Chin J Plant Ecol ›› 2005, Vol. 29 ›› Issue (6): 878-883.DOI: 10.17521/cjpe.2005.0116
• Research Articles • Previous Articles Next Articles
WEI Xiao-Ping1, ZHAO Chang-Ming1, WANG Gen-Xuan2,1,*(), CHEN Bao-Ming1, CHENG Dong-Liang1
Received:
2005-02-02
Accepted:
2005-05-27
Online:
2005-02-02
Published:
2005-09-30
Contact:
WANG Gen-Xuan
Supported by:
WEI Xiao-Ping, ZHAO Chang-Ming, WANG Gen-Xuan, CHEN Bao-Ming, CHENG Dong-Liang. ESTIMATION OF ABOVE- AND BELOW-GROUND BIOMASS OF DOMINANT DESERT PLANT SPECIES IN AN OASIS-DESERT ECOTONE OF MINQIN, CHINA[J]. Chin J Plant Ecol, 2005, 29(6): 878-883.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2005.0116
Plant species | Species number per sample (Mean±SD) | Frequency (%) | Coverage (%) | Importance value | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agriophyllum squarrosum | 7 | 30 | 0 | 70 | ||||||||||||||||||
Nitraria tangutorum | 1 | 7 | 9 | 69 | ||||||||||||||||||
Calligonum mongolicum | 5 | 26 | 2 | 66 | ||||||||||||||||||
Haloxylon ammodendron | 1 | 7 | 2 | 29 | ||||||||||||||||||
Halogeton arachnoideus | 2 | 10 | 0 | 23 | ||||||||||||||||||
Phragmites communis | 1 | 5 | 0 | 10 | ||||||||||||||||||
Sophora alopecuroides | 0 | 3 | 0 | 6 | ||||||||||||||||||
Limonium aureum | 8 | 2 | 0 | 4 | ||||||||||||||||||
Artemisia arenaria | 0 | 2 | 0 | 4 | ||||||||||||||||||
Thermopsis schischkinii | 0 | 2 | 0 | 4 | ||||||||||||||||||
Elaeagnus angustifolia | 0 | 0 | 0 | 3 | ||||||||||||||||||
Suaeda glauca | 0 | 1 | 0 | 2 | ||||||||||||||||||
Hedysarum scoparium | 0 | 0 | 0 | 1 | ||||||||||||||||||
Bassia dasyphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Caragana microphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Cirsium setosum | 0.05±0.27 | 0.24 | 0.001 | 0.466 |
Table 1 Analysis of dominant species in study area
Plant species | Species number per sample (Mean±SD) | Frequency (%) | Coverage (%) | Importance value | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agriophyllum squarrosum | 7 | 30 | 0 | 70 | ||||||||||||||||||
Nitraria tangutorum | 1 | 7 | 9 | 69 | ||||||||||||||||||
Calligonum mongolicum | 5 | 26 | 2 | 66 | ||||||||||||||||||
Haloxylon ammodendron | 1 | 7 | 2 | 29 | ||||||||||||||||||
Halogeton arachnoideus | 2 | 10 | 0 | 23 | ||||||||||||||||||
Phragmites communis | 1 | 5 | 0 | 10 | ||||||||||||||||||
Sophora alopecuroides | 0 | 3 | 0 | 6 | ||||||||||||||||||
Limonium aureum | 8 | 2 | 0 | 4 | ||||||||||||||||||
Artemisia arenaria | 0 | 2 | 0 | 4 | ||||||||||||||||||
Thermopsis schischkinii | 0 | 2 | 0 | 4 | ||||||||||||||||||
Elaeagnus angustifolia | 0 | 0 | 0 | 3 | ||||||||||||||||||
Suaeda glauca | 0 | 1 | 0 | 2 | ||||||||||||||||||
Hedysarum scoparium | 0 | 0 | 0 | 1 | ||||||||||||||||||
Bassia dasyphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Caragana microphylla | 0 | 0 | 0 | 0 | ||||||||||||||||||
Cirsium setosum | 0.05±0.27 | 0.24 | 0.001 | 0.466 |
Species | Weight (g·plant-1) | Height of sand mounds (cm·plant-1) | Basal diameter (cm·plant-1) | Total height (cm·plant-1) | Canopy cover (m2·plant-1) | |
---|---|---|---|---|---|---|
Above-ground | Below-ground | |||||
Nitraria tangutorum Calligonum mongolicum Haloxylon ammodendron Agriophyllum squarrosum Halogeton arachnoideus | 288.91±320.66 34.69±17.37 1 876.36±836.31 4.69±2.29 6.24±4.26 | 721.55±779.67 32.51±17.08 - 0.59±0.35 0.70±0.49 | 27.72±21.29 - - - - | - 0.99±0.47 2.93±1.04 0.32±0.08 0.35±0.17 | 28.32±6.75 45.10±16.41 221.59±75.26 18.78±6.81 11.72±3.75 | 3.71±4.69 0.24±0.13 0.35±0.21 0.11±0.06 0.09±0.06 |
Table 2 Plant species and average morphological characteristics of dominant species
Species | Weight (g·plant-1) | Height of sand mounds (cm·plant-1) | Basal diameter (cm·plant-1) | Total height (cm·plant-1) | Canopy cover (m2·plant-1) | |
---|---|---|---|---|---|---|
Above-ground | Below-ground | |||||
Nitraria tangutorum Calligonum mongolicum Haloxylon ammodendron Agriophyllum squarrosum Halogeton arachnoideus | 288.91±320.66 34.69±17.37 1 876.36±836.31 4.69±2.29 6.24±4.26 | 721.55±779.67 32.51±17.08 - 0.59±0.35 0.70±0.49 | 27.72±21.29 - - - - | - 0.99±0.47 2.93±1.04 0.32±0.08 0.35±0.17 | 28.32±6.75 45.10±16.41 221.59±75.26 18.78±6.81 11.72±3.75 | 3.71±4.69 0.24±0.13 0.35±0.21 0.11±0.06 0.09±0.06 |
Species biomass | Correlation coefficients | |||
---|---|---|---|---|
Sand mounds at height (cm) | Basal diameter (cm) | Total height (cm) | Canopy cover (cm2) | |
Nitraria tangutorum Above-ground dry biomass, ADB (g) Below-ground fresh biomass, BFB (g) Total fresh biomass, TFB (g) Total dry biomass, TDB (g) | 0.711a 0.810a 0.780a 0.786a | - - - - | -0.002 -0.099 -0.065 -0.071 | 0.868a 0.918a 0.907a 0.909a |
Calligonuum mongolicum Above-ground dry biomass(g) Below-ground fresh biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - - | 0.492c 0.488c 0.437c 0.507c | 0.033 0.131 0.078 0.051 | 0.949a 0.910a 0.967a 0.922a |
Haloxylon ammodendron | ||||
Above-ground dry biomass(g) | - | 0.790a | 0.405 | 0.878a |
Agriophyllum squarrosum Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.851a 0.849a 0.853a | 0.377c 0.291 0.368c | 0.704a 0.639a 0.694a |
Halogeton arachnoideus Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.791a 0.807b 0.809a | 0.336c 0.339c 0.315 | 0.883a 0.785a 0.888a |
Table 3 Correlation coefficients between basal diameter, total height, canopy cover and height of sand mounds with Nitraria tangutorum and biomass of species
Species biomass | Correlation coefficients | |||
---|---|---|---|---|
Sand mounds at height (cm) | Basal diameter (cm) | Total height (cm) | Canopy cover (cm2) | |
Nitraria tangutorum Above-ground dry biomass, ADB (g) Below-ground fresh biomass, BFB (g) Total fresh biomass, TFB (g) Total dry biomass, TDB (g) | 0.711a 0.810a 0.780a 0.786a | - - - - | -0.002 -0.099 -0.065 -0.071 | 0.868a 0.918a 0.907a 0.909a |
Calligonuum mongolicum Above-ground dry biomass(g) Below-ground fresh biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - - | 0.492c 0.488c 0.437c 0.507c | 0.033 0.131 0.078 0.051 | 0.949a 0.910a 0.967a 0.922a |
Haloxylon ammodendron | ||||
Above-ground dry biomass(g) | - | 0.790a | 0.405 | 0.878a |
Agriophyllum squarrosum Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.851a 0.849a 0.853a | 0.377c 0.291 0.368c | 0.704a 0.639a 0.694a |
Halogeton arachnoideus Above-ground dry biomass(g) Total fresh biomass(g) Total dry biomass(g) | - - - | 0.791a 0.807b 0.809a | 0.336c 0.339c 0.315 | 0.883a 0.785a 0.888a |
Species | Equations | Data statistics | |||||
---|---|---|---|---|---|---|---|
Estimation | Prediction | ||||||
R | N | F | P | R | P | ||
Nitraria tangutorum ADB BFB TFB TDB | Y1=68.878+0.005 932 X2 Y2=328.636+0.033 781X2 Y3=546.033+0.053 14 X2 Y4=224.909+0.021 18 X2 | 0.868 0.918 0.907 0.909 | 22 22 22 22 | 61.029 107.271 92.606 95.382 | 0.000 0.000 0.000 0.000 | 0.923 0.952 0.983 0.978 | 0.000 0.000 0.000 0.000 |
Calligonum mongolicum ADB BFB TFB TDB | Y1=-0.371+6.946X1+0.011 95X2 Y2=-11.355+14.768X1+0.022 84X2 Y3=-14.218+19.116X1+0.053 91X2 Y4=-0.865+15.524X1+0.022 34X2 | 0.966 0.929 0.974 0.944 | 21 21 21 21 | 125.341 56.956 164.913 73.749 | 0.000 0.000 0.000 0.000 | 0.993 0.985 0.976 0.994 | 0.000 0.000 0.000 0.000 |
Haloxylon ammodendron | |||||||
ADB | Y=501.709+284.065X1+0.24X2 | 0.903 | 22 | 41.885 | 0.000 | 0.917 | 0.000 |
Agriophyllum squarrosum ADB TFB TDB | Y1= -3.348+20.230X1+0.001 453X2 Y2= -8.422+69.941X1+0.003 591X2 Y3= -3.870+23.298X1+0.001 571X2 | 0.906 0.881 0.904 | 33 33 33 | 69.004 52.199 67.045 | 0.000 0.000 0.000 | 0.954 0.947 0.968 | 0.000 0.000 0.000 |
Halogeton arachnoideus ADB TFB TDB | Y1= -0.485+3.455X1+0.006 1X2 Y2= -14.031+118.501X1+0.025 6X2 Y3= -0.653+5.179X1+0.006 36X2 | 0.885 0.827 0.893 | 35 35 35 | 57.983 34.693 63.227 | 0.000 0.000 0.000 | 0.936 0.949 0.953 | 0.000 0.000 0.000 |
Table 4 Regression equations of biomass and results of analysis
Species | Equations | Data statistics | |||||
---|---|---|---|---|---|---|---|
Estimation | Prediction | ||||||
R | N | F | P | R | P | ||
Nitraria tangutorum ADB BFB TFB TDB | Y1=68.878+0.005 932 X2 Y2=328.636+0.033 781X2 Y3=546.033+0.053 14 X2 Y4=224.909+0.021 18 X2 | 0.868 0.918 0.907 0.909 | 22 22 22 22 | 61.029 107.271 92.606 95.382 | 0.000 0.000 0.000 0.000 | 0.923 0.952 0.983 0.978 | 0.000 0.000 0.000 0.000 |
Calligonum mongolicum ADB BFB TFB TDB | Y1=-0.371+6.946X1+0.011 95X2 Y2=-11.355+14.768X1+0.022 84X2 Y3=-14.218+19.116X1+0.053 91X2 Y4=-0.865+15.524X1+0.022 34X2 | 0.966 0.929 0.974 0.944 | 21 21 21 21 | 125.341 56.956 164.913 73.749 | 0.000 0.000 0.000 0.000 | 0.993 0.985 0.976 0.994 | 0.000 0.000 0.000 0.000 |
Haloxylon ammodendron | |||||||
ADB | Y=501.709+284.065X1+0.24X2 | 0.903 | 22 | 41.885 | 0.000 | 0.917 | 0.000 |
Agriophyllum squarrosum ADB TFB TDB | Y1= -3.348+20.230X1+0.001 453X2 Y2= -8.422+69.941X1+0.003 591X2 Y3= -3.870+23.298X1+0.001 571X2 | 0.906 0.881 0.904 | 33 33 33 | 69.004 52.199 67.045 | 0.000 0.000 0.000 | 0.954 0.947 0.968 | 0.000 0.000 0.000 |
Halogeton arachnoideus ADB TFB TDB | Y1= -0.485+3.455X1+0.006 1X2 Y2= -14.031+118.501X1+0.025 6X2 Y3= -0.653+5.179X1+0.006 36X2 | 0.885 0.827 0.893 | 35 35 35 | 57.983 34.693 63.227 | 0.000 0.000 0.000 | 0.936 0.949 0.953 | 0.000 0.000 0.000 |
[1] | Assaeed AM (1997). Estimation of biomass and utilization of three perennial range grasses in Saudi Arabia. Journal of Arid Environments, 36,103-111. |
[2] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431,181-184.
URL PMID |
[3] | Clutter JL, Forston JC, Pienaar LV, Brister GH, Bailey RL (1983). Timber Management: a Quantitative Approach. Wiley Press, New York, 333. |
[4] | Guevara JC, Gonnet JM, Estevez OR (2002). Biomass estimation for native perennial grasses in the plain of Mendoza, Argentina. Journal of Arid Environments, 50,613-619. |
[5] | Hatton TJ, West NE, Johnson PS (1986). Relationships of the error associated with ocular estimation and actual total cover. Journal of Range Management, 39,91-92. |
[6] | Bi H, Turner J, Lambert MJ (2004). Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees, 18,467-479. |
[7] |
Jackson RB, Canadell J, Ehleringer JR (1996). A global analysis of root distribution for terrestrial biomes. Oecologia, 108,389-411.
URL PMID |
[8] | Jia BQ (贾宝全), Cai TJ (蔡体久), Gao ZH (高志海), Ding F (丁峰), Zhang GZ (张国忠) (2002). Biomass forcast equations of Nitraria tangutorum shrub in sand dune. Journal of Arid Land Resources and Environment (干旱区资源与环境), 16 (1),96-99. (in Chinese with English abstract) |
[9] | Ma XW, Li BG, Wu CR, Peng HJ, Guo YZ (2003). Predicting of temporal-spatial change of groundwater table resulted from current land-use in Minqin oasis. Advance Water Science, 14,85-90. |
[10] | Návar J, Méndez E, Nájera A, Graciano J, Dale V, Parresol B (2004). Biomass equations for shrub species of Tamaulipan thornscrub of North-eastern Mexico. Journal of Arid Environments, 59,657-674. |
[11] | Návar J, Nájera J, Jurado E (2001). Preliminary estimates of biomass growth in the Tamaulipan thornscrub in North-eastern Mexico. Journal of Arid Environments, 47,281-290. |
[12] | Návar J, Nájera J, Jurado E (2002). Biomass estimation equations in the Tamaulipan thornscrub of north-eastern Mexico. Journal of Arid Environments, 52,167-179. |
[13] | Padrón E, Navarro RM (2004). Estimation of above-ground biomass in naturally occurring populations of Prosopis pallida. Journal of Arid Environments, 56,283-292. |
[14] | Parresol B (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45,573-593. |
[15] | Riegelhaupt E, da Silva IB, Campello FB, Pareyn F (1990). Volume, weight and product tables for Prosopis juliflora (Sw) DC at Rio Grande do Norte.In: Habit MA, Saavedra JC eds. The Current State of Knowledge on Prosopis juliflore. FAO, Rome, Italy,69-91. |
[16] |
Schimel D, Mellillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000). Contribution of increasing CO 2 and climate to carbon storage by ecosystems in the United States. Science, 287,2004-2006.
URL PMID |
[17] | Snee RD (1977). Validation of regression equations: methods and examples. Technometrics, 19,415-428. |
[18] | von Hardenberg J, Meron E, Shachak M, Zarmi Y (2001). Diversity of vegetation patterns and desertification. Physical Review Letters, 87,198101-4. |
[19] | Wang B (王兵), Cui XH (崔向慧) (2004). Researches on laws of water balance at ecotone between oasis and desert in Minqin. Acta Ecology Sinica (生态学报), 24,235-240. (in Chinese with English abstract) |
[20] | Wang QS (王庆琐), Li B (李博) (1994). Preliminary study on biomass of Artemisia ordosica community in Ordos plateau sandland of China. Acta Phytoecologica Sinica (植物生态学报), 18,347-353. (in Chinese with English abstract) |
[21] | Zhao CY (赵成义), Song YD (宋郁东), Wang YC (王玉潮), Jiang PA (蒋平安) (2004). Estimation of aboveground biomass of desert plants. Chinese Journal of Applied Ecology (应用生态学报), 15,49-52. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn