Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (12): 1356-1363.DOI: 10.3724/SP.J.1258.2014.00130
Previous Articles Next Articles
KANG Hua-Jing1,2,3,4, TAO Yue-Liang5, QUAN Wei4, WANG Wei4, OUYANG Zhu2,3,4,*()
Received:
2014-03-21
Accepted:
2014-05-10
Online:
2014-03-21
Published:
2015-04-16
Contact:
OUYANG Zhu
KANG Hua-Jing, TAO Yue-Liang, QUAN Wei, WANG Wei, OUYANG Zhu. Fitting mitochondrial respiration rates under light by photosynthetic CO2 response models[J]. Chin J Plant Ecol, 2014, 38(12): 1356-1363.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00130
Fig. 1 Apparent photorespiration rate (Rpa) in response to CO2 concentration (Ca) at different photosynthetically active radiation (PAR) in flag leaves of wheat (mean ± SD).
Fig. 2 Recovery (Re-i) or inhibition (Ii) of photorespiratory CO2 in response to CO2 concentration (Ca) at different photosynthetically active radiation (PAR) (mean ± SD).
PAR (μmol·m-2·s-1) | ||||
---|---|---|---|---|
2 000 | 1 500 | 1 000 | 500 | |
光下呼吸速率 Pn0-21% | 6.843 ± 0.341a | 6.343 ± 0.762a | 6.536 ± 0.408a | 5.729 ± 0.499a |
光下暗呼吸速率 Pn0-2% | 1.934 ± 0.190c | 2.064 ± 0.091c | 2.164 ± 0.112c | 2.539 ± 0.285c |
表观光呼吸 Rpa0 | 5.035 ± 0.194b | 4.222 ± 0.832b | 4.330 ± 0.394b | 3.263 ± 0.544b |
Table 1 Measured values of photosynthetic rate in flag leaves of wheat at different photosynthetically active radiation (PAR) when CO2 concentration was 0 (μmol CO2·m-2·s-1) (mean ± SD)
PAR (μmol·m-2·s-1) | ||||
---|---|---|---|---|
2 000 | 1 500 | 1 000 | 500 | |
光下呼吸速率 Pn0-21% | 6.843 ± 0.341a | 6.343 ± 0.762a | 6.536 ± 0.408a | 5.729 ± 0.499a |
光下暗呼吸速率 Pn0-2% | 1.934 ± 0.190c | 2.064 ± 0.091c | 2.164 ± 0.112c | 2.539 ± 0.285c |
表观光呼吸 Rpa0 | 5.035 ± 0.194b | 4.222 ± 0.832b | 4.330 ± 0.394b | 3.263 ± 0.544b |
PAR (μmol·m-2·s-1) | |||||
---|---|---|---|---|---|
2 000 | 1 500 | 1 000 | 500 | ||
A-Ci | A | 21.667 ± 0.577*# | 21.857 ± 0.378*# | 21.750 ± 0.500*# | 20.850 ± 1.226*# |
B | 17.924 ± 1.250*# | 16.947 ± 0.908*# | 15.754 ± 1.200*# | 12.780 ± 0.905*# | |
C | 14.809 ± 0.279*# | 13.745 ± 1.117*# | 13.412 ± 0.744*# | 11.655 ± 1.154*# | |
A-Ca | A | 21.667 ± 0.577*# | 21.857 ± 0.378*# | 21.750 ± 0.500*# | 20.850 ± 1.226*# |
B | 8.745 ± 1.340*# | 8.335 ± 0.695*# | 8.769 ± 0.931*# | 7.245 ± 0.589*# | |
C | 7.743 ± 0.556*# | 6.907 ± 0.528* | 7.579 ± 0.570*# | 6.491 ± 0.616*# |
Table 2 Fitted values of mitochondrial respiration in flag leaves of wheat under light at different photosynthetically active radiation (PAR) and 21% O2 (mean ± SD)
PAR (μmol·m-2·s-1) | |||||
---|---|---|---|---|---|
2 000 | 1 500 | 1 000 | 500 | ||
A-Ci | A | 21.667 ± 0.577*# | 21.857 ± 0.378*# | 21.750 ± 0.500*# | 20.850 ± 1.226*# |
B | 17.924 ± 1.250*# | 16.947 ± 0.908*# | 15.754 ± 1.200*# | 12.780 ± 0.905*# | |
C | 14.809 ± 0.279*# | 13.745 ± 1.117*# | 13.412 ± 0.744*# | 11.655 ± 1.154*# | |
A-Ca | A | 21.667 ± 0.577*# | 21.857 ± 0.378*# | 21.750 ± 0.500*# | 20.850 ± 1.226*# |
B | 8.745 ± 1.340*# | 8.335 ± 0.695*# | 8.769 ± 0.931*# | 7.245 ± 0.589*# | |
C | 7.743 ± 0.556*# | 6.907 ± 0.528* | 7.579 ± 0.570*# | 6.491 ± 0.616*# |
PAR (μmol·m-2·s-1) | |||||
---|---|---|---|---|---|
2 000 | 1 500 | 1 000 | 500 | ||
A-Ci | A | 12.067 ± 0.808* | 12.286 ± 0.445* | 12.400 ± 0.783* | 11.350 ± 0.823* |
B | 8.293 ± 1.500* | 9.245 ± 1.093* | 9.320 ± 0.843* | 9.416 ± 1.475* | |
C | 6.099 ± 0.730* | 6.507 ± 0.913* | 6.609 ± 0.515* | 7.264 ± 0.561* | |
A-Ca | A | 21.667 ± 0.577* | 21.857 ± 0.378* | 21.750 ± 0.500* | 20.850 ± 1.226* |
B | 4.520 ± 1.118* | 5.022 ± 1.306* | 5.345 ± 0.828* | 4.919 ± 0.244* | |
C | 2.766 ± 0.564* | 3.323 ± 0.977* | 3.326 ± 0.554* | 3.798 ± 0.251* |
Table 3 Fitted values of mitochondrial respiration in flag leaves of wheat under light at different photosynthetically active radiation (PAR) and 2% O2 (mean ± SD)
PAR (μmol·m-2·s-1) | |||||
---|---|---|---|---|---|
2 000 | 1 500 | 1 000 | 500 | ||
A-Ci | A | 12.067 ± 0.808* | 12.286 ± 0.445* | 12.400 ± 0.783* | 11.350 ± 0.823* |
B | 8.293 ± 1.500* | 9.245 ± 1.093* | 9.320 ± 0.843* | 9.416 ± 1.475* | |
C | 6.099 ± 0.730* | 6.507 ± 0.913* | 6.609 ± 0.515* | 7.264 ± 0.561* | |
A-Ca | A | 21.667 ± 0.577* | 21.857 ± 0.378* | 21.750 ± 0.500* | 20.850 ± 1.226* |
B | 4.520 ± 1.118* | 5.022 ± 1.306* | 5.345 ± 0.828* | 4.919 ± 0.244* | |
C | 2.766 ± 0.564* | 3.323 ± 0.977* | 3.326 ± 0.554* | 3.798 ± 0.251* |
1 | Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment, 24, 253-259. |
2 | Berry JA, Downton WJ (1982). Environmental regulation of photosynthesis. In: Govindjee ed. Photosynthesis. Academic Press, New York. |
3 | Cai SQ, Xu DQ (2000). Relationship between the CO2 compensation point and photorespiration in soybean leaves. Acta Phytophysiol Sinica, 26, 545-550.(in Chinese with English abstract) |
[蔡时青, 许大全 (2000). 大豆叶片CO2补偿点和光呼吸的关系. 植物生理学报, 26, 545-550.] | |
4 | Ethier GJ, Livingston NJ (2004). On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar- von Caemmerer-Berry leaf photosynthesis model. Plant, Cell & Environment, 27, 137-153. |
5 | Farquhar GD, Caemmerers S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90. |
6 | Guan XQ, Zhao SJ, Li DQ, Zhao XJ (2003). Photorespiration of C3 plant and its physiological function. Acta Botanica Boreali-Occidentalia Sinica, 23, 1849-1854.(in Chinese with English abstract) |
[管雪强, 赵世杰, 李德全, 赵新节 (2003). C3植物光呼吸及其生理功能. 西北植物学报,23, 1849-1854.] | |
7 |
Harley PC, Sharkey TD (1991). An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 27, 169-178.
DOI URL PMID |
8 | Harley PC, Thomas RB, Reynolds JF, Strain BR (1992). Modelling photosynthesis of cotton grown in elevated CO2 . Plant,Cell & Environment, 15, 271-282. |
9 | Kang HJ, Tao YL, Quan W, Ouyang Z (2013). Response of photorespiration of wheat flag leaf to light intensities and CO2 concentrations. Journal of Triticeae Crops, 33, 1252-1257.(in Chinese with English abstract) |
[康华靖, 陶月良, 权伟, 王伟, 欧阳竹 (2013). 小麦旗叶光呼吸对光强和CO2浓度的响应. 麦类作物学报,33, 1252-1257.] | |
10 |
Long SP, Bernacchi CJ (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.
DOI URL PMID |
11 | Loreto F, Delfine S, Di-marco G (1999). Estimation of photorespiratory carbon dioxide recycling during photosynthesis. Australian Journal of Plant Physiology, 26, 733-736. |
12 | Loreto F, Velikova VB, Marco GDA (2001). Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves. Australian Journal of Plant Physiology, 28, 1103-1108. |
13 | Peng CL, Lin ZF, Sun ZJ, Lin GZ, Chen YZ (1998). Response of rice photosynthesis to CO2 enrichment. Acta Photophysiologica Sinica, 24, 272-278.(in Chinese with English abstract) |
[彭长连, 林植芳, 孙梓健, 林桂珠, 陈贻竹 (1998). 水稻光合作用对加富CO2的响应. 植物生理学报, 24, 272-278.] | |
14 |
von Caemmerer S, Farquhar GD (1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376-387.
URL PMID |
15 | Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2. Chinese Journal of Plant Ecology, 34, 727-740.(in Chinese with English abstract) |
[叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.] | |
16 | Ye ZP, Yu Q (2009). A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations. Chinese Journal of Ecology, 28, 2233-2238.(in Chinese with English abstract) |
[叶子飘, 于强 (2009). 光合作用对胞间和大气CO2响应曲线的比较. 生态学杂志, 28, 2233-2238.] | |
17 |
Yin XY, Sun ZP, Struik PC, Gu JF (2011). Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. Journal of Experimental Botany, 62, 3489-3499.
DOI URL PMID |
[1] | CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China [J]. Chin J Plant Ecol, 2022, 46(7): 753-765. |
[2] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[3] | XIONG Bo-Wen, LI Tong, HUANG Ying, YAN Chun-Hua, QIU Guo-Yu. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model [J]. Chin J Plant Ecol, 2022, 46(4): 383-393. |
[4] | MA Yan-Ze, YANG Xi-Lai, XU Yan-Sen, FENG Zhao-Zhong. Response of key parameters of leaf photosynthetic models to increased ozone concentration in four common trees [J]. Chin J Plant Ecol, 2022, 46(3): 321-329. |
[5] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[6] | Lu-Xin Gao Tian-Yuan Lan Zhi-Xia ZHAO Shuyu Deng Gao-Ming XIONG Zong-Qiang XIE Guo-Zhen SHEN. Spatial turnover and driving factors of shrub communities in northern mid-subtropical China [J]. Chin J Plant Ecol, 2022, 46(11): 1411-1421. |
[7] | LIU Chao, LI Ping, WU Yun-Tao, PAN Sheng-Nan, JIA Zhou, LIU Ling-Li. Estimation of grassland aboveground biomass using digital photograph and canopy structure measurements [J]. Chin J Plant Ecol, 2022, 46(10): 1280-1288. |
[8] | YAN Zheng-Bing, LIU Shu-Wen, WU Jin. Hyperspectral remote sensing of plant functional traits: monitoring techniques and future advances [J]. Chin J Plant Ecol, 2022, 46(10): 1151-1166. |
[9] | WANG Jia-Tong, NIU Chun-Yue, HU Tian-Yu, LI Wen-Kai, LIU Ling-Li, GUO Qing-Hua, SU Yan-Jun. Three-dimensional radiative transfer modeling of forest: recent progress, applications, and future opportunities [J]. Chin J Plant Ecol, 2022, 46(10): 1200-1218. |
[10] | Nan DONG, Ming-Ming TANG, Wen-Qian CUI, Meng-Yao YUE, Jie LIU, Yu-Jie HUANG. Growth of chestnut and tea seedlings under different root partitioning patterns [J]. Chin J Plant Ecol, 2022, 46(1): 62-73. |
[11] | Li-Na WANG, Yong-Qiang YU, Dong-Xu LU, Ya-Kun TANG. Soil pH modulates nitrogen transfer from nitrogen-fixing plants to non-nitrogen-fixing plants [J]. Chin J Plant Ecol, 2022, 46(1): 1-17. |
[12] | ZHENG Jing-Ming, LIU Hong-Yu. Using Strauss-Hardcore model to detect vessel spatial distribution in angiosperms with various vessel configurations [J]. Chin J Plant Ecol, 2021, 45(9): 1024-1032. |
[13] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[14] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[15] | DING Jian-Xi, ZHOU Lei, WANG Yong-Lin, ZHUANG Jie, CHEN Ji-Jing, ZHOU Wen, ZHAO Ning, SONG Jun, CHI Yong-Gang. Application prospects for combining active and passive observations of chlorophyll fluorescence [J]. Chin J Plant Ecol, 2021, 45(2): 105-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn