熵指数 Rao’s quadratic entropy index (FDQ) | 8.39 | 0.81-15.41 | |
8个性状组合的功能分散指数 FD is based on eight traits combined (FDcom) | 2.68 | 0.72-3.87 | |
木材密度的功能分散指数 FD is based on wood density (FDWD) | 0.48 | 0.01-1.13 | |
最大高度的功能分散指数 FD is based on maximum height (FDMH) | 0.78 | 0.07-1.71 | |
比叶面积的功能分散指数 FD is based on specific leaf area (FDSLA) | 0.63 | 0.02-1.61 | |
叶面积的功能分散指数 FD is based on leaf area (FDLA) | 0.66 | 0.02-1.61 | |
叶片厚度的功能分散指数 FD is based on leaf thickness (FDLT) | 0.58 | 0.03-1.51 | |
叶干物质含量的功能分散指数 FD is based on leaf dry matter content (FDLDMC) | 0.58 | 0.06-1.26 | |
叶片碳含量的功能分散指数 FD is based on leaf carbon content (FDLCC) | 0.93 | 0.03-2.37 | |
叶片氮含量的功能分散指数 FD is based on leaf nitrogen content (FDLNC) | 0.51 | 0.03-2.38 |
Table 3 Summary of functional diversity, species diversity indexes and community-weighted mean (CWM) functional traits in a 9 hm2 mixed broadleaved-?Korean pine forest plot
假说 Hypothesis | 指数 Index | 平均值 Mean | 范围 Range |
---|---|---|---|
生物量比率假说 Mass ratio hypothesis | 木材密度的群落加权平均值 CWM of wood density (CWMWD) (g·mm-3) | 0.47 | 0.34-0.63 |
最大树高的群落加权平均值 CWM of maximum height (CWMMH) (m) | 17.24 | 4.59-43.01 | |
比叶面积的群落加权平均值 CWM of specific leaf area (CWMSLA) (mm2·g-1) | 254.30 | 158.29-392.23 | |
叶面积的群落加权平均值 CWM of leaf area (CWMLA) (mm2) | 33.87 | 8.20-74.54 | |
叶片厚度的群落加权平均值 CWM of leaf thickness (CWMLT) (mm) | 0.18 | 0.08-0.44 | |
叶干物质含量的群落加权平均值 CWM of leaf dry matter content (CWMLDMC) ( mg·g-1) | 0.29 | 0.19-0.38 | |
叶片碳含量的群落加权平均值 CWM of leaf carbon content (CWMLCC) ( mg·g-1) | 499.22 | 446.90-563.74 | |
叶片氮含量的群落加权平均值 CWM of leaf nitrogen content (CWMLNC) ( mg·g-1) | 23.56 | 17.49-32.38 | |
生态位互补假说 Niche complementarity hypothesis | 物种丰富度 Species richness (C) | 6.42 | 2-13 |
香农指数 Shannon index (H°) | 1.45 | 0.41-2.24 | |
辛普森指数 Simpson index (D) | 0.71 | 0.24-0.88 | |
均匀度指数 Evenness index (J) | 0.89 | 0.42-1.00 | |
多维功能均匀度指数 Multidimensional functional evenness index (FEve) | 0.72 | 0.21-0.99 | |
Rao二次熵指数 Rao’s quadratic entropy index (FDQ) | 8.39 | 0.81-15.41 | |
8个性状组合的功能分散指数 FD is based on eight traits combined (FDcom) | 2.68 | 0.72-3.87 | |
木材密度的功能分散指数 FD is based on wood density (FDWD) | 0.48 | 0.01-1.13 | |
最大高度的功能分散指数 FD is based on maximum height (FDMH) | 0.78 | 0.07-1.71 | |
比叶面积的功能分散指数 FD is based on specific leaf area (FDSLA) | 0.63 | 0.02-1.61 | |
叶面积的功能分散指数 FD is based on leaf area (FDLA) | 0.66 | 0.02-1.61 | |
叶片厚度的功能分散指数 FD is based on leaf thickness (FDLT) | 0.58 | 0.03-1.51 | |
叶干物质含量的功能分散指数 FD is based on leaf dry matter content (FDLDMC) | 0.58 | 0.06-1.26 | |
叶片碳含量的功能分散指数 FD is based on leaf carbon content (FDLCC) | 0.93 | 0.03-2.37 | |
叶片氮含量的功能分散指数 FD is based on leaf nitrogen content (FDLNC) | 0.51 | 0.03-2.38 |
Fig. 1 Relationships between coarse woody productivity (ln transformed) and species diversity index of communities in a typical mixed broadleaved-Korean pine forest. CWP, C, H°, D represent coarse woody productivity, species richness, Shannon index and Simpson index, respectively.
Fig. 2 Relationships between coarse woody productivity (ln transformed) and functional diversity index of communities in a typical mixed broadleaved-Korean pine forest. CWP, coarse woody productivity; FEve, multidimensional functional evenness index; FDQ, Rao’s quadratic entropy index; FDcom, functional dispersion indices of eight trait combinations; FDWD, functional dispersion indices of wood density; FDMH, functional dispersion indices of maximum height; FDSLA, functional dispersion indices of specific leaf area; FDLA, functional dispersion indices of leaf area; FDLDMC, functional dispersion indices of leaf dry matter content; FDLCC, functional dispersion indices of leaf carbon content; FDLNC, functional dispersion indices of leaf nitrogen content.
Fig. 3 Relationships between coarse woody productivity (ln transformed) and community weighted mean of different traits of communities in a typical mixed broadleaved-Korean pine forest. CWP, coarse woody productivity; CWMWD, CWM of wood density; CWMMH, CWM of maximum height; CWMSLA, CWM of specific leaf area; CWMLA, CWM of leaf area; CWMLDMC, CWM of leaf dry matter content; CWMLCC, CWM of leaf carbon content; CWMLNC, CWM of leaf nitrogen content.
Fig. 4 Relationships between coarse woody productivity (ln transformed, CWP) and environmental factors in a typical mixed broadleaved-Korean pine forest.
模型参数 Model parameters | 物种多样性模型 Species diversity model | 功能多样性模型 Functional diversity models | ||
---|---|---|---|---|
A | B | C | ||
R2 | 0.169 | 0.269 | 0.188 | 0.377 |
AIC | 2 148.61 | 2 047.73 | 2 136.52 | 1 932.43 |
Table 4 Evaluation of linear regression models for forest productivity and diversity in a typical mixed broadleaved-Korean pine forest
模型参数 Model parameters | 物种多样性模型 Species diversity model | 功能多样性模型 Functional diversity models | ||
---|---|---|---|---|
A | B | C | ||
R2 | 0.169 | 0.269 | 0.188 | 0.377 |
AIC | 2 148.61 | 2 047.73 | 2 136.52 | 1 932.43 |
指标 Indicator | 解释变量 Explanatory variable | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CWMMH | CWMLCC | CWMSLA | CWMLNC | CWMLA | CWMWD | CWMLDMC | ||||||||||||||||||||
变量重要性 Variable importance | 1.00 | 1.00 | 0.90 | 0.67 | 0.48 | 0.39 | 0.14 | |||||||||||||||||||
含变量模型数 Containing models | 10 | 10 | 9 | 6 | 5 | 4 | 2 | |||||||||||||||||||
指标 Indicator | 解释变量 Explanatory variable | |||||||||||||||||||||||||
FDMH | FDQ | FDcom | FDSLA | C | D | H° | FDLA | FDWD | FDLCC | FEve | FDLDMC | |||||||||||||||
变量重要性 Variable importance | 1.00 | 1.00 | 0.88 | 0.88 | 0.88 | 0.69 | 0.69 | 0.69 | 0.69 | 0.36 | 0.21 | 0.19 | ||||||||||||||
含变量模型数 Containing models | 8 | 8 | 7 | 7 | 7 | 5 | 5 | 5 | 5 | 3 | 2 | 2 | ||||||||||||||
指标 Indicator | 解释变量 Explanatory variable | |||||||||||||||||||||||||
海拔 Elevation | 全磷含量 Total P content | 凹凸度 Convexity | 速效磷含量 Available P content | 有机碳含量 Organic C content | 速效氮含量 Available N content | 体积含水率 Bulk moisture | 坡度 Slope | pH | ||||||||||||||||||
变量重要性 Variable importance | 1.00 | 0.95 | 0.85 | 0.68 | 0.53 | 0.26 | 0.21 | 0.09 | 0.04 | |||||||||||||||||
含变量模型数 Containing models | 17 | 16 | 14 | 11 | 9 | 4 | 4 | 2 | 1 |
Table 5 Relative importance of variables in linear model constructed with productivity
指标 Indicator | 解释变量 Explanatory variable | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CWMMH | CWMLCC | CWMSLA | CWMLNC | CWMLA | CWMWD | CWMLDMC | ||||||||||||||||||||
变量重要性 Variable importance | 1.00 | 1.00 | 0.90 | 0.67 | 0.48 | 0.39 | 0.14 | |||||||||||||||||||
含变量模型数 Containing models | 10 | 10 | 9 | 6 | 5 | 4 | 2 | |||||||||||||||||||
指标 Indicator | 解释变量 Explanatory variable | |||||||||||||||||||||||||
FDMH | FDQ | FDcom | FDSLA | C | D | H° | FDLA | FDWD | FDLCC | FEve | FDLDMC | |||||||||||||||
变量重要性 Variable importance | 1.00 | 1.00 | 0.88 | 0.88 | 0.88 | 0.69 | 0.69 | 0.69 | 0.69 | 0.36 | 0.21 | 0.19 | ||||||||||||||
含变量模型数 Containing models | 8 | 8 | 7 | 7 | 7 | 5 | 5 | 5 | 5 | 3 | 2 | 2 | ||||||||||||||
指标 Indicator | 解释变量 Explanatory variable | |||||||||||||||||||||||||
海拔 Elevation | 全磷含量 Total P content | 凹凸度 Convexity | 速效磷含量 Available P content | 有机碳含量 Organic C content | 速效氮含量 Available N content | 体积含水率 Bulk moisture | 坡度 Slope | pH | ||||||||||||||||||
变量重要性 Variable importance | 1.00 | 0.95 | 0.85 | 0.68 | 0.53 | 0.26 | 0.21 | 0.09 | 0.04 | |||||||||||||||||
含变量模型数 Containing models | 17 | 16 | 14 | 11 | 9 | 4 | 4 | 2 | 1 |
Fig. 5 Structural equation model (SEM) analysis of the effects of environmental factors, functional diversity, community-weight mean of functional traits and forest initial biomass on community woody productivity in a typical mixed broadleaved-Korean pine forest. Solid lines indicate significant paths, while dashed lines indicate insignificant paths. R² indicates the total variation in a dependent variable that is explained by the combined independent variables. ***, p < 0.001; **, p < 0.01; *, p < 0.05.
解释变量 Explanatory variable | 对生产力的作用途径 Pathway to productivity | 结构方程模型 SEM | |||
---|---|---|---|---|---|
影响效应 Effect | p | ||||
地形因子 Topography factors | 直接效应 Direct effect | -0.102 | 0.003 | ||
功能多样性的间接效应 Indirect effect via functional diversity | -0.027 | 0.009 | |||
群落加权平均值的间接效应 Indirect effect via CWMs | 0.008 | 0.043 | |||
初始生物量的间接效应 Indirect effect via initial biomass | 0.055 | <0.001 | |||
土壤因子的间接效应 Indirect effect via soil factors | -0.024 | 0.002 | |||
总效应 Total effect | -0.090 | <0.001 | |||
土壤因子 Edaphic factors | 直接效应 Direct effect | 0.105 | <0.001 | ||
功能多样性的间接效应 Indirect effect via functional diversity | -0.021 | 0.045 | |||
群落加权平均值的间接效应 Indirect effect via CWMs | -0.015 | 0.008 | |||
总效应 Total effect | 0.069 | 0.019 | |||
功能多样性 Functional diversity | 直接效应 Direct effect | 0.302 | <0.001 | ||
初始生物量的间接效应 Indirect effect via initial biomass | 0.081 | <0.001 | |||
总效应 Total effect | 0.383 | <0.001 | |||
群落加权平均值 Community-weighted mean functional traits | 直接效应 Direct effect | 0.090 | 0.002 | ||
初始生物量的间接效应 Indirect effect via initial biomass | 0.152 | <0.001 | |||
总效应 Total effect | 0.242 | <0.001 | |||
地上初始生物量 Initial standing biomass | 直接效应 Direct effect | 0.449 | <0.001 | ||
总效应 Total effect | 0.449 | <0.001 |
Table 6 Direct, indirect, and total standardized effects on the forest productivity, based on the structural equation models (SEM)
解释变量 Explanatory variable | 对生产力的作用途径 Pathway to productivity | 结构方程模型 SEM | |||
---|---|---|---|---|---|
影响效应 Effect | p | ||||
地形因子 Topography factors | 直接效应 Direct effect | -0.102 | 0.003 | ||
功能多样性的间接效应 Indirect effect via functional diversity | -0.027 | 0.009 | |||
群落加权平均值的间接效应 Indirect effect via CWMs | 0.008 | 0.043 | |||
初始生物量的间接效应 Indirect effect via initial biomass | 0.055 | <0.001 | |||
土壤因子的间接效应 Indirect effect via soil factors | -0.024 | 0.002 | |||
总效应 Total effect | -0.090 | <0.001 | |||
土壤因子 Edaphic factors | 直接效应 Direct effect | 0.105 | <0.001 | ||
功能多样性的间接效应 Indirect effect via functional diversity | -0.021 | 0.045 | |||
群落加权平均值的间接效应 Indirect effect via CWMs | -0.015 | 0.008 | |||
总效应 Total effect | 0.069 | 0.019 | |||
功能多样性 Functional diversity | 直接效应 Direct effect | 0.302 | <0.001 | ||
初始生物量的间接效应 Indirect effect via initial biomass | 0.081 | <0.001 | |||
总效应 Total effect | 0.383 | <0.001 | |||
群落加权平均值 Community-weighted mean functional traits | 直接效应 Direct effect | 0.090 | 0.002 | ||
初始生物量的间接效应 Indirect effect via initial biomass | 0.152 | <0.001 | |||
总效应 Total effect | 0.242 | <0.001 | |||
地上初始生物量 Initial standing biomass | 直接效应 Direct effect | 0.449 | <0.001 | ||
总效应 Total effect | 0.449 | <0.001 |
[1] |
Ali A, Yan ER, Chang SX, Cheng JY, Liu XY ( 2017). Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Science of the Total Environment, 574, 654-662.
DOI URL |
[2] | Bartoń K ( 2018). Package ‘MuMIn’. . Cited: 2018-07-21. |
[3] | Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P ( 2012). Biodiversity loss and its impact on humanity. Nature, 489, 59-67. |
[4] |
Cardinale BJ, Gonzalez A ( 2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572-592.
DOI URL |
[5] |
Chang LW, Zeleny D, Li CF, Chiu ST, Hsieh CF ( 2013). Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94, 2145-2151.
DOI URL |
[6] |
Chave J, Condit R, Lao S, Caspersen JP, Foster RB, Hubbell SP ( 2003). Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91, 240-252.
DOI URL |
[7] | Chen CG, Zhu JF (1989). A Handbook for Main Tree Species Biomass in Northeast China. China Forestry Publishing House, Beijing. |
[ 陈传国, 朱俊凤 (1989). 东北主要林木生物量手册. 中国林业出版社, 北京.] | |
[8] |
Chen DM, Cheng JH, Chu PF, Mi J, Hu SJ, Xie YC, Tuvshintogtokh I, Bai YF ( 2016). Effect of diversity on biomass across grasslands on the Mongolian Plateau: Contrasting effects between plants and soil nematodes. Journal of Biogeography, 43, 955-966.
DOI URL |
[9] |
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[10] |
Díaz S, Lavorel S, Bello FD, Quétier F, Grigulis K, Robson TM ( 2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689.
DOI URL |
[11] |
Dănescu A, Albrecht AT, Bauhus J ( 2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI URL |
[12] |
Edwards JR, Lambert LS ( 2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12, 1-22.
DOI URL |
[13] |
Finegan B, Peña-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L, Canham C ( 2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201.
DOI URL |
[14] | Fox J ( 2008). Applied Regression Analysis and Generalized Linear Models. 2nd edn. Sage Publications, Thousand Oaks, USA. |
[15] |
Fox J, Monette G ( 1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87, 178-183.
DOI URL |
[16] |
Gazol A, Camarero JJ ( 2016). Functional diversity enhances silver fir growth resilience to an extreme drought. Journal of Ecology, 104, 1063-1075.
DOI URL |
[17] |
Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Partel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JM, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD ( 2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
DOI |
[18] |
Grime JP ( 1998). Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[19] |
Howard AL ( 2013). Handbook of structural equation modeling. Structural Equation Modeling-a Multidisciplinary Journal, 20, 354-360.
DOI URL |
[20] | Huang XR ( 2018). Relationship between plant functional diversity and productivity of Pinus massoniana plantations in Guangxi. Biodiversity Science, 26, 690-700. |
[ 黄小荣 ( 2018). 广西马尾松林植物功能多样性与生产力的关系. 生物多样性, 26, 690-700.] | |
[21] |
Laliberté E, Legendre P ( 2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
DOI URL |
[22] | Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP ( 2012). Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLOS ONE, DOI: 10.1371/journal.pone.0048244. |
[23] |
Lohbeck M, Poorter L, Martinez-Ramos M, Bongers F ( 2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252.
DOI URL |
[24] | Lü TT, Wang P, Yan H, Zhang W, Liao GX, Jiang HB, Zou CL, Sheng LX ( 2014). Relationship between functional diversity and productivity in meadow and marsh plant communities. Chinese Journal of Plant Ecology , 38, 405-416. |
[ 吕亭亭, 王平, 燕红, 张稳, 廖桂项, 姜海波, 邹畅林, 盛连喜 ( 2014). 草甸和沼泽植物群落功能多样性与生产力的关系. 植物生态学报, 38, 405-416.] | |
[25] |
McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185.
DOI URL |
[26] |
Mensah S, Veldtman R, Assogbadjo AE, Glèlè KR, Seifert T ( 2016). Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecology and Evolution, 6, 7546-7557.
DOI URL |
[27] | Micheli F, Halpern BS ( 2010). Low functional redundancy in coastal marine assemblages. Ecology Letters, 8, 391-400. |
[28] |
Mokany K, Ash J, Roxburgh S ( 2008). Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology, 96, 884-893.
DOI URL |
[29] |
Mouchet MA, Villeger S, Mason NWH, Mouillot D ( 2010). Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
DOI URL |
[30] | Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Slymos P, Stevens MHH, Wagner H (2009). The vegan Package. . Cited: 2019-02-04. |
[31] |
Ouyang S, Xiang W, Wang X, Zeng Y, Lei P, Deng X, Peng C ( 2016). Significant effects of biodiversity on forest biomass during the succession of subtropical forest in south China. Forest Ecology and Management, 372, 291-302.
DOI URL |
[32] |
Petchey OL, Hector A, Gaston KJ ( 2004). How do different measures of functional diversity perform? Ecology, 85, 847-857.
DOI URL |
[33] |
Ratcliffe S, Liebergesell M, Ruiz-Benito P, Madrigal González J, Muñoz Castañeda JM, Kändler G, Lehtonen A, Dahlgren J, Kattge J, Peñuelas J, Zavala MA, Wirth C ( 2016). Modes of functional biodiversity control on tree productivity across the European continent. Global Ecology and Biogeography, 25, 251-262.
DOI URL |
[34] | Rosseel Y ( 2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1-36. |
[35] |
Ruiz-Benito P, Gomez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA ( 2014). Diversity increases carbon storage and tree productivity in Spanish forests. Global Ecology and Biogeography, 23, 311-322.
DOI URL |
[36] |
Schellberg J, Pontes LDS ( 2012). Plant functional traits and nutrient gradients on grassland. Grass and Forage Science, 67, 305-319.
DOI URL |
[37] | Sun RY, Li QF, Niu CJ, Lou AR (2002). Basic Ecology. Higher Education Press, Beijing. |
[ 孙儒泳, 李庆芬, 牛翠娟, 娄安如 (2002). 基础生态学. 高等教育出版社, 北京.] | |
[38] |
Tilman D ( 1997). Distinguishing between the effects of species diversity and species composition. Oikos, 80, 185.
DOI URL |
[39] |
Tobner CM, Paquette A, Gravel D, Reich PB, Williams LJ, Messier C ( 2016). Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 19, 638-647.
DOI URL |
[40] |
Van MT, Peña-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L ( 2017). Abiotic and biotic drivers of biomass change in a neotropical forest. Journal of Ecology, 105, 1223-1234.
DOI URL |
[41] | Wu Z, Raven P (1994-2009). Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St Louis. |
[42] |
Zhang Y, Chen HYH ( 2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[43] |
Zhang Y, Chen HYH, Reich PB ( 2012). Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 100, 742-749.
DOI URL |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[3] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[4] | LÜ Zi-Li, LIU Bin, CHANG Feng, MA Zi-Jing, CAO Qiu-Mei. Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient [J]. Chin J Plant Ecol, 2023, 47(6): 822-832. |
[5] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[6] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[7] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[8] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[9] | ZHAO Yan-Ping, WANG Zhong-Wu, WENDU Rigen, ZHAO Yu-Jin, BAI Yong-Fei. Remotely sensed monitoring method of grassland plant functional diversity and its relationship with productivity based on Sentinel-2 satellite data [J]. Chin J Plant Ecol, 2022, 46(10): 1234-1250. |
[10] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[11] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[12] | QIN Hao, ZHANG Yin-Bo, DONG Gang, ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773. |
[13] | CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226. |
[14] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[15] | SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plant Ecol, 2018, 42(1): 126-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn