Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (6): 481-491.DOI: 10.3724/SP.J.1258.2013.00050
• Research Articles • Next Articles
ZHOU Xuan1,HE Zheng-Biao2,KANG Hong-Zhang1,SUN Xiao1,LIU Chun-Jiang1,*()
Received:
2013-01-23
Accepted:
2013-04-26
Online:
2013-01-23
Published:
2013-06-05
Contact:
LIU Chun-Jiang
ZHOU Xuan,HE Zheng-Biao,KANG Hong-Zhang,SUN Xiao,LIU Chun-Jiang. Variations of seed morphology related to climate for Quercus variabilis across temperate- subtropical China[J]. Chin J Plant Ecol, 2013, 37(6): 481-491.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00050
样地 Site | 样地代号 Site code | 纬度 LAT (°N) | 经度 LON (°E) | 海拔高度 ALT (m) | 年平均气温 MAT (℃) | 最热月份温度 MTW (℃) | 年降水量 AP (mm) | 最湿季降水量 PWQ (mm) | 等效纬度 ELAT (°) |
---|---|---|---|---|---|---|---|---|---|
云南昆明 Kunming, Yunnan | KM | 25.14 | 102.74 | 1955 | 15.9 | 24.0 | 970 | 593 | 36.96 |
云南丽江 Lijiang, Yunnan | LJ | 26.87 | 99.87 | 1988 | 12.3 | 22.0 | 990 | 596 | 38.93 |
江西永修 Yongxiu, Jiangxi | YX | 29.09 | 115.62 | 360 | 16.6 | 32.6 | 1 190 | 467 | 29.52 |
浙江舟山 Zhoushan, Zhejiang | ZS | 29.98 | 122.07 | 76 | 16.5 | 30.6 | 1 333 | 450 | 28.86 |
浙江杭州 Hangzhou, Zhejiang | HZ | 30.19 | 120.00 | 349 | 16.6 | 33.1 | 1 380 | 518 | 30.54 |
上海闵行* Minhang, Shanghai* | SH | 31.14 | 121.29 | 5 | 16.2 | 31.5 | 1 059 | 432 | 29.67 |
安徽霍山 Huoshan, Anhui | HS | 31.35 | 116.08 | 659 | 14.4 | 30.5 | 1 391 | 604 | 33.91 |
湖北南漳 Nanzhang, Hubei | NZ | 31.75 | 111.93 | 237 | 16.2 | 32.3 | 887 | 412 | 31.44 |
河南信阳 Xinyang, Henan | XY | 32.12 | 114.01 | 163 | 15.5 | 31.6 | 1 094 | 503 | 31.44 |
江苏南京 Nanjing, Jiangsu | NJ | 32.13 | 119.20 | 167 | 15.4 | 32.0 | 1 040 | 468 | 31.47 |
安徽凤阳 Fengyang, Anhui | FY | 32.65 | 117.56 | 28 | 15.3 | 31.7 | 879 | 419 | 31.29 |
陕西安康 Ankang, Shaanxi | AK | 32.66 | 109.03 | 370 | 15.4 | 31.6 | 812 | 386 | 33.16 |
陕西勉县 Mianxian, Shaanxi | MX | 33.11 | 106.70 | 715 | 14.3 | 29.8 | 857 | 455 | 36.07 |
河南南阳 Nanyang, Henan | NY | 33.50 | 111.91 | 152 | 15.5 | 31.6 | 1 094 | 503 | 31.38 |
安徽皇藏峪 Huangcangyu, Anhui | HY | 34.02 | 117.06 | 51 | 14.8 | 31.7 | 730 | 427 | 32.78 |
河南三门峡 Sanmenxia, Henan | SM | 34.49 | 111.22 | 1121 | 10.2 | 27.2 | 670 | 349 | 40.35 |
山东泰山 Mount Taishan, Shandong | TS | 36.21 | 118.00 | 345 | 7.8 | 29.7 | 617 | 494 | 36.53 |
河北邢台 Xingtai, Hebei | XT | 37.09 | 113.83 | 801 | 11.1 | 26.1 | 671 | 395 | 40.67 |
辽宁大连 Dalian, Liaoning | DL | 39.11 | 121.80 | 180 | 10.5 | 27.2 | 641 | 404 | 38.51 |
北京平谷 Pinggu, Beijing | BJ | 40.25 | 117.12 | 260 | 10.5 | 29.8 | 553 | 421 | 40.05 |
Table 1 Summary of geographical location and climate factors for the 20 sample plots over eastern China
样地 Site | 样地代号 Site code | 纬度 LAT (°N) | 经度 LON (°E) | 海拔高度 ALT (m) | 年平均气温 MAT (℃) | 最热月份温度 MTW (℃) | 年降水量 AP (mm) | 最湿季降水量 PWQ (mm) | 等效纬度 ELAT (°) |
---|---|---|---|---|---|---|---|---|---|
云南昆明 Kunming, Yunnan | KM | 25.14 | 102.74 | 1955 | 15.9 | 24.0 | 970 | 593 | 36.96 |
云南丽江 Lijiang, Yunnan | LJ | 26.87 | 99.87 | 1988 | 12.3 | 22.0 | 990 | 596 | 38.93 |
江西永修 Yongxiu, Jiangxi | YX | 29.09 | 115.62 | 360 | 16.6 | 32.6 | 1 190 | 467 | 29.52 |
浙江舟山 Zhoushan, Zhejiang | ZS | 29.98 | 122.07 | 76 | 16.5 | 30.6 | 1 333 | 450 | 28.86 |
浙江杭州 Hangzhou, Zhejiang | HZ | 30.19 | 120.00 | 349 | 16.6 | 33.1 | 1 380 | 518 | 30.54 |
上海闵行* Minhang, Shanghai* | SH | 31.14 | 121.29 | 5 | 16.2 | 31.5 | 1 059 | 432 | 29.67 |
安徽霍山 Huoshan, Anhui | HS | 31.35 | 116.08 | 659 | 14.4 | 30.5 | 1 391 | 604 | 33.91 |
湖北南漳 Nanzhang, Hubei | NZ | 31.75 | 111.93 | 237 | 16.2 | 32.3 | 887 | 412 | 31.44 |
河南信阳 Xinyang, Henan | XY | 32.12 | 114.01 | 163 | 15.5 | 31.6 | 1 094 | 503 | 31.44 |
江苏南京 Nanjing, Jiangsu | NJ | 32.13 | 119.20 | 167 | 15.4 | 32.0 | 1 040 | 468 | 31.47 |
安徽凤阳 Fengyang, Anhui | FY | 32.65 | 117.56 | 28 | 15.3 | 31.7 | 879 | 419 | 31.29 |
陕西安康 Ankang, Shaanxi | AK | 32.66 | 109.03 | 370 | 15.4 | 31.6 | 812 | 386 | 33.16 |
陕西勉县 Mianxian, Shaanxi | MX | 33.11 | 106.70 | 715 | 14.3 | 29.8 | 857 | 455 | 36.07 |
河南南阳 Nanyang, Henan | NY | 33.50 | 111.91 | 152 | 15.5 | 31.6 | 1 094 | 503 | 31.38 |
安徽皇藏峪 Huangcangyu, Anhui | HY | 34.02 | 117.06 | 51 | 14.8 | 31.7 | 730 | 427 | 32.78 |
河南三门峡 Sanmenxia, Henan | SM | 34.49 | 111.22 | 1121 | 10.2 | 27.2 | 670 | 349 | 40.35 |
山东泰山 Mount Taishan, Shandong | TS | 36.21 | 118.00 | 345 | 7.8 | 29.7 | 617 | 494 | 36.53 |
河北邢台 Xingtai, Hebei | XT | 37.09 | 113.83 | 801 | 11.1 | 26.1 | 671 | 395 | 40.67 |
辽宁大连 Dalian, Liaoning | DL | 39.11 | 121.80 | 180 | 10.5 | 27.2 | 641 | 404 | 38.51 |
北京平谷 Pinggu, Beijing | BJ | 40.25 | 117.12 | 260 | 10.5 | 29.8 | 553 | 421 | 40.05 |
样地 Site | SW | SL | SW/SL | 样本量 Sample size | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 变异系数 CV (%) | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 变异系数 CV (%) | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 变异系数 CV (%) | ||
KM | 1.63i | 1.76 | 1.51 | 0.09 | 5.80 | 1.76f | 1.91 | 1.62 | 0.09 | 5.3 | 0.93abc | 1.04 | 0.79 | 0.07 | 7.5 | 34 |
LJ | 1.30h | 1.34 | 1.24 | 0.04 | 3.00 | 1.47g | 1.59 | 1.27 | 0.10 | 6.9 | 0.88bcde | 0.99 | 0.83 | 0.06 | 6.5 | 27 |
YX | 1.65j | 1.95 | 1.54 | 0.10 | 5.70 | 1.86f | 2.20 | 1.20 | 0.19 | 10.0 | 0.89bcde | 1.08 | 0.81 | 0.14 | 15.3 | 36 |
ZS | 1.70h | 1.75 | 1.42 | 0.10 | 6.20 | 1.91e | 2.07 | 1.57 | 0.15 | 7.8 | 0.89abcde | 1.03 | 0.79 | 0.08 | 8.9 | 29 |
HZ | 1.87bcd | 1.78 | 1.58 | 0.06 | 3.80 | 2.01cde | 2.01 | 1.80 | 0.06 | 3.0 | 0.93ab | 0.94 | 0.82 | 0.04 | 5.0 | 29 |
SH | 1.81efg | 2.08 | 1.61 | 0.11 | 5.60 | 2.09bc | 2.29 | 1.76 | 0.15 | 7.5 | 0.86degf | 1.07 | 0.80 | 0.09 | 9.9 | 32 |
HS | 1.95a | 1.86 | 1.77 | 0.03 | 1.60 | 2.21ab | 2.34 | 1.86 | 0.14 | 6.6 | 0.88bcde | 0.98 | 0.77 | 0.06 | 6.8 | 34 |
NZ | 1.39k | 2.14 | 1.82 | 0.09 | 4.70 | 1.70f | 2.38 | 2.06 | 0.12 | 5.3 | 0.82gh | 0.95 | 0.77 | 0.06 | 6.5 | 31 |
NY | 1.63i | 2.08 | 1.66 | 0.13 | 7.00 | 1.98de | 2.50 | 1.62 | 0.19 | 9.3 | 0.82h | 1.03 | 0.79 | 0.07 | 8.2 | 31 |
XY | 1.83defg | 1.45 | 1.30 | 0.06 | 4.20 | 2.04cd | 1.74 | 1.60 | 0.05 | 2.8 | 0.90abcde | 0.89 | 0.76 | 0.04 | 4.9 | 32 |
NJ | 1.93ab | 1.73 | 1.51 | 0.07 | 4.00 | 2.19ab | 2.33 | 1.22 | 0.22 | 11.2 | 0.88cdef | 0.96 | 0.69 | 0.08 | 10.2 | 33 |
FY | 1.36kl | 2.03 | 1.66 | 0.10 | 5.70 | 1.96de | 2.28 | 1.67 | 0.15 | 7.3 | 0.70i | 1.06 | 0.79 | 0.07 | 7.9 | 37 |
AK | 1.86cdef | 2.18 | 1.74 | 0.12 | 6.10 | 2.03cd | 2.42 | 1.92 | 0.14 | 6.3 | 0.91abcd | 1.01 | 0.80 | 0.05 | 5.9 | 36 |
MX | 1.79fg | 1.45 | 1.21 | 0.08 | 6.20 | 2.01cde | 2.48 | 1.74 | 0.22 | 11.5 | 0.89abcd | 0.77 | 0.59 | 0.06 | 8.5 | 28 |
HZ | 1.68ih | 1.96 | 1.64 | 0.09 | 5.04 | 1.79f | 2.26 | 1.79 | 0.12 | 5.8 | 0.94a | 0.99 | 0.81 | 0.07 | 8.1 | 39 |
SM | 1.64i | 1.82 | 1.59 | 0.05 | 3.18 | 2.00cde | 1.98 | 1.63 | 0.10 | 5.6 | 0.82fgh | 1.03 | 0.86 | 0.07 | 7.8 | 33 |
TS | 1.84bcde | 1.80 | 1.47 | 0.10 | 6.22 | 1.86cd | 2.15 | 1.69 | 0.15 | 7.3 | 0.99abcd | 1.06 | 0.69 | 0.10 | 12.6 | 33 |
XT | 1.48hi | 2.12 | 1.66 | 0.12 | 6.34 | 1.81de | 2.30 | 1.77 | 0.16 | 8.4 | 0.82efgh | 1.13 | 0.80 | 0.07 | 7.1 | 35 |
DL | 1.78g | 1.67 | 1.62 | 0.01 | 0.92 | 1.96de | 2.19 | 1.71 | 0.14 | 7.6 | 0.91abcd | 0.97 | 0.75 | 0.06 | 7.3 | 37 |
BJ | 1.64abc | 2.17 | 1.67 | 0.14 | 8.64 | 1.82ab | 2.96 | 1.87 | 0.23 | 12.7 | 0.90defg | 1.09 | 0.70 | 0.11 | 12.1 | 32 |
总体 Total | 1.69 | 1.86 | 1.56 | 0.09 | 5.05 | 1.92 | 2.22 | 1.67 | 0.14 | 7.4 | 0.88 | 1.00 | 0.77 | 0.07 | 8.3 | |
种群间变异系数 CV between populations (%) | 11.1 | 8.9 | 6.7 |
Table 2 Statistical data of seed width (SW), seed length (SL) and SW/SL for 20 populations of Quercus variabilis
样地 Site | SW | SL | SW/SL | 样本量 Sample size | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 变异系数 CV (%) | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 变异系数 CV (%) | 平均值 Mean | 最大值 Max | 最小值 Min | 标准偏差 SD | 变异系数 CV (%) | ||
KM | 1.63i | 1.76 | 1.51 | 0.09 | 5.80 | 1.76f | 1.91 | 1.62 | 0.09 | 5.3 | 0.93abc | 1.04 | 0.79 | 0.07 | 7.5 | 34 |
LJ | 1.30h | 1.34 | 1.24 | 0.04 | 3.00 | 1.47g | 1.59 | 1.27 | 0.10 | 6.9 | 0.88bcde | 0.99 | 0.83 | 0.06 | 6.5 | 27 |
YX | 1.65j | 1.95 | 1.54 | 0.10 | 5.70 | 1.86f | 2.20 | 1.20 | 0.19 | 10.0 | 0.89bcde | 1.08 | 0.81 | 0.14 | 15.3 | 36 |
ZS | 1.70h | 1.75 | 1.42 | 0.10 | 6.20 | 1.91e | 2.07 | 1.57 | 0.15 | 7.8 | 0.89abcde | 1.03 | 0.79 | 0.08 | 8.9 | 29 |
HZ | 1.87bcd | 1.78 | 1.58 | 0.06 | 3.80 | 2.01cde | 2.01 | 1.80 | 0.06 | 3.0 | 0.93ab | 0.94 | 0.82 | 0.04 | 5.0 | 29 |
SH | 1.81efg | 2.08 | 1.61 | 0.11 | 5.60 | 2.09bc | 2.29 | 1.76 | 0.15 | 7.5 | 0.86degf | 1.07 | 0.80 | 0.09 | 9.9 | 32 |
HS | 1.95a | 1.86 | 1.77 | 0.03 | 1.60 | 2.21ab | 2.34 | 1.86 | 0.14 | 6.6 | 0.88bcde | 0.98 | 0.77 | 0.06 | 6.8 | 34 |
NZ | 1.39k | 2.14 | 1.82 | 0.09 | 4.70 | 1.70f | 2.38 | 2.06 | 0.12 | 5.3 | 0.82gh | 0.95 | 0.77 | 0.06 | 6.5 | 31 |
NY | 1.63i | 2.08 | 1.66 | 0.13 | 7.00 | 1.98de | 2.50 | 1.62 | 0.19 | 9.3 | 0.82h | 1.03 | 0.79 | 0.07 | 8.2 | 31 |
XY | 1.83defg | 1.45 | 1.30 | 0.06 | 4.20 | 2.04cd | 1.74 | 1.60 | 0.05 | 2.8 | 0.90abcde | 0.89 | 0.76 | 0.04 | 4.9 | 32 |
NJ | 1.93ab | 1.73 | 1.51 | 0.07 | 4.00 | 2.19ab | 2.33 | 1.22 | 0.22 | 11.2 | 0.88cdef | 0.96 | 0.69 | 0.08 | 10.2 | 33 |
FY | 1.36kl | 2.03 | 1.66 | 0.10 | 5.70 | 1.96de | 2.28 | 1.67 | 0.15 | 7.3 | 0.70i | 1.06 | 0.79 | 0.07 | 7.9 | 37 |
AK | 1.86cdef | 2.18 | 1.74 | 0.12 | 6.10 | 2.03cd | 2.42 | 1.92 | 0.14 | 6.3 | 0.91abcd | 1.01 | 0.80 | 0.05 | 5.9 | 36 |
MX | 1.79fg | 1.45 | 1.21 | 0.08 | 6.20 | 2.01cde | 2.48 | 1.74 | 0.22 | 11.5 | 0.89abcd | 0.77 | 0.59 | 0.06 | 8.5 | 28 |
HZ | 1.68ih | 1.96 | 1.64 | 0.09 | 5.04 | 1.79f | 2.26 | 1.79 | 0.12 | 5.8 | 0.94a | 0.99 | 0.81 | 0.07 | 8.1 | 39 |
SM | 1.64i | 1.82 | 1.59 | 0.05 | 3.18 | 2.00cde | 1.98 | 1.63 | 0.10 | 5.6 | 0.82fgh | 1.03 | 0.86 | 0.07 | 7.8 | 33 |
TS | 1.84bcde | 1.80 | 1.47 | 0.10 | 6.22 | 1.86cd | 2.15 | 1.69 | 0.15 | 7.3 | 0.99abcd | 1.06 | 0.69 | 0.10 | 12.6 | 33 |
XT | 1.48hi | 2.12 | 1.66 | 0.12 | 6.34 | 1.81de | 2.30 | 1.77 | 0.16 | 8.4 | 0.82efgh | 1.13 | 0.80 | 0.07 | 7.1 | 35 |
DL | 1.78g | 1.67 | 1.62 | 0.01 | 0.92 | 1.96de | 2.19 | 1.71 | 0.14 | 7.6 | 0.91abcd | 0.97 | 0.75 | 0.06 | 7.3 | 37 |
BJ | 1.64abc | 2.17 | 1.67 | 0.14 | 8.64 | 1.82ab | 2.96 | 1.87 | 0.23 | 12.7 | 0.90defg | 1.09 | 0.70 | 0.11 | 12.1 | 32 |
总体 Total | 1.69 | 1.86 | 1.56 | 0.09 | 5.05 | 1.92 | 2.22 | 1.67 | 0.14 | 7.4 | 0.88 | 1.00 | 0.77 | 0.07 | 8.3 | |
种群间变异系数 CV between populations (%) | 11.1 | 8.9 | 6.7 |
方差来源 Variance source | df | SS | MS | F | p | |
---|---|---|---|---|---|---|
种宽 Seed width (SW) | 组间 Inter-group | 19 | 9.026 | 0.475 | 55.31 | <0.001 |
组内 Intra-group | 638 | 3.590 | 0.009 | |||
总计 Total | 657 | 12.616 | ||||
种长 Seed length (SL) | 组间 Inter-group | 19 | 8.949 | 0.471 | 19.10 | <0.001 |
组内 Intra-group | 638 | 10.929 | 0.025 | |||
总计 Total | 657 | 19.879 | ||||
种子宽长比 SW/SL | 组间 Inter-group | 19 | 0.825 | 0.043 | 10.69 | <0.001 |
组内 Intra-group | 638 | 2.549 | 0.006 | |||
总计 Total | 657 | 3.373 |
Table 3 ANOVA of seed width and seed length for 20 populations of Quercus variabilis
方差来源 Variance source | df | SS | MS | F | p | |
---|---|---|---|---|---|---|
种宽 Seed width (SW) | 组间 Inter-group | 19 | 9.026 | 0.475 | 55.31 | <0.001 |
组内 Intra-group | 638 | 3.590 | 0.009 | |||
总计 Total | 657 | 12.616 | ||||
种长 Seed length (SL) | 组间 Inter-group | 19 | 8.949 | 0.471 | 19.10 | <0.001 |
组内 Intra-group | 638 | 10.929 | 0.025 | |||
总计 Total | 657 | 19.879 | ||||
种子宽长比 SW/SL | 组间 Inter-group | 19 | 0.825 | 0.043 | 10.69 | <0.001 |
组内 Intra-group | 638 | 2.549 | 0.006 | |||
总计 Total | 657 | 3.373 |
Fig. 3 Relationship between seed width (SW), seed length (SL) and SW/SL with geographic and climatic factors in 20 populations of Quercus variabilis. AP, annual precipitation; ELAT, equivalent latitude; LON, longitude; MAT, annual average air temperature; MTW, maximum temperature of warmest month; PWQ, precipitation of wettest quarter.
[1] |
Aizen MA, Patterson WA III (1990). Acorn size and geographical range in the North American oaks (Quercus L.). Journal of Biogeography, 17, 327-332.
DOI URL |
[2] | Aizen MA, Woodcock H (1992). Latitudinal trends in acorn size in eastern North American species of Quercus. Canadian Journal of Botany, 70, 1218-1222. |
[3] | Alena J, Gösta E, Ingegerd D, Jan I (1981). Studies on frost hardiness of Pinus contorta Dougl. seedlings grown in climate chambers. Studia Forestralia Suecica, 157, 4-47. |
[4] |
Bond WJ, Honig M, Maze KE (1999). Seed size and seedling emergence: an allometric relationship and some ecological implications. Oecologia, 120, 132-136.
DOI URL PMID |
[5] | Cai YL, Wang XH, Song YC (1999). Variation of fruit size and its shape of Cylcobalanosis glauca in the eastern subtropical zone, China. Acta Ecologica Sinica, 19, 581-586. (in Chinese with English abstract) |
[ 蔡永利, 王希华, 宋永昌 (1999). 中国东部亚热带青冈果实形态变异的研究. 生态学报, 19, 581-586.] | |
[6] | Chen SC, Xiao ZD, Jin XL, Cai XL, Sun QX (2012). Differences of morphological characters and nutrient contents of Quercus variabilis seeds from different provenances. China Forestry Science and Technology, 26, 17-21. (in Chinese with English abstract) |
[ 陈素传, 肖正东, 金笑龙, 蔡新玲, 孙启祥 (2012). 不同种源栓皮栎种子形态和营养成分差异分析. 林业科技开发, 26, 17-21.] | |
[7] |
Chen X, Cannon CH, Conklin-Brittan NL (2012). Evidence for a trade-off strategy in stone oak (Lithocarpus) seeds between physical and chemical defense highlights fiber as an important antifeedant. PLoS ONE, 7(3), e32890.
DOI URL PMID |
[8] | Davis MB, Zabinski C (1992). Changes in geographical range resulting from greenhouse warming effects on biodiversity in forests. In: Peters RL, Love-joy TL eds. Global Warming and Biological Diversity. Yale University Press, New Haven. 298-308. |
[9] | Editorial Board of Flora of China, Chinese Academy of Sciences (1998). Flora of China: Vol.22. Science Press, Beijing. 222 (in Chinese) |
[ 中国科学院中国植物志编辑委员会 (1998). 中国植物志: 第22卷. 科学出版社, 北京. 222.] | |
[10] | Editorial Committee of Chinese Forests (1997). Chinese Forests: Vol. 3. China Forestry Publishing House, Beijing. (in Chinese) |
[ 中国森林编辑委员会 (1997). 中国森林: 第3卷. 中国林业出版社, 北京. | |
[11] | Gao ZT, Wu CX (2005). Discussion on geographic distribution of Quercus Mongolia. Protection Forest Science and Technology, (2), 75-84. (in Chinese with English abstract) |
[ 高志涛, 吴晓春 (2005). 蒙古栎地理分布规律的探讨. 防护林科技, (2), 75-84.] | |
[12] |
Giles BE (1990). The effects of variation in seed size on growth and reproduction in the wild barley Hordeum vulgare ssp. spontaneum. Heredity, 64, 239-250.
DOI URL |
[13] |
Gómez JM, Valladares F, Puerta-Piñero C (2004). Differences between structural and functional environmental heterogeneity caused by seed dispersal. Functional Ecology, 18, 787-792.
DOI URL |
[14] |
Groom PK, Lamont BB (1996). Ecogeographical analysis of hakea (Proteaceae) in southwestern Australia, with special reference to leaf morphology and life form. Australian Journal of Botany, 44, 527-542.
DOI URL |
[15] |
Han WX, Fang JY, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters, 14, 788-796.
URL PMID |
[16] |
Harper JL, Lovell PH, Moore KG (1970). The shapes and sizes of seeds. Annual Review of Ecology and Systematic, 1, 327-356.
DOI URL |
[17] | Hedge SG, Shaanker RU, Ganeshaiah KN (1991). Evolution of seed size in the bird-dispersed tree Santalum album L.: a trade-off between seedling establishment dispersal efficiency. Evolutionary Trends in Plants, 5, 131-135. |
[18] |
Hewitt N (1998). Seed size and shade-tolerance: a comparative analysis of North American temperate trees. Oecologia, 114, 432-440.
DOI URL PMID |
[19] |
Higgins PAT, Harte J (2006). Biophysical and biogeochemical responses to climate change depend on dispersal and migration. BioScience, 56, 407-417.
DOI URL |
[20] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
DOI URL |
[21] |
Hoffmann AA, Sgrò CM (2011). Climate change and evolutionary adaptation. Nature, 470, 479-485.
DOI URL PMID |
[22] |
Jakobsson A, Eriksson O (2000). A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos, 88, 494-502.
DOI URL |
[23] |
Jurado E, Westoby M (1992). Seedling growth in relation to seed size among species of arid Australia. Journal of Ecology, 80, 407-416.
DOI URL |
[24] |
Khurana E, Singh JS (2000). Influence of seed size on seedling growth of Albizia procera under different soil water levels. Annals of Botany, 86, 1185-1192.
DOI URL |
[25] |
Koenig WD, Knops JMH, Dickinson JL, Zuckerberg B (2009). Latitudinal decrease in acorn size in bur oak (Quercus macrocarpa) is due to environmental constraints, not avian dispersal. Botany, 87, 349-356.
DOI URL |
[26] |
Leishman MR, Westoby M (1994). The role of seed size in seedling establishment in dry soil conditions experimental evidence from semi-arid species. Journal of Ecology, 82, 249-258.
DOI URL |
[27] | Li YQ, Wang ZJ, Wu ZZ, Wu G, Li SL (2011). Analysis on variation in seed morphological characters and starch content of Quercus liaotungensis Koidz. from different provenances. Journal of Anhui Agriculture Science, 39, 16170-16173. (in Chinese with English abstract) |
[ 厉月桥, 汪泽军, 吴志庄, 吴刚, 李守利 (2011). 不同种源辽东栎种子表型性状与淀粉含量变异分析. 安徽农业科学, 39, 16170-16173.] | |
[28] | Liu ZL, Yu MK, Tang LZ, Fang SZ (2009). Variation and cluster analyses of morphological characters and nutrient content of Quercus acutissima seed from different provenances. Journal of Plant Resources and Environment, 18, 36-41. (in Chinese with English abstract) |
[ 刘志龙, 虞木奎, 唐罗忠, 方升佐 (2009). 不同种源麻栎种子形态特征和营养成分含量的差异及聚类分析. 植物资源和环境学报, 18, 36-41.] | |
[29] |
Milberg P, Andersson L, Thompson K (2000). Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Science Research, 10, 99-104.
DOI URL |
[30] |
Milberg P, Lamont BB (1997). Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytologist, 137, 665-672.
DOI URL |
[31] |
Moegenburg SM (1996). Sabal palmetto seed size: causes of variation, choices of predators, and consequences for seedlings. Oecologia, 106, 539-543.
DOI URL PMID |
[32] |
Moles AT, Ackerly DD, Tweddle JC, Dickie JB, Smith R, Leishman MR, Mayfield MM, Pitman A, Wood JT, Westoby M (2007). Global patterns in seed size. Global Ecology and Biogeography, 16, 109-116.
DOI URL |
[33] |
Moles AT, Warton DI, Stevens RD, Westoby M (2004). Does a latitudinal gradient in seedling survival favour larger seeds in the tropics? Ecology Letters, 7, 911-914.
DOI URL |
[34] |
Moore JE, Swihart RK (2006). Nut selection by captive blue jays: importance of availability and implications for seed dispersal. The Condor, 108, 377-388.
DOI URL |
[35] |
Murray BR, Brown AHD, Dickman CR, Crowther MS (2004). Geographical gradients in seed mass in relation to climate. Journal of Biogeography, 31, 379-388.
DOI URL |
[36] |
Parciak W (2002). Seed size, number, and habitat of a fleshy-fruited plant: consequences for seedling establishment. Ecology, 83, 794-808.
DOI URL |
[37] | Parmesan C (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669. |
[38] |
Ramírez-Valiente JA, Valladares F, Gil L, Aranda I (2009). Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.). Forest Ecology and Management, 257, 1676-1683.
DOI URL |
[39] |
Rees M (1995). Community structure in sand dune annuals: Is seed weight a key quantity? Journal of Ecology, 83, 857-863.
DOI URL |
[40] |
Schoettle AW, Rochelle SG (2000). Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. American Journal of Botany, 87, 1797-1806.
URL PMID |
[41] |
Schupp EW (1995). Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. American Journal of Botany, 82, 399-409.
DOI URL |
[42] |
Seiwa K (2000). Effects of seed size and emergence time on tree seedling establishment: importance of developmental constraints. Oecologia, 123, 208-215.
DOI URL |
[43] | Sun YL, Li QM, Yang JY, Xie ZQ (2005). Morphological variation in cones and seeds in Abies chensiensis. Acta Ecologica Sinica, 25, 176-181. (in Chinese with English abstract) |
[ 孙玉玲, 李庆梅, 杨敬元, 谢宗强 (2005). 秦岭冷杉球果与种子的形态变异. 生态学报, 25, 176-181.] | |
[44] | Tang XQ, Liu GQ, Li QM, Hu JX, Wang HT, Liu Y, Hou LY (2012). Comparison and analysis on morphological indices of 8 species of deciduous oak seeds. Journal of Northwest Forestry University, 27, 60-64. (in Chinese with English abstract) |
[ 唐晓倩, 刘广全, 李庆梅, 胡金鑫, 王华田, 刘艳, 侯龙鱼 (2012). 8种落叶栎类种子形态特征比较分析. 西北林学院学报, 27, 60-64.] | |
[45] |
Thompson K, Band SR, Hodgson JG (1993). Seed size and shape predict persistence in soil. Functional Ecology, 7, 236-241.
DOI URL |
[46] |
Venable DL (1992). Size-number trade-offs and the variation of seed size with plant resource status. The American Naturalist, 140, 287-304.
DOI URL |
[47] |
Venable DL, Brown JS (1988). The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risk in variable environments. The American Naturalist, 131, 360-384.
DOI URL |
[48] | Wang J, Wang SB, Kang HZ (2009). Distribution pattern of oriental oak (Quercus variabilis Blume) and the characteristics of climate of distribution area in Eastern Asia. Journal of Shanghai Jiaotong University (Agricultural Science), 27, 235-241. (in Chinese with English abstract) |
[ 王婧, 王少波, 康宏樟 (2009). 东亚地区栓皮栎的地理分布格局及其气候特征. 上海交通大学学报(农业科学版), 27, 235-241.] | |
[49] | Wei L (1960). Preliminary investigations of distribution of Quercus variabilis. Scientia Silvae Sinicae, 6(1), 70-71. (in Chinese) |
[ 魏林 (1960). 栓皮栎分布的初步调查. 林业科学, 6(1), 70-71.] | |
[50] | Wu LL, Kang HZ, Zhuang HL, Liu CJ (2010). Variations of Quercus variabilis leaf traits in relation to climatic factors at regional scale. Chinese Journal of Ecology, 29, 2309-2316. (in Chinese with English abstract) |
[ 吴丽丽, 康宏樟, 庄红蕾, 刘春江 (2010). 区域尺度上栓皮栎叶性状变异及其与气候因子的关系. 生态学杂志, 29, 2309-2316.] | |
[51] | Xia HT, Chen LG, Rong JD, Chen XD, Zheng YS (2012). Study on phenotypic diversity of Melia azedarach seeds in Fujian Province. Journal of Southwest Forestry University, 32, 32-37. (in Chinese with English abstract) |
[ 夏海涛, 陈礼光, 荣俊冬, 陈羡德, 郑郁善 (2012). 福建苦楝种子表型多样性研究. 西南林业大学学报, 32, 32-37.] | |
[52] | Xie CP, Fang Y, Fang YM (2011a). Morphological and weight variation of seeds of Quercus phillyraeoides in Mangdangshan Mountain of Fujiang Province. Journal of Anhui Agricultural University, 38, 656-661. (in Chinese with English abstract) |
[ 谢春平, 方彦, 方炎明 (2011a). 福建茫荡山乌冈栎种子性状变异研究. 安徽农业大学学报, 38, 656-661.] | |
[53] | Xie CP, Fang Y, Fang YM (2011b). Geographical distribution of Quercus phillyraeoides A. Gray. Tropical Geography, 31, 8-13. (in Chinese with English abstract) |
[ 谢春平, 方彦, 方炎明 (2011b). 乌冈栎的地理分布. 热带地理, 31, 8-13.] | |
[54] | Yang J (1991). Infraspecific variation in plant and the exploring methods. Journal of Wuhan Botanical Research, 9, 185-195. (in Chinese with English abstract) |
[ 杨继 (1991). 植物种内形态变异的机制及其研究方法. 武汉植物学研究, 9, 185-195.] | |
[55] | Zhang WH, Lu ZJ, Li JX, Liu GB (2002). A comparative study on spatial distribution pattern and its dynamics of Quercus variabilis populations among different forest areas in Shaanxi Province, China. Acta Botanica Boreali-Occidentalia Sinica, 22, 467-483. (in Chinese with English abstract) |
[ 张文辉, 卢志军, 李景侠, 刘国彬 (2002). 陕西不同林区栓皮栎种群空间分布格局及动态的比较研究. 西北植物学报, 22, 467-483.] |
[1] | 文博 牟 Dang-Hui Xu Xie-Jun WANG 瑞英 张 玉玲 顾 亚飞 苟. Soil carbon, nitrogen, and phosphorus stoichiometry of shrubs along an elevational gradient in the Pailugou watershed [J]. Chin J Plant Ecol, 2022, 46(11): 1422-1431. |
[2] | Yang ZHANG, Ming-Tai AN, Jian-Yong WU, Feng LIU, Wei WANG. Geographical distribution pattern and dominant climatic factors of the Paphiopedilum Subgen. Brachypetalum in China [J]. Chin J Plant Ecol, 2022, 46(1): 40-50. |
[3] | XU Guang-Lai, LI Ai-Juan, XU Xiao-Hua, YANG Xian-Cheng, YANG Qiang-Qiang. NDVIdynamics and driving climatic factors in the Protected Zones for Ecological Functions in China [J]. Chin J Plant Ecol, 2021, 45(3): 213-223. |
[4] | SHI Jiao-Xing, XU Ming-Shan, FANG Xiao-Chen, ZHENG Li-Ting, ZHANG Yu, BAO Di-Feng, YANG An-Na, YAN En-Rong. Latitudinal variability and driving factors of functional diversity in Pinus thunbergiicommunities across sea-islands in Eastern China [J]. Chin J Plant Ecol, 2021, 45(2): 163-173. |
[5] | WANG Zhao-Peng, ZHANG Tong-Wen, YUAN Yu-Jiang, ZHANG Rui-Bo, YU Shu-Long, LIU Rui, Shirenna JIAHAN, GUO Dong, WANG Yong-Hui. Comparative analysis of growth characteristics and climate responses in four coniferous tree species of southern Luoxiao Mountains [J]. Chin J Plant Ecol, 2021, 45(12): 1303-1313. |
[6] | ZHANG Yi-Ping, HAI Xu-Ying, XU Jun-Liang, WU Wen-Xia, CAO Peng-He, AN Wen-Jing. Seasonal dynamics of non-structural carbohydrate content in branch of Quercus variabilis growing in east Qinling Mountain range [J]. Chin J Plant Ecol, 2019, 43(6): 521-531. |
[7] | YANG Ji-Hong, LI Ya-Nan, BU Hai-Yan, ZHANG Shi-Ting, QI Wei. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(10): 863-876. |
[8] | Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. Spatial patterns and drivers of root turnover in grassland ecosystems in China [J]. Chin J Plan Ecolo, 2018, 42(3): 337-348. |
[9] | ZHU Hong, ZHU Shu-Xia, LI Yong-Fu, YI Xian-Gui, DUAN Yi-Fan, WANG Xian-Rong. Leaf phenotypic variation in natural populations of Cerasus dielsiana [J]. Chin J Plant Ecol, 2018, 42(12): 1168-1178. |
[10] | LI Li-Yuan, LI Jun, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, ZHANG Jing-Ru. Simulation on the light-response curves of electron transport rate of Quercus variabilis and Robinia pseudoacacia leaves in the Xiaolangdi area, China [J]. Chin J Plant Ecol, 2018, 42(10): 1009-1021. |
[11] | YAN Min, LI Zeng-Yuan, TIAN Xin, CHEN Er-Xue, GU Cheng-Yan. Remote sensing estimation of gross primary productivity and its response to climate change in the upstream of Heihe River Basin [J]. Chin J Plant Ecol, 2016, 40(1): 1-12. |
[12] | TANG Shi-Shan,YANG Wan-Qin,YIN Rui,XIONG Li,WANG Hai-Peng,Wang Bin,ZHANG Yan,PENG Yan-Jun,CHEN Qing-Song,XU Zhen-Feng. Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems [J]. Chin J Plant Ecol, 2014, 38(6): 529-539. |
[13] | LI Dong-Sheng, SHI Zuo-Min, FENG Qiu-Hong, LIU Feng. Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the North-South Transect of Eastern China [J]. Chin J Plant Ecol, 2013, 37(9): 793-802. |
[14] | ZHU Wan-Ze. Advances in the carbon use efficiency of forest [J]. Chin J Plant Ecol, 2013, 37(11): 1043-1058. |
[15] | LI He, ZHANG Wei-Kang, WANG Guo-Hong. Relationship between climatic factors and geographical distribution of spruce forests in China [J]. Chin J Plant Ecol, 2012, 36(5): 372-381. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn