Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (3): 187-196.DOI: 10.3724/SP.J.1258.2013.00019
Special Issue: 青藏高原植物生态学:群落生态学
XU Bo1,2, WANG Jin-Niu1,2, SHI Fu-Sun1, GAO Jing3, WU Ning1,*()
Published:
2014-02-12
Contact:
WU Ning
XU Bo, WANG Jin-Niu, SHI Fu-Sun, GAO Jing, WU Ning. Adaptation of biomass allocation patterns of wild Fritillaria unibracteata to alpine environment in the eastern Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2013, 37(3): 187-196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00019
地点 Location | 经纬度 Latitude and longitude | 海拔 Elevation (m) | 群落类型 Community type | 采样时间 Sampling date (year-month-day) |
---|---|---|---|---|
七让山 Qirang Mt. | 103°41′52″ E, 32°59′3″ N | 3 400-3 500 | 窄叶鲜卑花-蒙古绣线菊-羊茅高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Festuca ovina alpine shrub meadow | 2012-7-14 |
弓杠岭 Gonggang Mt. | 103°42′57″ E, 33°1′48″ N | 3 500-3 600 | 窄叶鲜卑花-蒙古绣线菊-珠芽蓼高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Polygonum vivipar- um alpine shrub meadow | 2012-7-15 |
卡卡山 Kaka Mt. | 103°42′35″ E, 32°59′12″ N | 3 600-4 000 | 金露梅-窄叶鲜卑花-暗褐薹草高山灌丛草甸 Potentilla fruticosa-Sibiraea angustata-Carex atrofusca alpine shrub meadow | 2012-7-16- 2012-7-18 |
Table 1 Sources of plant sample
地点 Location | 经纬度 Latitude and longitude | 海拔 Elevation (m) | 群落类型 Community type | 采样时间 Sampling date (year-month-day) |
---|---|---|---|---|
七让山 Qirang Mt. | 103°41′52″ E, 32°59′3″ N | 3 400-3 500 | 窄叶鲜卑花-蒙古绣线菊-羊茅高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Festuca ovina alpine shrub meadow | 2012-7-14 |
弓杠岭 Gonggang Mt. | 103°42′57″ E, 33°1′48″ N | 3 500-3 600 | 窄叶鲜卑花-蒙古绣线菊-珠芽蓼高山灌丛草甸 Sibiraea angustata-Spiraea mongolica-Polygonum vivipar- um alpine shrub meadow | 2012-7-15 |
卡卡山 Kaka Mt. | 103°42′35″ E, 32°59′12″ N | 3 600-4 000 | 金露梅-窄叶鲜卑花-暗褐薹草高山灌丛草甸 Potentilla fruticosa-Sibiraea angustata-Carex atrofusca alpine shrub meadow | 2012-7-16- 2012-7-18 |
海拔梯度与群落特征 Elevation gradient and community characters | 单株鳞茎生物量 Individual bulb biomass | 单株总生物量 Individual total biomass | |||||
---|---|---|---|---|---|---|---|
df | F | p | df | F | p | ||
海拔梯度 Elevation gradient | 5 | 19.65 | <0.000 1 | 5 | 20.75 | <0.000 1 | |
群落类型 Community type | 1 | 0.05 | 0.82 | 1 | 0.09 | 0.77 | |
群落盖度 Community coverage | 3 | 0.74 | 0.53 | 3 | 0.96 | 0.41 | |
群落透光率 Community transmittance | 4 | 1.68 | 0.16 | 4 | 1.52 | 0.20 | |
海拔×群落类型 Elevation × community type | 5 | 1.52 | 0.18 | 5 | 1.33 | 0.25 | |
海拔×群落盖度 Elevation × community coverage | 13 | 1.24 | 0.25 | 13 | 0.98 | 0.48 | |
海拔×群落透光率 Elevation × community transmittance | 18 | 1.17 | 0.29 | 18 | 0.99 | 0.47 | |
群落类型×群落盖度 Community type × community coverage | 3 | 1.58 | 0.20 | 3 | 1.31 | 0.27 | |
群落类型×群落透光率 Community type × community transmittance | 4 | 1.87 | 0.12 | 4 | 3.47 | 0.01 | |
群落盖度×群落透光率 Community coverage × community transmittance | 12 | 1.21 | 0.28 | 12 | 0.64 | 0.80 |
Table 2 Effects of elevation gradient and community characters on individual bulb biomass and total biomass of Fritillaria unibracteata
海拔梯度与群落特征 Elevation gradient and community characters | 单株鳞茎生物量 Individual bulb biomass | 单株总生物量 Individual total biomass | |||||
---|---|---|---|---|---|---|---|
df | F | p | df | F | p | ||
海拔梯度 Elevation gradient | 5 | 19.65 | <0.000 1 | 5 | 20.75 | <0.000 1 | |
群落类型 Community type | 1 | 0.05 | 0.82 | 1 | 0.09 | 0.77 | |
群落盖度 Community coverage | 3 | 0.74 | 0.53 | 3 | 0.96 | 0.41 | |
群落透光率 Community transmittance | 4 | 1.68 | 0.16 | 4 | 1.52 | 0.20 | |
海拔×群落类型 Elevation × community type | 5 | 1.52 | 0.18 | 5 | 1.33 | 0.25 | |
海拔×群落盖度 Elevation × community coverage | 13 | 1.24 | 0.25 | 13 | 0.98 | 0.48 | |
海拔×群落透光率 Elevation × community transmittance | 18 | 1.17 | 0.29 | 18 | 0.99 | 0.47 | |
群落类型×群落盖度 Community type × community coverage | 3 | 1.58 | 0.20 | 3 | 1.31 | 0.27 | |
群落类型×群落透光率 Community type × community transmittance | 4 | 1.87 | 0.12 | 4 | 3.47 | 0.01 | |
群落盖度×群落透光率 Community coverage × community transmittance | 12 | 1.21 | 0.28 | 12 | 0.64 | 0.80 |
Fig. 1 Effects of elevation on individual bulb biomass and total biomass of Fritillaria unibracteata (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass of plants with the same life history stage at different elevations.
Fig. 2 Effects of elevation on biomass allocation of Fritillaria unibracteata (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass allocation of plants with the same life history stage at different elevations.
Fig. 3 Characteristics of individual bulb biomass and total biomass of Fritillaria unibracteata at different life history stages (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass of plants with different life history stages. IBB, individual bulb biomass; ITB, individual total biomass.
Fig. 4 Characteristics of biomass allocation of Fritillaria unibracteata at different life history stages (mean ± SE). Different letters denote highly significantly difference (p < 0.01) in biomass allocation of plants with different life history stages. BBA, bulb biomass allocation; LBA, leaf biomass allocation; RBA, root biomass allocation; SBA, stem biomass allocation;
[1] | Adler A, Karacic A, Weih M (2008). Biomass allocation and nutrient use in fast-growing woody and herbaceous perennials used for phytoremediation. Plant and Soil, 305, 189-206. |
[2] | Bloom AJ, Chapin FS, Mooney HA (1985). Resource limitation in plants—an economic analogue. Annual Review of Ecology and Systematics, 16, 363-392. |
[3] |
Bowman WD, Conant RT (1994). Shoot growth dynamics and photosynthetic response to increased nitrogen availability in the alpine willow Salix glauca. Oecologia, 97, 93-99.
URL PMID |
[4] |
Callaway RM, DeLucia EH, Thomas EM, Schlesinger WH (1994). Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes. Oecologia, 98, 159-166.
URL PMID |
[5] | Chen SL, Xiao XH, Chen SY (1997). Numerical studies on spatial distribution pattern of Fritillaria unibracteata community. Journal of Southwest China Normal University (Natural Science Edition), 22, 416-420. (in Chinese with English abstract) |
[ 陈士林, 肖小河, 陈善墉 (1997). 暗紫贝母植被分布格局的数值分析. 西南师范大学学报(自然科学版), 22, 416-420.] | |
[6] | Chen WN, Chen FJ, Xie YH, Wang Y, Duan HG, Qi ZM (2012). Variation of phenology and bulbs of Fritillaria unibracteata along altitudinal gradients. Acta Prataculturae Sinica, 21, 319-324. (in Chinese with English abstract) |
[ 陈文年, 陈发军, 谢玉华, 王淯, 段辉国, 齐泽民 (2012). 暗紫贝母的物候和鳞茎在海拔梯度上的变化. 草业学报, 21, 319-324.] | |
[7] |
Coleman JS, McConnaughay KDM, Ackerly DD (1994). Interpreting phenotypic variation in plants. Trends in Ecology & Evolution, 9, 187-191.
URL PMID |
[8] |
Diggle PK (1997). Extreme preformation in alpine Polygonum viviparum: an architectural and developmental analysis. American Journal of Botany, 84, 154-169.
URL PMID |
[9] | Fabbro T, Körner C (2004). Altitudinal differences in flower traits and reproductive allocation. Flora, 199, 70-81. |
[10] |
Gedroc JJ, Mcconnaughay KDM, Coleman JS (1996). Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Functional Ecology, 10, 44-50.
DOI URL |
[11] |
Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2007). Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecological Research, 22, 255-260.
DOI URL |
[12] |
Guo H, Mazer SJ, Du GZ (2010). Geographic variation in primary sex allocation per flower within and among 12 species of Pedicularis (Orobanchaceae): proportional male investment increases with elevation. American Journal of Botany, 97, 1334-1341.
URL PMID |
[13] |
Hautier Y, Randin CF, Stöcklin J, Guisan A (2009). Changes in reproductive investment with altitude in an alpine plant. Journal of Plant Ecology, 2, 125-134.
DOI URL |
[14] |
Hermans C, Hammond JP, White PJ, Verbruggen N (2006). How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11, 610-617.
DOI URL PMID |
[15] | Körner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edn. Springer-VerlagHeidelberg. |
[16] | Li XW, Chen SL (2008). Effect of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Fritillaria cirrhosa. Acta Ecologica Sinica, 28, 3438-3446. (in Chinese with English abstract) |
[ 李西文, 陈士林 (2008). 遮阴下高原濒危药用植物川贝母(Fritillaria cirrhosa)光合作用和叶绿素荧光特征. 生态学报, 28, 3438-3446.] | |
[17] | Liu XQ (1994). An comparison experiment of Fritillaria unibracteata and Fritillaria taipaiensis. China Journal of Chinese Materia Medica, 19(2), 81-82. (in Chinese) |
[ 刘先齐 (1994). 暗紫贝母与太白贝母的引种比较试验. 中国中药杂志, 19(2), 81-82.] | |
[18] | Lusk CH, Falster DS, Jara-Vergara CK, Jimenez-Castillo M, Saldaña-Mendoza A (2008). Ontogenetic variation in light requirements of juvenile rainforest evergreens. Functional Ecology, 22, 454-459. |
[19] |
Ma WL, Shi PL, Li WH, He YT, Zhang XZ, Shen ZX, Chai SY (2010). Changes in individual plant traits and biomass allocation in alpine meadow with elevation variation on the Qinghai-Tibetan Plateau. Science China: Life Sciences, 53, 1142-1151.
DOI URL PMID |
[20] | Mani MS (1962). Introduction to High Altitude Entomology: Insect Life Above Timber-Line in the North-Western Himalayas. Methuen, London. |
[21] | Moriuchi KS, Winn AA (2005). Relationships among growth, development and plastic response to environment quality in a perennial plant. New Phytologist, 166, 149-158. |
[22] | Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. |
[23] | Shi FS, Wu N, Wu Y (2010). Responses of plant growth and substance allocation of three dominant plant species to experimental warming in an alpine grassland, Northwestern Sichuan, China. Chinese Journal of Plant Ecology, 34, 488-497. (in Chinese with English abstract) |
[ 石福孙, 吴宁, 吴彦 (2010). 川西北高寒草地3种主要植物的生长及物质分配对温度升高的响应. 植物生态学报, 34, 488-497.] | |
[24] | Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331. |
[25] | Stearns SC (1992). The Evolution of Life Histories. Oxford University Press, Oxford. |
[26] | Wang YF, Liu QQ, Pei ZY, Li HY (2012). Correlation between altitude and reproductive allocation in three Saussurea species on China’s Qinghai-Tibetan Plateau. Chinese Journal of Plant Ecology, 36, 39-46. (in Chinese with English abstract) |
[ 王一峰, 刘启茜, 裴泽宇, 李海燕 (2012). 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性. 植物生态学报, 36, 39-46.] | |
[27] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[28] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20, 177-184. |
[29] | Yun HX, Chen Z (2010). Research survey of Fritillaria unibracteata. Chinese Traditional Patent Medicine, 32, 1020-1024. (in Chinese) |
[ 韵海霞, 陈志 (2010). 暗紫贝母研究概况. 中成药, 32, 1020-1024.] | |
[30] | Zhang LJ, Shi YX, Pan XL (2007). Analysis of correlativity between reproductive allocation and altitude in plants. Journal of Northwest University (Natural Science Edition), 37, 77-80, 90. (in Chinese with English abstract) |
[ 张林静, 石云霞, 潘晓玲 (2007). 草本植物繁殖分配与海拔高度的相关分析. 西北大学学报(自然科学版), 37, 77-80, 90.] | |
[31] | Zhao ZG, Du GZ, Zhou XH, Wang MT, Ren QJ (2006). Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae. Australian Journal of Botany, 54, 691-700. |
[1] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[2] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[3] | LIU Yan-Jie, LIU Yu-Long, WANG Chuan-Kuan, WANG Xing-Chang. Comparison of leaf cost-benefit relationship for five pinnate compound-leaf tree species in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1540-1550. |
[4] | WANG Jiao, GUAN Xin, ZHANG Wei-Dong, HUANG Ke, ZHU Mu-Nan, YANG Qing-Peng. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings [J]. Chin J Plant Ecol, 2021, 45(11): 1231-1240. |
[5] | XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 885-894. |
[6] | XING Lei, DUAN Na, LI Qing-He, LIU Cheng-Gong, LI Hui-Qing, SUN Gao-Jie. Variation in biomass allocation of Nitraria tangutorum during different phenological phases [J]. Chin J Plant Ecol, 2020, 44(7): 763-771. |
[7] | ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plant Ecol, 2018, 42(2): 229-239. |
[8] | Ming-Zhe MA, Guo-Zhen SHEN, Gao-Ming XIONG, Chang-Ming ZHAO, Wen-Ting XU, You-Bing ZHOU, Zong-Qiang XIE. Characteristic and representativeness of the vertical vegetation zonation along the altitudinal gradient in Shennongjia Natural Heritage [J]. Chin J Plant Ecol, 2017, 41(11): 1127-1139. |
[9] | CHEN Qing-Qing,LI De-Zhi. Kin recognition in Setaria italica under the condition of root segregation [J]. Chin J Plan Ecolo, 2015, 39(12): 1188-1197. |
[10] | Shao-An PAN, Guo-Quan PENG, Dong-Mei YANG. Biomass allocation strategies within a leaf: Implication for leaf size optimization [J]. Chin J Plant Ecol, 2015, 39(10): 971-979. |
[11] | XIAO Yao,TAO Ye,ZHANG Yuan-Ming. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China [J]. Chin J Plant Ecol, 2014, 38(9): 929-940. |
[12] | MAO Wei, LI Yu-Lin, CUI Duo, ZHAO Xue-Yong, ZHANG Tong-Hui, LI Yu-Qiang. Biomass allocation response of species with different life history strategies to nitrogen and water addition in sandy grassland in Inner Mongolia [J]. Chin J Plant Ecol, 2014, 38(2): 125-133. |
[13] | WU Ze-Yan,LIN Wen-Xiong,CHEN Zhi-Fang,FANG Chang-Xun,ZHANG Zhi-Xing,WU Lin-Kun,ZHOU Ming-Ming,CHEN Ting. Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest [J]. Chin J Plant Ecol, 2013, 37(5): 397-406. |
[14] | ZHANG Wen-Tao, JIANG Yuan, WANG Ming-Chang, ZHANG Ling-Nan, DONG Man-Yu, GUO Yuan-Yuan. Responses of radial growth to climate warming in Picea meyeri trees growing at different elevations on the southern slope of Luya Mountain [J]. Chin J Plant Ecol, 2013, 37(12): 1142-1152. |
[15] | WU Qian, DING Jia, YAN Hui, ZHANG Shou-Ren, FANG Teng, MA Ke-Ping. Effects of simulated precipitation and nitrogen addition on seedling growth and biomass in five tree species in Gutian Mountain, Zhejiang Province, China [J]. Chin J Plant Ecol, 2011, 35(3): 256-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn