Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (3): 386-393.DOI: 10.17521/cjpe.2007.0047
• Articles • Previous Articles Next Articles
ZHOU Yu-Mei1(), HAN Shi-Jie1,*(
), ZHENG Jun-Qiang1, XIN Li-Hua2, ZHANG Hai-Sen1
Received:
2006-06-19
Accepted:
2006-11-14
Online:
2007-06-19
Published:
2007-05-30
Contact:
HAN Shi-Jie
ZHOU Yu-Mei, HAN Shi-Jie, ZHENG Jun-Qiang, XIN Li-Hua, ZHANG Hai-Sen. EFFECTS OF ELEVATED CO2 CONCENTRATIONS ON SOIL MICROBIAL RESPIRATION AND ROOT/RHIZOSPHERE RESPIRATION IN FOREST SOIL[J]. Chin J Plant Ecol, 2007, 31(3): 386-393.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0047
物种 Species | 土壤特征 Soil characteristics | CO2浓度 CO2 concentration (μmol·mol-1) | 处理时间 Time of treatment | 根(际)呼吸 Root/rhizosphere respiration | 微生物呼吸 Microbial respiration | 实验方法 Experimental method | 实验设施 Experimental facilities | 文献来源 Reference |
---|---|---|---|---|---|---|---|---|
白蜡树 Fraxinus excelsior | 灰壤 Podsol | 700 | 20个月 20 months | 降低 Decrease | 培养法 Incubation | 开顶箱 OTC | et al., 1998 | |
无梗花栎 Quercus petraea | 灰壤 Podsol | 700 | 20个月 20 months | 降低 Decrease | 培养法 Incubation | 开顶箱 OTC | et al., 1998 | |
欧洲赤松 Pinus sylvestris | 灰壤 Podsol | 700 | 20个月 20 months | 降低 Decrease | 培养法 Incubation | 开顶箱 OTC | et al., 1998 | |
火炬松 P. taeda | 淋溶土 Alfisol | +200 | 4年 Four years | 降低 Decrease | 离体测定 Detached measurement | 自由CO2增加 系统FACE | et al., 2003 | |
火炬松 P. taeda | 淋溶土 Alfisol | +200 | 1年 One year | 增加 Increase | 碳同位素示 踪法Carbon isotope tracer | 自由CO2增加 系统FACE | et al., 1999 | |
火炬松 P. taeda | 灭菌的河沙 Sterilized river sand | 700 | 5个月 Five months | 增加 Increase | 培养法 Incubation | 人工气候室内 的温室Greenhouse in phytotron | et al., 1997 | |
美国黄松 P. ponderosa | 灭菌的河沙 Sterilized river sand | 700 | 5个月 Five months | 增加 Increase | 降低 Decrease | 培养法 Incubation | 人工气候室内 温室Greenhouse in phytotron | et al., 1997 |
欧洲赤松 P. sylvestris | 沙质森林土 Sandy forest soil | 700 | 6个月 Six months | 增加 Increase | 离体测定 Detached measurement | 开顶箱 OTC | et al., 1998 | |
欧洲赤松 P. sylvestris | 沙质森林土 Sandy forest soil | 700 | 6个月 Six months | 增加 Increase | 切断根法 Excised roots | 开顶箱 OTC | et al., 1998 | |
白杨Populus tremuloides 纸桦 Betula papyrifera 糖槭Acer saccharum | 沙壤土 Sandy loam | 560 | 3年 Three years | 增加 Increase | 碳同位素法 Carbon isotope | 自由CO2增加 系统FACE | et al., 2002 | |
7种热带 C3植物 Seven tropical C3 plants | 森林土 Forest soil | 610 | 530天 530 days | 增加 Increase | 底物诱导法 Substrate induction | 温室 Greenhouse | et al., 1999 | |
北美枫香 Liquidambar styraciflua | 薄层湿老 成土 Aquic hapludult | +200 | 2年 Two years | 增加 Increase | 离体测定 Detached measurement | 自由CO2增加 系统FACE | et al., 2003 | |
北美黄杉 Pseudotsuga menziesii | 森林土 Forest soil | +200 | 2年 Two years | 增加 Increase | 降低 Decrease | 双标稳定性 同位素法 Dual stable isotope | 控制环境箱 Controlled-environment chamber | et al., 2001 |
糖槭 Acer saccharum | 粉砂壤土 Silt loam | +300 | 3年 Three years | 增加 Increase | 无明显变化 No significant change | 根排除法 Root-exclusion | 开顶箱 OTC | Norby, 1999 |
美国红枫 A. rubrum | 粉砂壤土 Silt loam | +300 | 3年 Three years | 增加 Increase | 无明显变化 No significant change | 根排除法 Root-exclusion | 开顶箱 OTC | Norby, 1999 |
山胡椒 Lindera benzoin | 砂壤土 Sandy loam | 700 | 6个生长季 Six growing seasons | 增加/不变 Increase/No change | 增加 Increase | 离体测定 Detached measurement | 封闭式八角形箱 Enclosed octagonal chamber | et al., 2000 |
Table 1 Soil microbial respiration and root/rhizosphere respiration under elevated CO2 concentrations
物种 Species | 土壤特征 Soil characteristics | CO2浓度 CO2 concentration (μmol·mol-1) | 处理时间 Time of treatment | 根(际)呼吸 Root/rhizosphere respiration | 微生物呼吸 Microbial respiration | 实验方法 Experimental method | 实验设施 Experimental facilities | 文献来源 Reference |
---|---|---|---|---|---|---|---|---|
白蜡树 Fraxinus excelsior | 灰壤 Podsol | 700 | 20个月 20 months | 降低 Decrease | 培养法 Incubation | 开顶箱 OTC | et al., 1998 | |
无梗花栎 Quercus petraea | 灰壤 Podsol | 700 | 20个月 20 months | 降低 Decrease | 培养法 Incubation | 开顶箱 OTC | et al., 1998 | |
欧洲赤松 Pinus sylvestris | 灰壤 Podsol | 700 | 20个月 20 months | 降低 Decrease | 培养法 Incubation | 开顶箱 OTC | et al., 1998 | |
火炬松 P. taeda | 淋溶土 Alfisol | +200 | 4年 Four years | 降低 Decrease | 离体测定 Detached measurement | 自由CO2增加 系统FACE | et al., 2003 | |
火炬松 P. taeda | 淋溶土 Alfisol | +200 | 1年 One year | 增加 Increase | 碳同位素示 踪法Carbon isotope tracer | 自由CO2增加 系统FACE | et al., 1999 | |
火炬松 P. taeda | 灭菌的河沙 Sterilized river sand | 700 | 5个月 Five months | 增加 Increase | 培养法 Incubation | 人工气候室内 的温室Greenhouse in phytotron | et al., 1997 | |
美国黄松 P. ponderosa | 灭菌的河沙 Sterilized river sand | 700 | 5个月 Five months | 增加 Increase | 降低 Decrease | 培养法 Incubation | 人工气候室内 温室Greenhouse in phytotron | et al., 1997 |
欧洲赤松 P. sylvestris | 沙质森林土 Sandy forest soil | 700 | 6个月 Six months | 增加 Increase | 离体测定 Detached measurement | 开顶箱 OTC | et al., 1998 | |
欧洲赤松 P. sylvestris | 沙质森林土 Sandy forest soil | 700 | 6个月 Six months | 增加 Increase | 切断根法 Excised roots | 开顶箱 OTC | et al., 1998 | |
白杨Populus tremuloides 纸桦 Betula papyrifera 糖槭Acer saccharum | 沙壤土 Sandy loam | 560 | 3年 Three years | 增加 Increase | 碳同位素法 Carbon isotope | 自由CO2增加 系统FACE | et al., 2002 | |
7种热带 C3植物 Seven tropical C3 plants | 森林土 Forest soil | 610 | 530天 530 days | 增加 Increase | 底物诱导法 Substrate induction | 温室 Greenhouse | et al., 1999 | |
北美枫香 Liquidambar styraciflua | 薄层湿老 成土 Aquic hapludult | +200 | 2年 Two years | 增加 Increase | 离体测定 Detached measurement | 自由CO2增加 系统FACE | et al., 2003 | |
北美黄杉 Pseudotsuga menziesii | 森林土 Forest soil | +200 | 2年 Two years | 增加 Increase | 降低 Decrease | 双标稳定性 同位素法 Dual stable isotope | 控制环境箱 Controlled-environment chamber | et al., 2001 |
糖槭 Acer saccharum | 粉砂壤土 Silt loam | +300 | 3年 Three years | 增加 Increase | 无明显变化 No significant change | 根排除法 Root-exclusion | 开顶箱 OTC | Norby, 1999 |
美国红枫 A. rubrum | 粉砂壤土 Silt loam | +300 | 3年 Three years | 增加 Increase | 无明显变化 No significant change | 根排除法 Root-exclusion | 开顶箱 OTC | Norby, 1999 |
山胡椒 Lindera benzoin | 砂壤土 Sandy loam | 700 | 6个生长季 Six growing seasons | 增加/不变 Increase/No change | 增加 Increase | 离体测定 Detached measurement | 封闭式八角形箱 Enclosed octagonal chamber | et al., 2000 |
[1] | Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nøsberger J, Long SP (2003). Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant, Cell and Environment, 26, 705-714. |
[2] | Amthor JS (2000). The McCree-de Wit-Penning de Vries-Thomley respiration paradigms: 30 years later. Annals of Botany, 86, 1-20. |
[3] | Andrews JA, Harrison KG, Matamala R, Schlesinger WH (1999). Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon dioxide Enrichment (FACE). Soil Science Society of America Journal, 63, 1429-1435. |
[4] | Ball AS, Milne E, Drake BG (2000). Elevated atmospheric-carbon dioxide concentration increases soil respiration in a mid-successional lowland forest. Soil Biology & Biochemistry, 32, 721-723. |
[5] |
Cheng WX (1999). Rhizosphere feedbacks in elevated CO2. Tree Physiology, 19, 313-320.
URL PMID |
[6] | Crookshanks M, Taylor G, Broadmeadow M (1998). Elevated CO2 and tree root growth: contrasting responses in Fraxinus excelsior, Quercus petraea and Pinus sylvestris. New Phytologist, 138, 241-250. |
[7] |
Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[8] | Edwards CA, Reichle DE, Crossley DA Jr 1970. The role of soil invertebrates in turnover of organic matter and nutrients. In: Reichle DE ed. Analysis of Temperate Forest Ecosystems. Springer-Verlag, New York, 12-172. |
[9] | Edwards NT, Norby RJ (1999). Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant and Soil, 206, 85-97. |
[10] | Field CB, Jackson RB, Mooney HA (1995). Stomatal responses to increased CO2: implications from the plant to the global scale. Plant, Cell and Environment, 18, 1214-1225. |
[11] | George K, Norby RJ, Hamilton JG, DeLucia EH (2003). Fine-root respiration in a loblolly pine and sweetgum forest growing in elevated CO2. New Phytologist, 160, 511-522. |
[12] |
Griffin KL, Bashkin MA, Thomas RB, Strain BR (1997). Interactive effects of soil nitrogen and atmospheric carbon dioxide on root/rhizosphere carbon dioxide efflux from loblolly and ponderosa pine seedlings. Plant and Soil, 190, 11-18.
DOI URL |
[13] |
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115-146.
DOI URL |
[14] |
Høgberg P, Nordgren A, Buchman N, Taylor AFS, Ekblad A, Høgberg MH, Nyberg G, Ottosson-Løfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
DOI URL PMID |
[15] |
Insam H, B⁈⁈th E, Berreck M, Frosteg⁈rd A, Gerzabek MH, Kraft A, Schinner F, Schweiger P, Tschuggnall G (1999). Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. Journal of Microbiological Methods, 36, 45-54.
URL PMID |
[16] |
Janssens IA, Crookshanks M, Taylor G, Ceulemans R (1998). Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biology, 4, 871-878.
DOI URL |
[17] |
Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Á, Morgenstern K, Oltchev S, Clement R, Gudmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001). Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7, 269-278.
DOI URL |
[18] |
Jenkinson DS, Adams DE, Wild A (199l). Model estimates of CO2 emission from soil in response to global warming. Nature, 351, 304-306.
DOI URL |
[19] | Jiang LF (姜丽芬), Shi FC (石福臣), Wang HT (王化田), Zu YG (祖元刚), Takayoshi K (2004). Root respiration in Larix gmelinii plantations in Northeast China. Plant Physiology Communications (植物生理学通讯), 40, 27-30. (in Chinese with English abstract) |
[20] |
Jiang LF, Shi FC, Li B, Luo YQ, Chen JQ, Chen JK (2005). Separating rhizosphere respiration from total soil respiration in two larch plantations in northeastern China. Tree Physiology, 25, 1187-1195.
DOI URL PMID |
[21] | Johnson D, Geisinger D, Walker R, Newman J, Vose J, Elliot K, Ball T (1994). Soil pCO2, soil respiration, and root activity in CO2-fumigated and nitrogen-fertilized ponderosa pine. Plant and Soil, 165, 129-138. |
[22] | King JS, Hanson PJ, Bernhardt E, Deangelis P, Norby RJ, Pregitzer KS (2004). A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology, 10, 1027-1042. |
[23] | Leakey AD, Press BM, Scholes CJD, Watling JR (2002). Relative enhancement of photosynthesis and growth at elevated CO2 is greater under sun flecks than uniform irradiance in a tropical rain forest tree seedling. Plant, Cell and Environment, 25, 1701-1714. |
[24] | Li LH (李凌浩), Han XG (韩兴国), Wang QB (王其兵), Chen QS (陈全胜), Zhang Y (张焱), Yang J (杨晶), Bai WM (白文明), Song SH (宋世环), Xing XR (邢雪荣), Zhang SM (张淑敏) (2002). Separating root and soil microbial contributions to total soil respiration in a grazed grassland in the Xilin River Basin. Acta Phytoecologica Sinica (植物生态学报), 26, 29-32. (in Chinese with English abstract) |
[25] | Lin GH, Ehleringer JR, Rygiewicz PT, Johnson MG, Tingey DT (1999). Elevated CO2 and temperature impacts on different component of soil CO2 efflux in Douglas-fir terracosms. Global Change Biology, 5, 157-168. |
[26] | Lin GH, Rygiewicz PT, Ehleringer JR, Johnson MG, Tingey DT (2001). Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms. Plant and Soil, 229, 259-270. |
[27] | Liu Y (刘颖), Han SJ (韩士杰), Hu YL (胡艳玲), Dai GH (戴冠华) (2005). Effects of soil temperature and humidity on soil respiration rate under Pinus sylvestriformis forest. Chinese Journal of Applied Ecology (应用生态学报), 16, 1581-1585. (in Chinese with English abstract) |
[28] | Milchunas DG, Morgan JA, Mosier AR, Lecain DR (2005). Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Global Change Biology, 11, 1837-1855. |
[29] | Niinistø SM, Silvola J, Kellom⁉ki S (2004). Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming. Global Change Biology, 10, 1363-1376. |
[30] |
Owensby CE, Coyne PI, Ham JM, Auen LM, Knapp AK (1993). Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecological Applications, 3, 644-653.
DOI URL PMID |
[31] |
Phillips RL, Zak DR, Holmes WE, White DC (2002). Microbial community composition and function beneath temperate trees exposed to elevated atmospheric CO2 and O3. Oecologia, 131, 236-244.
DOI URL PMID |
[32] | Pregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, Lussenhop J (2000). Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides. Ecological Applications, 10, 18-33. |
[33] | Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-36. |
[34] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. |
[35] | Rice CW, Garcia FO, Hampton CO, Owensby CE (1994). Soil microbial response in tall grass prairie to elevated CO2. Plant and Soil, 165, 67-74. |
[36] | Sadowsky MJ, Schortemeyer M (1997). Soil microbial responses to increased concentrations of atmospheric CO2. Global Change Biology, 3, 217-224. |
[37] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20. |
[38] | Schortemeyer M, Hartwig UA, Hendrey GR, Sadowsky MJ (1996). Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biology & Biochemistry, 28, 1717-1724. |
[39] | Singh JS, Gupta SR (1977). Plant decomposition and soil respiration in terrestrial ecosystems. Botanical Review, 43, 449-528. |
[40] | Susfalk RB, Cheng WX, Johnson DW, Walker RF, Verburg P, Fu S (2002). Lateral diffusion and atmospheric CO2 mixing compromise estimates of rhizosphere respiration in a forest soil. Canadian Journal of Forest Research, 32, 1005-1015. |
[41] | Thomas SM, Cook FJ, Whitehead D, Adams JA (2000). Seasonal soil surface carbon fluxes from the root systems of young Pinus radiata trees growing at ambient and elevated CO2 concentration. Global Change Biology, 6, 393-406. |
[42] | Tingey DT, Phillips DL, Johnson MG (2000). Elevated CO2 and conifer roots: effect on growth and life span and turnover. New Phytologist, 147, 87-103. |
[43] | Tingey DT, Phillips DL, Johnson MG, Johnson DW, Ball JT (1997). Effects of elevated CO2 and N fertilization on fine root dynamics and fungal growth in seedling Pinus ponderosa. Environmental and Experimental Botany, 37, 73-83. |
[44] | Trueman RJ, Gonzalez-Meler MA (2005). Accelerated belowground C cycling in a managed agriforest ecosystem exposed to elevated carbon dioxide concentrations. Global Change Biology, 11, 1258-1271. |
[45] | Trumbore S (2000). Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications, 10, 399-411. |
[46] | Vose JM, Elliott KJ, Johnson DW, Walker RF, Johnson MG, Tingey DT (1995). Effects of elevated CO2 and N fertilization on soil respiration from ponderosa pine (Pinus ponderosa) in open-top chambers. Canadian Journal of Forest Research, 25, 1243-1251. |
[47] | Wiant HV (1967). Has the contribution of litter decay to forest soil respiration been overestimated? Journal of Forest, 65, 408-409. |
[48] | Widén B, Majdi H (2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31, 786-796. |
[49] | Wiliams MA, Rice CW, Owensby CE (2000). Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant and Soil, 227, 127-137. |
[50] | Yang YS (杨玉盛), Dong B (董彬), Xie JS (谢锦升), Chen GS (陈光水), Li L (李灵), Liu DX (刘东霞), Li Z (李震) (2004). A review of tree root respiration: significance and methodologies. Acta Phytoecologica Sinica (植物生态学报), 28, 426-434. (in Chinese with English abstract) |
[51] | Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH (2003). Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments. Ecological Applications, 13, 1508-1514. |
[52] | Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993). Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil, 151, 105-117. |
[53] | Zak DR, Pregitzer KS, King JS, Holmes WE (2000). Elevated atmospheric CO2, fine roots, and the response of soil microorganisms: a review and hypothesis. New Phytologist, 147, 201-222. |
[54] | Zhang XQ (张宪权), Wang WJ (王文杰), Zu YG (祖元刚), Zhang WL (张万里) (2005). The difference between different components of soil respiration in several types of forests in northeasten China. Journal of Northeast Forestry University (东北林业大学学报), 33(2), 46-47. (in Chinese with English abstract) |
[55] | Zhou YM (周玉梅), Han SJ (韩士杰), Xin LH (辛丽花) (2006). Soil respiration of Pinus koraiensis and P. sylvestriformis trees growing at elevated CO2 concentration. Chinese Journal of Applied Ecology (应用生态学报), 17, 1757-1760. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn