Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (7): 930-942.DOI: 10.17521/cjpe.2022.0406 cstr: 32100.14.cjpe.2022.0406
• Research Articles • Previous Articles Next Articles
JIAO Hui-Ying, LIU Li-Qiang, YANG Jia-Xin, QIN Wei*(), WANG Rui-Zhe
Received:
2022-10-13
Accepted:
2023-10-09
Online:
2024-07-20
Published:
2023-10-10
Contact:
* QIN Wei(Supported by:
JIAO Hui-Ying, LIU Li-Qiang, YANG Jia-Xin, QIN Wei, WANG Rui-Zhe. Effects of rhizosphere nitrogen-fixing, phosphate-solubilizing and potassium-solubilizing bacteria on leaf nutrients and physiological traits in different natural populations of Malus sieversii[J]. Chin J Plant Ecol, 2024, 48(7): 930-942.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0406
采样地点 Sampling site | 土壤类型 Soil type | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) |
---|---|---|---|---|
A1 | 黑钙土 Chernozem | 80.79° | 44.43° | 1 121.95 |
A2 | 80.80° | 44.43° | 1 121.85 | |
A3 | 80.80° | 44.44° | 1 121.92 | |
B1 | 灰钙土 Sierozem | 81.39° | 43.93° | 625.80 |
B2 | 81.39° | 43.93° | 625.44 | |
B3 | 81.39° | 43.93° | 625.97 | |
C1 | 黑钙土 Chernozem | 83.61° | 43.38° | 1 445.31 |
C2 | 83.60° | 43.37° | 1 445.28 | |
C3 | 83.61° | 43.38° | 1 445.32 | |
D1 | 黑钙土 Chernozem | 82.73° | 43.20° | 1 296.37 |
D2 | 82.73° | 43.20° | 1 296.29 | |
D3 | 82.73° | 43.20° | 1 296.56 | |
E1 | 棕钙土 Brown calcium soil | 82.75° | 43.22° | 1 273.59 |
E2 | 82.75° | 43.22° | 1 273.28 | |
E3 | 82.75° | 43.22° | 1 272.98 | |
F1 | 黑钙土 Chernozem | 82.86° | 43.26° | 1 289.57 |
F2 | 82.86° | 43.26° | 1 288.86 | |
F3 | 82.86° | 43.26° | 1 289.31 | |
G1 | 黑钙土 Chernozem | 84.00° | 46.37° | 1 250.84 |
G2 | 84.00° | 46.37° | 1 250.67 | |
G3 | 84.00° | 46.37° | 1 250.29 | |
H1 | 黑钙土 Chernozem | 83.53° | 46.15° | 900.26 |
H2 | 83.53° | 46.15° | 900.59 | |
H3 | 83.53° | 46.15° | 900.76 |
Table 1 Summary of rhizosphere soil sampling sites for Malus sieversii
采样地点 Sampling site | 土壤类型 Soil type | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) |
---|---|---|---|---|
A1 | 黑钙土 Chernozem | 80.79° | 44.43° | 1 121.95 |
A2 | 80.80° | 44.43° | 1 121.85 | |
A3 | 80.80° | 44.44° | 1 121.92 | |
B1 | 灰钙土 Sierozem | 81.39° | 43.93° | 625.80 |
B2 | 81.39° | 43.93° | 625.44 | |
B3 | 81.39° | 43.93° | 625.97 | |
C1 | 黑钙土 Chernozem | 83.61° | 43.38° | 1 445.31 |
C2 | 83.60° | 43.37° | 1 445.28 | |
C3 | 83.61° | 43.38° | 1 445.32 | |
D1 | 黑钙土 Chernozem | 82.73° | 43.20° | 1 296.37 |
D2 | 82.73° | 43.20° | 1 296.29 | |
D3 | 82.73° | 43.20° | 1 296.56 | |
E1 | 棕钙土 Brown calcium soil | 82.75° | 43.22° | 1 273.59 |
E2 | 82.75° | 43.22° | 1 273.28 | |
E3 | 82.75° | 43.22° | 1 272.98 | |
F1 | 黑钙土 Chernozem | 82.86° | 43.26° | 1 289.57 |
F2 | 82.86° | 43.26° | 1 288.86 | |
F3 | 82.86° | 43.26° | 1 289.31 | |
G1 | 黑钙土 Chernozem | 84.00° | 46.37° | 1 250.84 |
G2 | 84.00° | 46.37° | 1 250.67 | |
G3 | 84.00° | 46.37° | 1 250.29 | |
H1 | 黑钙土 Chernozem | 83.53° | 46.15° | 900.26 |
H2 | 83.53° | 46.15° | 900.59 | |
H3 | 83.53° | 46.15° | 900.76 |
种群 Population | 有机解磷菌 oPSB (CFU·g-1) | 无机解磷菌 iPSB (CFU·g-1) | 固氮菌 NFB (CFU·g-1) | 解钾菌 KSB (CFU·g-1) | 4种功能菌株总数 Total number of 4 functional bacterias (CFU·g-1) |
---|---|---|---|---|---|
A | 7.12 × 106Cc | 7.05 × 104Ef | 7.08 × 104Bb | 1.12 × 103Ccd | 7.27 × 106Cc |
B | 1.30 × 106Ff | 3.85 × 105Cc | 3.82 × 102Gg | 1.29 × 104Bb | 1.69 × 106Ff |
C | 2.48 × 107Aa | 2.47 × 106Aa | 8.30 × 104Aa | 5.27 × 103Cc | 2.75 × 107Aa |
D | 3.68 × 106Dd | 3.62 × 105Cd | 1.63 × 103Ff | 1.22 × 104Bb | 4.05 × 106Dd |
E | 8.27 × 106Bb | 8.15 × 105Bb | 8.21 × 102FGg | 5.15 × 102Cd | 9.09 × 106Bb |
F | 2.32 × 106Ee | 5.00 × 104Ef | 5.00 × 104Cc | 4.98 × 105Aa | 2.92 × 106Ee |
G | 7.60 × 105Gg | 1.18 × 105De | 3.54 × 104Dd | 1.19 × 102Cd | 9.13 × 105Gg |
H | 1.65 × 104Hh | 3.72 × 103Fg | 1.23 × 104Ee | 7.94 × 102Ccd | 3.34 × 104Hh |
Table 2 Number of rhizosphere functional strains in different populations of Malus sieversii
种群 Population | 有机解磷菌 oPSB (CFU·g-1) | 无机解磷菌 iPSB (CFU·g-1) | 固氮菌 NFB (CFU·g-1) | 解钾菌 KSB (CFU·g-1) | 4种功能菌株总数 Total number of 4 functional bacterias (CFU·g-1) |
---|---|---|---|---|---|
A | 7.12 × 106Cc | 7.05 × 104Ef | 7.08 × 104Bb | 1.12 × 103Ccd | 7.27 × 106Cc |
B | 1.30 × 106Ff | 3.85 × 105Cc | 3.82 × 102Gg | 1.29 × 104Bb | 1.69 × 106Ff |
C | 2.48 × 107Aa | 2.47 × 106Aa | 8.30 × 104Aa | 5.27 × 103Cc | 2.75 × 107Aa |
D | 3.68 × 106Dd | 3.62 × 105Cd | 1.63 × 103Ff | 1.22 × 104Bb | 4.05 × 106Dd |
E | 8.27 × 106Bb | 8.15 × 105Bb | 8.21 × 102FGg | 5.15 × 102Cd | 9.09 × 106Bb |
F | 2.32 × 106Ee | 5.00 × 104Ef | 5.00 × 104Cc | 4.98 × 105Aa | 2.92 × 106Ee |
G | 7.60 × 105Gg | 1.18 × 105De | 3.54 × 104Dd | 1.19 × 102Cd | 9.13 × 105Gg |
H | 1.65 × 104Hh | 3.72 × 103Fg | 1.23 × 104Ee | 7.94 × 102Ccd | 3.34 × 104Hh |
Fig. 1 Changes in leaf physiological characteristics (column) of different populations of Malus sieversii and their total number (polyline) of four functional strains of rhizosphere bacteria (mean ± SE). Car, carotenoid content; CAT, catalase activity; Chl a, chlorophyll a content; Chl b, chlorophyll b content; MDA, malondialdehyde content; POD, peroxidase activity; Pro, proline content; SOD, superoxide dismutase activity. Distinct lowercase letters denote significant differences at the 0.05 significance level, while differing uppercase letters signify significant distinctions at the 0.01 significance level among populations. Site see Table 1.
Fig. 2 Redundancy analysis of nitrogen, phosphorus and potassium content (mean ± SE) in leaves of Malus sierversii of different populations and the number of NFB, PSB, and KSB. iPSB, inorganic phosphate-solubilizing bacteria; KSB, potassium-solubilizing bacteria; NFB, nitrogen-fixing bacteria; oPSB, organic phosphate-solubilizing bacteria; TN, total number of four functional strains. LN, leaf nitrogen content; LK, leaf potassium content; LP, leaf phosphorus content. Distinct lowercase letters denote significant differences at the 0.05 significance level, while differing uppercase letters signify significant distinctions at the 0.01 significance level among populations. Site see Table 1.
Fig. 3 Redundanly analysis analysis of nitrogen, phosphorus and potassium content (mean ± SD) in soil of different populations and their relationship with the number of NFB, PSB, and KSB in the rhizosphere of Malus sieversii in Xinjiang. iPSB, inorganic phosphate-solubilizing bacteria; KSB, potassium-solubilizing bacteria; NFB, nitrogen-fixing bacteria; oPSB, organic phosphate-solubilizing bacteria; TN, total number of four functional strains. SN, soil nitrogen content; SK, soil potassium content; SP, soil phosphorus content. Distinct lowercase letters denote significant differences at the 0.05 significance level, while differing uppercase letters signify significant distinctions at the 0.01 significance level among populations. Site see Table 1.
Fig. 4 Correlation between the population of rhizosphere functional bacteria and various physiological characteristics, as well as the nitrogen, phosphorus, and potassium content of Malus sieversii. Car, carotenoid content; CAT, catalase activity; Chl a, chlorophyll a content; Chl b, chlorophyll b content; LN, leaf nitrogen content; LK, leaf potassium content; LP, leaf phosphorus content; MDA, malondialdehyde content; POD, peroxidase activity; Pro, proline content; SK, soil potassium content; SN, soil nitrogen content; SOD, superoxide dismutase activity; SP, soil phosphorus content; Spr, soluble protein content; SS, soluble sugar content. iPSB, inorganic phosphate-solubilizing bacteria; KSB, potassium-solubilizing bacteria; NFB, nitrogen-fixing bacteria; oPSB, organic phosphate-solubilizing bacteria. *, p ≤ 0.05; **, p ≤ 0.01.
[1] | Abdel Latef AAH, Omer AM, Badawy AA, Osman MS, Ragaey MM (2021). Strategy of salt tolerance and interactive impact of azotobacter chroococcum and/or alcaligenes faecalis inoculation on canola (Brassica napus L.) plants grown in saline soil. Plants, 10, 110. DOI: 10.3390/plants10010110. |
[2] | Bakhshandeh E, Pirdashti H, Lendeh KS (2017). Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering, 103, 164-169. |
[3] |
Camejo D, Guzman-Cedeno A, Moreno A (2016). Reactive oxygen species, essential molecules, during plant-pathogen interactions. Plant Physiology and Biochemistry, 103, 10-23.
DOI PMID |
[4] |
Chen JQ, Zhao GY, Wei YH, Dong YH, Hou LY, Jiao RZ (2021). Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Scientific Reports, 11, 9081. DOI: 10.1038/s41598-021-88635-4.
PMID |
[5] | Chen YF, Ye JR, Kong QQ (2020a). Potassium-solubilizing activity of Bacillus aryabhattai SK1-7 and its growth-promoting effect on Populus alba L. Forests, 11, 1348. DOI: 10.3390/f11121348. |
[6] | Chen YH, Yang XZ, Li Z, An XH, Ma RP, Li YQ (2020b). Efficiency of potassium-solubilizing Paenibacillus mucilaginosus for the growth of apple seedling. Journal of Integrative Agriculture, 19, 2458-2469. |
[7] | Cornut I, Le Maire G, Laclau JP, Guillemot J, Mareschal L, Nouvellon Y, Delpierre N (2021). Potassium limitation of wood productivity: a review of elementary processes and ways forward to modelling illustrated by Eucalyptus plantations. Forest Ecology and Management, 494, 119275. DOI: 10.1016/j.foreco.2021.119275. |
[8] | Cui Z, Zhang Y, Zhang X, Luo Z, Zhang P, Golec J, Poland TM, Zalucki MP, Han P, Lu Z (2019). Life history and mortality factors of Agrilus mali Matsumura (Coleoptera: Buprestidae) in wild apples in Northwestern China. Agricultural and Forest Entomology, 21, 309-317. |
[9] | Dias S, Chambel L, Tenreiro R, Nunes L, Loureiro V (2021). Microbial characterization of yellow curing process of codfish. International Journal of Food Science, 2021, 6072731. DOI: 10.1155/2021/6072731. |
[10] | Dong X, Lv L, Wang WJ, Liu YZ, Yin, CH, Xu QQ, Yan H, Fu JX, Liu XL (2019). Differences in distribution of potassium-solubilizing bacteria in forest and plantation soils in Myanmar. International Journal of Environmental Research and Public Health, 16, 700. DOI: 10.3390/ijerph16050700. |
[11] |
Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, et al. (2017). Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nature Communications, 8, 249. DOI: 10.1038/s41467-017-00336-7.
PMID |
[12] | Duan YN, Chen R, Zhang R, Jiang WT, Chen XS, Yin CM, Mao ZQ (2022). Isolation and identification of Bacillus vallismortis HSB-2 and its biocontrol potential against apple replant disease. Biological Control, 170, 104921. DOI: 10.1016/j.biocontrol.2022.104921. |
[13] | Etesami H, Emami S, Alikhani HA (2017). Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects—A review. Journal of Soil Science and Plant Nutrition, 17, 897-911. |
[14] | Fahsi N, Mahdi I, Mesfioui A, Biskri L, Allaoui A (2021). Plant growth-promoting rhizobacteria isolated from the jujube (Ziziphus lotus) plant enhance wheat growth, Zn uptake, and heavy metal tolerance. Agriculture, 11, 316. DOI: 10.3390/agriculture11040316. |
[15] |
Gamez R, Cardinale M, Montes M, Ramirez S, Schnell S, Rodriguez F (2019). Screening, plant growth promotion and root colonization pattern of two rhizobacteria (Pseudomonas fluorescens Ps006 and Bacillus amyloliquefaciens Bs006) on banana cv. Williams (Musa acuminata Colla). Microbiological Research, 220, 12-20.
DOI PMID |
[16] | García-Carmona M, García-Orenes F, Mataix-Solera J, Roldán A, Pereg L, Caravaca F (2021). Salvage logging alters microbial community structure and functioning after a wildfire in a Mediterranean forest. Applied Soil Ecology, 168, 104130. DOI: 10.1016/j.apsoil.2021.104130. |
[17] | Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L (2021). PGPR mediated alterations in root traits: way toward sustainable crop production. Frontiers in Sustainable Food Systems, 4, 618230. DOI: 10.3389/fsufs.2020.618230. |
[18] | Ha YH, Oh SH, Lee SR (2021). Genetic admixture in the population of wild apple (Malus sieversii) from the Tien Shan Mountains, Kazakhstan. Genes, 12, 104. DOI: 10.3390/genes12010104. |
[19] | Ju I, Wj B, Sila MD, Onyimba IA, Egbere OJ (2018). A review: Biofertilizer—A key player in enhancing soil fertility and crop productivity. Journal of Experimental and Clinical Microbiology, 2, 22-28. |
[20] | Khan M, Imran QM, Shahid M, Mun BG, Lee SU, Khan MA, Hussain A, Lee TJ, Yun BW (2019). Nitric oxide-induced AtAO (3) differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC Plant Biology, 19, 602. DOI: 10.1186/s12870-019-2210-3. |
[21] | Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M, Kumar V, Dhaliwal HS, Saxena AK (2021). Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere, 31, 43-75. |
[22] | Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK (2020). Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, 101487. DOI: 10.1016/j.bcab.2019.101487. |
[23] | Lee Díaz AS, Macheda D, Saha H, Ploll U, Orine D, Biere A (2021). Tackling the context-dependency of microbial-induced resistance. Agronomy, 11, 1293. DOI: 10.3390/agronomy11071293. |
[24] | Li D, Bodjrenou DM, Zhang S, Wang B, Pan H, Yeh KW, Lai Z, Cheng C (2021). The endophytic fungus Piriformospora indica reprograms banana to cold resistance. International Journal of Molecular Sciences, 22, 4973. DOI: 10.3390/ijms22094973. |
[25] | Li JQ, Meng B, Chai H, Yang XC, Song WZ, Li SX, Lu A, Zhang T, Sun W (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. DOI: 10.3389/fpls.2019.00499. |
[26] | Lo’ay AA, El-Ezz SFA, Awadeen AA (2021). Effect of different foliar potassium fertilization forms on vegetative growth, yield, and fruit quality of kaki trees grown in sandy soil. Scientia Horticulturae, 288, 110420. DOI: 10.1016/j.scienta.2021.110420. |
[27] | Loon LC (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243-254. |
[28] | Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015). Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340-347. |
[29] |
Mehta P, Walia A, Chauhan A, Shirkot CK (2013). Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh. Archives of Microbiology, 195, 357-369.
DOI PMID |
[30] |
Mikiciuk G, Sas-Paszt L, Mikiciuk M, Derkowska E, Trzcinski P, Gluszek S, Lisek A, Wera-Bryl S, Rudnicka J (2019). Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza, 29, 489-501.
DOI PMID |
[31] | Mise K, Koyama Y, Matsumoto A, Fujita K, Kunito T, Senoo K, Otsuka S (2020). Pectin drives microbial phosphorus solubilization in soil: evidence from isolation-based and community-scale approaches. European Journal of Soil Biology, 97, 103169. DOI: 10.1016/j.ejsobi.2020.103169. |
[32] | Murphy J, Riley JP (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31-36. |
[33] | Nacoon S, Jogloy S, Riddech N, Mongkolthanaruk W, Kuyper TW, Boonlue S (2020). Interaction between phosphate solubilizing bacteria and arbuscular mycorrhizal fungi on growth promotion and tuber inulin content of Helianthus tuberosus L. Scientific Reports, 10, 4916. DOI: 10.1038/s41598-020-61846-x. |
[34] | Ren LX, Wang BS, Yue CP, Zhou SP, Zhang SH, Huo HW, Xu GH (2019). Mechanism of application nursery cultivation arbuscular mycorrhizal seedling in watermelon in the field. Annals of Applied Biology, 174, 51-60. |
[35] | Rudack K, Seddig S, Sprenger H, Köhl K, Uptmoor R, Ordon F (2017). Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science, 203, 494-505. |
[36] |
Rudrappa T, Biedrzycki ML, Bais HP (2008). Causes and consequences of plant-associated biofilms. FEMS Microbiology Ecology, 64, 153-166.
DOI PMID |
[37] | Saadati S, Baninasab B, Mobli M, Gholami M (2020). Cold tolerance in olive leaves of three cultivars related to some physiological parameters during cold acclimation and de-acclimation stages. Journal of Agricultural Science and Technology, 22, 1313-1326. |
[38] | Santana EB, Dias JCT (2019). Phosphate solubilizing activity of native soil microorganisms from the rhizosphere of Jatropha curcas and from phosphate-solubilizing bacteria inoculum. Genetics and Molecular Research, 18, gmr18271. DOI: 10.4238/gmr18271. |
[39] | Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10, 475. DOI: 10.3390/biology10060475. |
[40] | Shan QJ, Wang ZK, Ling HB, Zhang GP, Yan, JJ, Han FF (2021). Unreasonable human disturbance shifts the positive effect of climate change on tree-ring growth of Malus sieversii in the origin area of world cultivated apples. Journal of Cleaner Production, 287, 125008. DOI: 10.1016/j.jclepro.2020.125008. |
[41] | Silva BN, Picanco BM, Hawerroth C, Silva LC, Rodrigues FA (2022). Physiological and biochemical insights into induced resistance on tomato against septoria leaf spot by a phosphite combined with free amino acids. Physiological and Molecular Plant Pathology, 120, 101854. DOI: 10.1016/j.pmpp.2022.101854. |
[42] | Simranjit K, Kanchan A, Prasanna R, Ranjan K, Ramakrishnan B, Singh AK, Shivay YS (2019). Microbial inoculants as plant growth stimulating and soil nutrient availability enhancing options for cucumber under protected cultivation. World Journal of Microbiology Biotechnology, 35, 1-14. |
[43] | Singh SR, Zargar MY, Najar GR, Peer FA, Ishaq M (2013). Microbial dynamics, root colonization, and nutrient availability as influenced by inoculation of liquid bioinoculants in cultivars of apple seedlings. Communications in Soil Science and Plant Analysis, 44, 1511-1523. |
[44] | Spengler RN (2019). Origins of the apple: the role of megafaunal mutualism in the domestication of malus and rosaceous trees. Frontiers in Plant Science, 10, 617. DOI: 10.3389/fpls.2019.00617. |
[45] | Sun F, Ou QJ, Wang N, Guo ZX, Ou YY, Li N, Peng CL (2020). Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants. Global Ecology and Conservation, 23, e01141. DOI: 10.1016/j.gecco.2020.e01141. |
[46] | Tinna D, Garg N, Sharma S, Pandove G, Chawla N (2020). Utilization of plant growth promoting rhizobacteria as root dipping of seedlings for improving bulb yield and curtailing mineral fertilizer use in onion under field conditions. Scientia Horticulturae, 270, 109432. DOI: 10.1016/j.scienta.2020.109432. |
[47] | Varma A, Tripathi S, Prasad R (2019). Plant Biotic Interactions. Springer, Cham, Switzerland. |
[48] | Wisniewski M, Artlip T, Liu J, Ma J, Burchard E, Norelli J, Dardick C (2020). Fox hunting in wild apples: searching for novel genes in Malus sieversii. International Journal of Molecular Sciences, 21, 9516. DOI: 10.3390/ijms21249516. |
[49] | Xie H, Liu RY, Xu YX, Liu X, Sun FX, Ma YH, Wang YY (2022). Effect of in situ bioremediation of soil contaminated with DDT and DDE by Stenotrophomonas sp. strain DXZ9 and ryegrass on soil microorganism. Microbiology Research, 13, 64-86. |
[50] | Zhang H, Sun XP, Dai MQ (2022). Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Communications, 3, 100228. DOI: 10.1016/j.xplc.2021.100228. |
[51] | Zhang HX, Zhang ML, Wang LN (2014). Genetic structure and historical demography of Malus sieversii in the Yili Valley and the western mountains of the Junggar Basin, Xinjiang, China. Journal of Arid Land, 7, 264-271. |
[52] | Zhang JT, Mu CS (2009). Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius. Soil Science and Plant Nutrition, 55, 685-697. |
[53] | Zhang P, Lyu ZZ, Zhang X, Zhao XP, Zhang YG, Tanabekova G, Bagila M, Zhanera A, Cui ZJ (2019). Age structure of Malus sieversii (Ledeb.) Roem. population in Ili of Xinjiang and Kazakhstan. Arid Zone Research, 36, 844-853. |
[张萍, 吕昭智, 张鑫, 赵想平, 张永光, Tanabekova G, Bagila M, Zhanera A, 崔志军 (2019). 新疆伊犁与哈萨克斯坦新疆野苹果(Malus sieversii (Ledeb.) Roem.)种群年龄结构. 干旱区研究, 36, 844-853.] |
[1] | LUO Yuan-Lin, MA Wen-Hong, ZHANG Xin-Yu, SU Chuang, SHI Ya-Bo, ZHAO Li-Qing. Variation of functional traits of alternative distribution of Caragana species along environmental gradients in Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(11): 1364-1375. |
[2] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
[3] | YU Qing-Han, JIN Guang-Ze, LIU Zhi-Li. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis [J]. Chin J Plant Ecol, 2020, 44(9): 939-950. |
[4] | PANG Fang, XIA Wei-Kang, HE Min, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Nitrogen-fixing bacteria alleviates competition between arbuscular mycorrhizal fungi and Solidago canadensis for nutrients under nitrogen limitation [J]. Chin J Plant Ecol, 2020, 44(7): 782-790. |
[5] | ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501-511. |
[6] | ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680. |
[7] | ZHANG Jing, LIU Yun-Hua, SHENG Jian-Dong, CHAI Qiang, LI Rui-Xia, ZHAO Dan. Carbon and nitrogen traits of typical shrubs in grassland of northern Xinjiang, China [J]. Chin J Plan Ecolo, 2018, 42(3): 307-316. |
[8] | Xiao-Lin SI, Wen-Yin WANG, Xiao-Gang GAO, Dang-Hui XU. Effects of nitrogen and silicon application on leaf nitrogen content and net photosynthetic rate of Elymus nutans in alpine meadow [J]. Chin J Plant Ecol, 2016, 40(12): 1238-1244. |
[9] | WANG Chang-Shun,WANG Shi-Ping. A review of research on responses of leaf traits to climate change [J]. Chin J Plan Ecolo, 2015, 39(2): 206-216. |
[10] | YANG Hao,LUO Ya-Chen. Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought [J]. Chin J Plan Ecolo, 2015, 39(1): 32-42. |
[11] | PENG Dong-Hai,YANG Jian-Bo,LI Jian,XING Yong-Xiu,QIN Liu-Dong,YANG Li-Tao,LI Yang-Rui. Effects of intercropping with soybean on bacterial and nitrogen-fixing bacterial diversity in the rhizosphere of sugarcane [J]. Chin J Plant Ecol, 2014, 38(9): 959-969. |
[12] | BAI Xue, CHENG Jun-Hui, ZHENG Shu-Xia, ZHAN Shu-Xia, BAI Yong-Fei. Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe [J]. Chin J Plant Ecol, 2014, 38(2): 103-115. |
[13] | ZHANG Lin, YAN En-Rong, WEI Hai-Xia, LIU Xin-Sheng, SHEN Wei. Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang, China [J]. Chin J Plant Ecol, 2014, 38(12): 1325-1332. |
[14] | YAO Xia, TANG Shou-Peng, CAO Wei-Xing, TIAN Yong-Chao, ZHU Yan. Estimating the nitrogen content in wheat leaves by near-infrared reflectance spectroscopy [J]. Chin J Plant Ecol, 2011, 35(8): 844-852. |
[15] | JIAO Juan-Yu, YIN Chun-Ying, CHEN Ke. Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings [J]. Chin J Plant Ecol, 2011, 35(1): 91-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn