Chin J Plant Ecol ›› 2008, Vol. 32 ›› Issue (2): 465-476.DOI: 10.3773/j.issn.1005-264x.2008.02.026
Special Issue: 青藏高原植物生态学:植物-土壤-微生物; 碳储量
• Research Articles • Previous Articles Next Articles
Received:
2006-12-12
Accepted:
2007-07-10
Online:
2008-12-12
Published:
2008-03-30
Contact:
WU Jian-Guo
WU Jian-Guo, AI Li. SOIL MICROBIAL ACTIVITY AND BIOMASS C AND N CONTENT IN THREE TYPICAL ECOSYSTEMS IN QI LIAN MOUNTAINS, CHINA[J]. Chin J Plant Ecol, 2008, 32(2): 465-476.
植被类型 Vegetation type | 土壤类型 Soil type | 土层深度 Soil depth (cm) | pH | CaCO3 (%) | 全磷 Total P (%) | 全钾 Total K (%) | 土壤湿度 Soil water content (%) |
---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadows | 高寒草甸土 Alpine meadow soil | 0~5 | 6.3 | 0.2 | 0.11 | 2.2 | 24 |
5~15 | 6.5 | 0.1 | 0.10 | 2.4 | 26 | ||
15~35 | 6.6 | 0.1 | 0.12 | 2.6 | 28 | ||
山地森林 Dragon spruce forest | 灰色森林土 Mountain gray cinnamon soil | 0~5 | 7.0 | 0.5 | 0.20 | 2.6 | 23 |
5~15 | 7.1 | 0.8 | 0.10 | 3.0 | 24 | ||
15~35 | 7.3 | 0.7 | 0.07 | 2.5 | 23 | ||
干草原 Steppe | 山地栗钙土 Mountain kastanozem | 0~5 | 8.1 | 7.3 | 0.14 | 2.5 | 22 |
5~15 | 8.3 | 8.2 | 0.12 | 2.4 | 23 | ||
15~35 | 8.4 | 8.3 | 0.11 | 2.5 | 21 |
Table 1 Basic characters of soil
植被类型 Vegetation type | 土壤类型 Soil type | 土层深度 Soil depth (cm) | pH | CaCO3 (%) | 全磷 Total P (%) | 全钾 Total K (%) | 土壤湿度 Soil water content (%) |
---|---|---|---|---|---|---|---|
高寒草甸 Alpine meadows | 高寒草甸土 Alpine meadow soil | 0~5 | 6.3 | 0.2 | 0.11 | 2.2 | 24 |
5~15 | 6.5 | 0.1 | 0.10 | 2.4 | 26 | ||
15~35 | 6.6 | 0.1 | 0.12 | 2.6 | 28 | ||
山地森林 Dragon spruce forest | 灰色森林土 Mountain gray cinnamon soil | 0~5 | 7.0 | 0.5 | 0.20 | 2.6 | 23 |
5~15 | 7.1 | 0.8 | 0.10 | 3.0 | 24 | ||
15~35 | 7.3 | 0.7 | 0.07 | 2.5 | 23 | ||
干草原 Steppe | 山地栗钙土 Mountain kastanozem | 0~5 | 8.1 | 7.3 | 0.14 | 2.5 | 22 |
5~15 | 8.3 | 8.2 | 0.12 | 2.4 | 23 | ||
15~35 | 8.4 | 8.3 | 0.11 | 2.5 | 21 |
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 土壤有机碳含量 SOC content (g·kg-1) | 标准差 Standard deviation | 土壤全氮含量 Total soil N content (g·kg-1) | 标准差 Standard deviation | 土壤碳氮比 Soil C∶N | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 27.35a | 5.32 | 2.31a | 0.40 | 11.81a | 0.73 |
山地森林Dragon spruce forest | 101.26b | 5.41 | 4.26b | 0.11 | 23.76b | 1.11 | |
高寒草甸Alpine meadows | 70.44c | 6.23 | 5.07c | 0.35 | 13.92c | 1.26 | |
干草原Steppe | 5~15 | 23.73a | 2.13 | 2.27a | 0.11 | 10.45a | 1.14 |
山地森林Dragon spruce forest | 91.09b | 6.51 | 3.35b | 0.18 | 27.20b | 2.05 | |
高寒草甸Alpine meadows | 55.90c | 5.57 | 4.21c | 0.37 | 13.25c | 0.44 | |
干草原Steppe | 15~35 | 23.51a | 1.51 | 2.41a | 0.21 | 9.79a | 0.77 |
山地森林Dragon spruce forest | 81.48b | 5.40 | 2.67a | 0.33 | 30.78b | 3.84 | |
高寒草甸Alpine meadows | 47.70c | 2.14 | 3.86b | 0.07 | 12.35c | 0.42 |
Table 2 Soil organic carbon (SOC) and total N content under different vegetation types
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 土壤有机碳含量 SOC content (g·kg-1) | 标准差 Standard deviation | 土壤全氮含量 Total soil N content (g·kg-1) | 标准差 Standard deviation | 土壤碳氮比 Soil C∶N | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 27.35a | 5.32 | 2.31a | 0.40 | 11.81a | 0.73 |
山地森林Dragon spruce forest | 101.26b | 5.41 | 4.26b | 0.11 | 23.76b | 1.11 | |
高寒草甸Alpine meadows | 70.44c | 6.23 | 5.07c | 0.35 | 13.92c | 1.26 | |
干草原Steppe | 5~15 | 23.73a | 2.13 | 2.27a | 0.11 | 10.45a | 1.14 |
山地森林Dragon spruce forest | 91.09b | 6.51 | 3.35b | 0.18 | 27.20b | 2.05 | |
高寒草甸Alpine meadows | 55.90c | 5.57 | 4.21c | 0.37 | 13.25c | 0.44 | |
干草原Steppe | 15~35 | 23.51a | 1.51 | 2.41a | 0.21 | 9.79a | 0.77 |
山地森林Dragon spruce forest | 81.48b | 5.40 | 2.67a | 0.33 | 30.78b | 3.84 | |
高寒草甸Alpine meadows | 47.70c | 2.14 | 3.86b | 0.07 | 12.35c | 0.42 |
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 微生量生物量碳含量 SMBC content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量氮含量 SMBN content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量C∶N Ratio of SMBC and N content | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 665.06a | 220.88 | 55.96a | 30.74 | 17.43a | 14.17 |
山地森林Dragon spruce forest | 1206.89b | 306.21 | 118.13b | 13.80 | 10.45a | 3.63 | |
高寒草甸Alpine meadows | 428.15c | 231.21 | 72.00c | 37.68 | 7.09b | 3.49 | |
干草原Steppe | 5~15 | 652.84a | 158.74 | 60.48a | 24.53 | 12.92a | 6.07 |
山地森林Dragon spruce forest | 1073.56b | 165.03 | 64.95b | 15.92 | 17.81a | 7.08 | |
高寒草甸Alpine meadows | 466.92c | 233.77 | 22.31c | 14.00 | 39.19b | 27.84 | |
干草原Steppe | 15~35 | 387.24a | 154.95 | 22.03a | 9.03 | 27.17a | 26.94 |
山地森林Dragon spruce forest | 732.52b | 98.64 | 21.49a | 12.45 | 43.62b | 22.29 | |
高寒草甸Alpine meadows | 191.23c | 109.02 | 19.58a | 9.22 | 12.10c | 9.05 |
Table 3 Soil microbial biomass C and N content under different vegetation types
植被类型 Vegetation type | 土层深度 Soil depth (cm) | 微生量生物量碳含量 SMBC content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量氮含量 SMBN content (mg·kg-1) | 标准差 Standard deviation | 微生物生物量C∶N Ratio of SMBC and N content | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
干草原Steppe | 0~5 | 665.06a | 220.88 | 55.96a | 30.74 | 17.43a | 14.17 |
山地森林Dragon spruce forest | 1206.89b | 306.21 | 118.13b | 13.80 | 10.45a | 3.63 | |
高寒草甸Alpine meadows | 428.15c | 231.21 | 72.00c | 37.68 | 7.09b | 3.49 | |
干草原Steppe | 5~15 | 652.84a | 158.74 | 60.48a | 24.53 | 12.92a | 6.07 |
山地森林Dragon spruce forest | 1073.56b | 165.03 | 64.95b | 15.92 | 17.81a | 7.08 | |
高寒草甸Alpine meadows | 466.92c | 233.77 | 22.31c | 14.00 | 39.19b | 27.84 | |
干草原Steppe | 15~35 | 387.24a | 154.95 | 22.03a | 9.03 | 27.17a | 26.94 |
山地森林Dragon spruce forest | 732.52b | 98.64 | 21.49a | 12.45 | 43.62b | 22.29 | |
高寒草甸Alpine meadows | 191.23c | 109.02 | 19.58a | 9.22 | 12.10c | 9.05 |
植被类型 Vegetation type | 土层深度 Soil depth(cm) | 土壤微生物生物量碳比例 Ratio of SMBC (%) | 标准差 Standard deviation | 土壤微生物生物量氮比例 Ratio of SMBN (%) | 标准差 Standard deviation |
---|---|---|---|---|---|
干草原Steppe | 0~5 | 2.59a | 1.20 | 2.58a | 1.87 |
山地森林Dragon spruce forest | 2.75a | 0.72 | 2.66b | 1.23 | |
高寒草甸Alpine meadows | 1.67b | 0.80 | 0.92c | 0.44 | |
干草原Steppe | 5~15 | 1.20a | 0.33 | 2.78a | 0.40 |
山地森林Dragon spruce forest | 1.19a | 0.26 | 1.96b | 0.62 | |
高寒草甸Alpine meadows | 0.90b | 0.16 | 0.78c | 0.43 | |
干草原Steppe | 15~35 | 0.62a | 0.37 | 1.47a | 0.91 |
山地森林Dragon spruce forest | 0.86b | 0.50 | 0.54b | 0.38 | |
高寒草甸Alpine meadows | 0.41c | 0.27 | 0.51c | 0.27 |
Table 4 Ratio of soil microbial biomass C and N
植被类型 Vegetation type | 土层深度 Soil depth(cm) | 土壤微生物生物量碳比例 Ratio of SMBC (%) | 标准差 Standard deviation | 土壤微生物生物量氮比例 Ratio of SMBN (%) | 标准差 Standard deviation |
---|---|---|---|---|---|
干草原Steppe | 0~5 | 2.59a | 1.20 | 2.58a | 1.87 |
山地森林Dragon spruce forest | 2.75a | 0.72 | 2.66b | 1.23 | |
高寒草甸Alpine meadows | 1.67b | 0.80 | 0.92c | 0.44 | |
干草原Steppe | 5~15 | 1.20a | 0.33 | 2.78a | 0.40 |
山地森林Dragon spruce forest | 1.19a | 0.26 | 1.96b | 0.62 | |
高寒草甸Alpine meadows | 0.90b | 0.16 | 0.78c | 0.43 | |
干草原Steppe | 15~35 | 0.62a | 0.37 | 1.47a | 0.91 |
山地森林Dragon spruce forest | 0.86b | 0.50 | 0.54b | 0.38 | |
高寒草甸Alpine meadows | 0.41c | 0.27 | 0.51c | 0.27 |
Fig.2 Relationship between the content of soil organic carbon (SOC) and SMB C or N (a),the content of soil N and SMB C or N (b), the content of SMB C and N (c), the ratio of SMB C and N (d), soil C∶N and SMB C∶N (e)
植被类型 Vegetation type | 土层深度 Soil depth (0~5 cm) | 土层深度 Soil depth (5~15 cm) | ||||||
---|---|---|---|---|---|---|---|---|
土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | |||
干草原Dry grassland | 7.50aA | 2.33 | 10.87bA | 2.07 | 7.07cA | 1.95 | ||
山地森林Dragon forest | 18.25aB | 0.60 | 13.90bB | 1.35 | 9.04cB | 5.43 | ||
高寒草甸Alpine meadows | 17.18aB | 2.66 | 13.73bB | 2.79 | 6.90cB | 1.41 |
Table 5 Soil microbial activity under different vegetation types
植被类型 Vegetation type | 土层深度 Soil depth (0~5 cm) | 土层深度 Soil depth (5~15 cm) | ||||||
---|---|---|---|---|---|---|---|---|
土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | 土壤微生物活性 Soil microbial activity (10-6 g CO2-C·g-1 soil·h-1) | 标准差 Standard deviation (10-6) | |||
干草原Dry grassland | 7.50aA | 2.33 | 10.87bA | 2.07 | 7.07cA | 1.95 | ||
山地森林Dragon forest | 18.25aB | 0.60 | 13.90bB | 1.35 | 9.04cB | 5.43 | ||
高寒草甸Alpine meadows | 17.18aB | 2.66 | 13.73bB | 2.79 | 6.90cB | 1.41 |
Fig.3 Relationship between the content of soil organic carbon (SOC) and soil microbe activity (a), the content of soil N and soil microbe activity (b), the content of SMB C and soil microbe activity (c), the content of SMB N and soil microbe activity (d)
[1] | Allen AS, Schlesinger WH (2004). Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology and Biochemistry, 36, 581-589. |
[2] | Alvarez CR, Alvarez R, Grigera MS, Lavado RS (1998). Associations between organic matter fractions and the active soil microbial biomass. Soil Biology and Biochemistry, 30, 767-773. |
[3] | Anderson JPE, Domash KH (1980). Quantities of plant nutrients in the microbial biomass of selected soils. Soil Science, 130, 211-216. |
[4] | Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003). Microbial biomass in soils under different tillage and crop rotation systems. Biology and Fertility of Soils, 38, 15-20. |
[5] | Bao SD (鲍士旦) (2000). The Analysis of Agriculture Soil Chemistry (土壤农化分析). China Agriculture Press, Beijing. 14-61. (in Chinese) |
[6] | Bardgett RD, Shine A (1999). Linkages between plant litter diversity, soil microbial biomass and ecosystem function in the temperature grasslands. Soil Biology and Biochemistry, 31, 317-321. |
[7] | Bauhus J, Pare D, Cote L (1998). Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biology and Biochemistry, 30, 1077-1089. |
[8] | Beck T, Joergenson RG, Kandeler E, Makeschin F, Nuss E, Oberholzer HR, Scheu S (1997). An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biology and Biochemistry, 29, 1023-1032. |
[9] | Bonito GM, Coleman DC, Haines BL, Cabrera ML (2003). Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient. Forest Ecology and Management, 176, 563-574. |
[10] | Chen CR, Xu ZH, Hughes JM (2002). Effects of nitrogen fertilization on soil nitrogen pools and microbial properties in a hoop pine (Araucaria cunninghamii) plantation in Southeast Queensland, Australia. Biology and Fertility of Soils, 36, 276-283. |
[11] | Chen GC (陈国潮), He ZL (何振立), Huang CY (黄昌勇)(2002). Turnover of microbial biomass C in red soils and its significance in soil fertility evaluation. Acta Pedologica Sinica (土壤学报), 39, 152-160. (in Chinese with English abstract) |
[12] | Fauci MF, Dick RP (1994). Soil microbial dynamics: short and long term effects of inorganic and organic nitrogen. Soil Science Society of American Journal, 58, 801-806. |
[13] | Iyyemperumala K, Israela DW, Shi W (2007). Soil microbial biomass, activity and potential nitrogen mineralization in a pasture: impact of stock camping activity. Soil Biology and Biochemistry, 39, 149-157. |
[14] | Jackson RB, Schenk HJ, JobbáGy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000). Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 10, 470-483. |
[15] | Jenkinson DS, Brookes PC, Powlson DS (2004). Measuring soil microbial biomass. Soil Biology and Biochemistry, 36, 5-7. |
[16] | Jiang PK (姜培坤), Zhou GM (周国模) (2003). Change in soil microbial biomass carbon and nitrogen under eroded red soil by vegetation recovery. Journal of Soil and Water Conservation (水土保持学报), 17, 112-127. (in Chinese with English abstract) |
[17] | Jobbágy EG, Jackson RB (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10, 423-436. |
[18] | Li F (李阜), Yu ZN (喻子牛), He SJ (何绍江) (1996). The Methods of Agriculture Microbiology (农业微生物学实验技术). China Agriculture Press, Beijing. 82-83. (in Chinese) |
[19] | Li TJ (李天杰), Zheng YS (郑应顺), Wang Y (王云)(1997). Soil Geography (土壤地理学). Higher Education Press, Beijing. (in Chinese) |
[20] | Li XZ (李香真), Qu QH (曲秋皓)(2002). Soil microbial biomass carbon and nitrogen in Mongolian grassland. Acta Pedologica Sinica (土壤学报), 39, 97-104. (in Chinese with English abstract) |
[21] | Lovell RD, Jarvis SC (1998). Soil microbial biomass and activity in soil from different grassland management treatments stored under controlled conditions. Soil Biology and Biochemistry, 30, 2077-2085. |
[22] | Luizło RCC, Luizło FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a Amazonian forest. Global Change Biology, 10, 592-600. |
[23] | Menyailo OV, Hungate BA, Zech W (2002). The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment. Plant and Soil, 242, 183-196. |
[24] | Merilä P, Strummer R, Fritze H (2002). Soil microbial activity and community structure along a primary succession transect on the land-uplift coast in western Finland. Soil Biology and Biochemistry, 34, 1647-1654. |
[25] | Post WM, Emanuel WR, Zinke PJ, Stangenberger G (1982). Soil carbon pools and world life zones. Nature, 298, 156-159. |
[26] | Prescott CE, Chappell NH, Vesterdal L (2000). Nitrogen turnover in forest floors of coastal Douglas-fir at sites differing in soil nitrogen capital. Ecology, 81, 1878-1886. |
[27] | Scholes MC, Powlson D, Tian GL (1997). Input control of organic matter dynamics. Geoderma, 79, 25-47. |
[28] | Smith JL, Halvorson JJ, Bolton H Jr (2002). Soil properties and microbial activity across a 500 m elevation gradient in a semi-arid environment. Soil Biology and Biochemistry, 34, 1749-1757. |
[29] | Sparling GP (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of change in soil organic matter. Australian Journal of Soil Research, 30, 195-207. |
[30] | Stenberg B, Johansson M, Pell M, Sjodahl-Svensson K, Stenstrom J, Torstensson L (1998). Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Boilogy and Biochemistry, 30, 393-402. |
[31] | Sun HL (孙鸿烈), Zheng D (郑度) (1998). Produce, Evaluation and Development for the Qinghai-Tibet Plateau Environmental (青藏高原形成、演化与发展). Guangdong Science and Technology Press, Guangzhou. (in Chinese) |
[32] | Tang GY (唐国勇), Huang DY (黄道友), Tong CL (童成立), Zhang WJ (张文菊), Xiao HA (肖和艾), Su YR (苏以荣), Wu JS (吴金水) (2006). Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region. Chinese Journal of Applied Ecology (应用生态学报), 17, 429-433. (in Chinese with English abstract) |
[33] | Tang MC (汤懋苍), Cheng GD (程国栋) (1998). Modern Climate Change in Qinghai-Tibet Plateau and Its Effects on Environment (青藏高原近代气候变化及其对环境的影响). Guangdong Science and Technology Press, Guangzhou. (in Chinese) |
[34] | Tate RL III (2000). Soil Microbiology 2nd edn. John Wiley, New York. |
[35] | Tu C, Rustaino JB, Hu S (2006). Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. Soil Biology and Biochemistry, 38, 247-255. |
[36] | Vanlauwe B, Nwoke OC, Sanginga N, Merckx R (1999). Evaluation of methods for measuring microbial biomass C and N and relationships between microbial biomass and soil organic matter particle size classes in West-African soils. Soil Biology and Biochemistry, 31, 1071-1082. |
[37] | Wang JY (王金叶), Chang XX (常学向), Ge SL (葛双兰), Miao YX (苗毓新), Chang ZQ (常宗强), Zhang H (张虎) (2001). The vertical distribution of temperature and precipitation on the northern slop in Qi Lian Mountains. Journal of Northwest Forestry College (西北林学院学报), 16(Suppl.), 1-3. (in Chinese with English abstract) |
[38] | Warder DAA (1992). Comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Reviews, 67, 321-356. |
[39] | Wen QX (文启孝)(1984). The Methods of Soil Organic Matter (土壤有机质研究法). China Agriculture Press, Beijing. 301-302. (in Chinese) |
[40] | Xie ZM (谢正苗), Ka LD (卡里德), Huang CY (黄昌勇), Yu JY (俞尽炎)(2000). Effects of cadmium, lead and zinc onmicrobial biomass carbon, nitrogen, and phosphorus in red soil. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 6, 69-74. (in Chinese with English abstract) |
[41] | Xiong Y (熊毅), Li QK (李庆逵) (1990). Chinese Soil (中国土壤). Science Press, Beijing. (in Chinese) |
[42] | Zak DR, Tilman D, Parmenter RR, Rice CW, Fisher RM, Vose J, Milchunas D, Martin CW (1994). Plant production and soil microorganisms in late-successional ecosystems: a continental-scale study. Ecology, 75, 2333-2347. |
[43] | Zhang DX (张电学), Han ZQ (韩志卿), Li DP (李东坡), Liu W (刘微), Gao SG (高书国), Hou DJ (侯东军), Chang LS (常连生) (2005). Effects of returning maize straw into field on dynamic change of soil microbial biomass C, N, P under different promoted decay condition. Chinese Journal of Applied Ecology (应用生态学报), 16, 1903-1908. (in Chinese with English abstract) |
[44] | Zhang H (张虎), Wen YL (温娅丽), Ma L (马力), Chang ZQ (常宗强), Wang JY (王金叶) (2001). The characterizers of climate and vertical climate zone classification in Qi Lian Mountain. Journal of Mountain Science (山地学报), 19, 497-503. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn