Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (5): 466-476.DOI: 10.17521/cjpe.2015.0045
Special Issue: 生态化学计量
• Orginal Article • Previous Articles Next Articles
LIANG Ru-Biao1,2, LIANG Jin1, QIAO Ming-Feng1,2, XU Zhen-Feng3, LIU Qing1, YIN Hua-Jun1,*()
Received:
2014-12-08
Accepted:
2015-03-17
Online:
2015-05-01
Published:
2015-05-26
Contact:
Hua-Jun YIN
About author:
# Co-first authors
LIANG Ru-Biao,LIANG Jin,QIAO Ming-Feng,XU Zhen-Feng,LIU Qing,YIN Hua-Jun. Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan, China[J]. Chin J Plan Ecolo, 2015, 39(5): 466-476.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0045
理化性质 Physical-chemical properties | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
pH值 pH value | 6.97 ± 0.02 | 6.73 ± 0.03 |
含水量 Water content (%) | 52.52 ± 1.76 | 37.70 ± 2.46 |
总碳 Total C (mg·g-1) | 114.87 ± 1.10 | 49.22 ± 1.18 |
总氮 Total N (mg·g-1) | 8.46 ± 0.31 | 3.20 ± 0.12 |
碳氮比 C:N | 13.59 ± 0.51 | 15.41 ± 0.55 |
Table 1 Soil physical and chemical properties in both natural forest and plantation (mean ± SD)
理化性质 Physical-chemical properties | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
pH值 pH value | 6.97 ± 0.02 | 6.73 ± 0.03 |
含水量 Water content (%) | 52.52 ± 1.76 | 37.70 ± 2.46 |
总碳 Total C (mg·g-1) | 114.87 ± 1.10 | 49.22 ± 1.18 |
总氮 Total N (mg·g-1) | 8.46 ± 0.31 | 3.20 ± 0.12 |
碳氮比 C:N | 13.59 ± 0.51 | 15.41 ± 0.55 |
处理 Treatment | 葡萄糖 Glucose (g) | 柠檬酸 Citric acid (g) | 谷氨酸 Glutamic acid (g) | 氯化铵 NH4Cl (g) | 去离子水 Deionized water (mL) |
---|---|---|---|---|---|
对照 Control (CK) | - | - | - | - | 1 000 |
仅添加N N-only | - | - | - | 0.022 9 | 1 000 |
C:N = 10 | 0.075 3 | 0.075 3 | 0.016 8 | 0.016 8 | 1 000 |
C:N = 50 | 0.083 0 | 0.083 0 | 0.003 4 | 0.003 4 | 1 000 |
C:N = 100 | 0.084 0 | 0.084 0 | 0.001 7 | 0.001 7 | 1 000 |
仅添加C C-only | 0.085 0 | 0.085 0 | - | - | 1 000 |
Table 2 Chemical components and contents of simulated root exudates in different C:N stoichiometry
处理 Treatment | 葡萄糖 Glucose (g) | 柠檬酸 Citric acid (g) | 谷氨酸 Glutamic acid (g) | 氯化铵 NH4Cl (g) | 去离子水 Deionized water (mL) |
---|---|---|---|---|---|
对照 Control (CK) | - | - | - | - | 1 000 |
仅添加N N-only | - | - | - | 0.022 9 | 1 000 |
C:N = 10 | 0.075 3 | 0.075 3 | 0.016 8 | 0.016 8 | 1 000 |
C:N = 50 | 0.083 0 | 0.083 0 | 0.003 4 | 0.003 4 | 1 000 |
C:N = 100 | 0.084 0 | 0.084 0 | 0.001 7 | 0.001 7 | 1 000 |
仅添加C C-only | 0.085 0 | 0.085 0 | - | - | 1 000 |
处理 Treatment | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
对照 Control (CK) | 7.09 ± 0.02d | 7.03 ± 0.05d |
仅添加N N-only | 7.26 ± 0.02c | 7.12 ± 0.02c |
C:N = 10 | 7.32 ± 0.03b | 7.15 ± 0.01bc |
C:N = 50 | 7.39 ± 0.03a | 7.20 ± 0.02ab |
C:N = 100 | 7.35 ± 0.03b | 7.27 ± 0.02a |
仅添加C C-only | 7.26 ± 0.03c | 7.14 ± 0.02bc |
Table 3 Effects of simulated root exudates under different C:N stoichiometry on soil pH in both natural forest and plantation (mean ± SD)
处理 Treatment | 天然林 Natural forest | 人工林 Plantation |
---|---|---|
对照 Control (CK) | 7.09 ± 0.02d | 7.03 ± 0.05d |
仅添加N N-only | 7.26 ± 0.02c | 7.12 ± 0.02c |
C:N = 10 | 7.32 ± 0.03b | 7.15 ± 0.01bc |
C:N = 50 | 7.39 ± 0.03a | 7.20 ± 0.02ab |
C:N = 100 | 7.35 ± 0.03b | 7.27 ± 0.02a |
仅添加C C-only | 7.26 ± 0.03c | 7.14 ± 0.02bc |
Fig. 1 Effects of simulated root exudates under different C:N stoichiometry on total carbon content in natural forest and the plantation (mean ± SD). CK, control. Different lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
Fig. 2 Effects of simulated root exudates under different C:N stoichiometry on soil labile and recalcitrant carbon pool in natural forest and the plantation (mean ± SD). A, labile carbon pool I (LPI-C). B, labile carbon pool II (LPII-C). C, recalcitrant carbon pool (RP-C). CK, control. Lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
Fig. 3 Effects of simulated root exudates under different C:N stoichiometry on ratio of (microbial biomass C : microbial biomass N) MBC:MBN in natural forest and the plantation (mean ± SD). CK, control. Lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
Fig. 4 Effects of simulated root exudates under different C:N stoichiometry on contents of soil microbial phospholipid fatty acid (PLFA) in natural forest and the plantation (mean ± SD). A, total PLFA in microbia. B, bacterial PLFA. C, actinomycetic PLFA. D, fungal PLFA. E, ratio of bacterial/fungal PLFA. CK, control. Lowercase letters mean significant differences (p < 0.05) among treatments at a given forest type.
1 | Bengtson P, Barker J, Grayston SJ (2012). Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects.Ecology and Evolution, 2, 1843-1852. |
2 | Blagodatskaya Е, Kuzyakov Y (2008). Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review.Biology and Fertility of Soils, 45, 115-131. |
3 | Bossio DA, Scow KM, Gunapala N, Graham KJ (1998). Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles.Microbial Ecology, 36, 1-12. |
4 | Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: Current knowledge and future directions.Soil Biology & Biochemistry, 58, 216-234. |
5 | Carney KM, Hungate BA, Drake BG, Megonigal JP (2007). Altered soil microbial community at elevated CO2 leads to loss of soil carbon.Proceedings of the National Academy of Sciences of the United States of America, 104, 4990-4995. |
6 | Chapin FS III, McFarland J, David McGuire A, Euskirchen ES, Ruess RW, Kielland K (2009). The changing global carbon cycle: Linking plant-soil carbon dynamics to global consequences.Journal of Ecology, 97, 840-850. |
7 | Chen RR, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin XG, Blagodatskaya E, Kuzyakov Y (2014). Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories.Global Change Biology, 20, 2356-2367. |
8 | Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014). Synthesis and modeling perspectives of rhizosphere priming.New Phytologist, 201, 31-44. |
9 | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235-252. |
10 | Craine JM, Morrow C, Fierer N (2007). Microbial nitrogen limitation increases decomposition.Ecology, 88, 2105-2113. |
11 | de Graaff MA, Classen AT, Castro HF, Schadt CW (2010). Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 188, 1055-1064. |
12 | Dijkstra FA, Cheng WX (2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition.Ecology Letters, 10, 1046-1053. |
13 | Dorodnikov M, Blagodatskaya E, Blagodatsky S, Marhan S, Fangmeier A, Kuzyakov Y (2009). Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size.Global Change Biology, 15, 1603-1614. |
14 | Drake J, Darby B, Giasson MA, Kramer M, Phillips R, Finzi A (2013). Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest.Biogeosciences, 10, 821-838. |
15 | Espinosa-Urgel M, Ramos JL (2001). Expression of a Pseudomonas putida aminotransferase involved in lysine catabolism is induced in the rhizosphere.Applied and Environmental Microbiology, 67, 5219-5224. |
16 | Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004). Carbon input to soil may decrease soil carbon content.Ecology Letters, 7, 314-320. |
17 | Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect.Soil Biology & Biochemistry, 43, 86-96. |
18 | Fontaine S, Mariotti A, Abbadie L (2003). The priming effect of organic matter: A question of microbial competition?Soil Biology & Biochemistry, 35, 837-843. |
19 | Fransson P, Johansson EM (2010). Elevated CO2 and nitrogen influence exudation of soluble organic compounds by ectomycorrhizal root systems.FEMS Microbiology Ecology, 71, 186-196. |
20 | Güsewell S, Gessner MO (2009). N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms.Functional Ecology, 23, 211-219. |
21 | Grayston SJ, Vaughan D, Jones D (1997). Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability.Applied Soil Ecology, 5, 29-56. |
22 | Hessen DO, Ågren GI, Anderson TR, Elser JJ, de Ruiter PC (2004). Carbon sequestration in ecosystems: The role of stoichiometry.Ecology, 85, 1179-1192. |
23 | Jones DL, Hodge A, Kuzyakov Y (2004). Plant and mycorrhizal regulation of rhizodeposition.New Phytologist, 163, 459-480. |
24 | Kuzyakov Y (2002). Review: Factors affecting rhizosphere priming effects.Journal of Plant Nutrition and Soil Science, 165, 382-396. |
25 | Liu Q (2002). Ecological Research on Subalpine Coniferous Forests in China. Sichuan University Press, Chengdu. 142.(in Chinese) |
[刘庆 (2002). 亚高山针叶林生态学研究. 四川大学出版社, 成都. 142.] | |
26 | McGill WB, Cole CV (1981). Comparative aspects of cycling of organic C, N, S and P through soil organic matter.Geoderma, 26, 267-286. |
27 | Moorhead DL, Sinsabaugh RL (2006). A theoretical model of litter decay and microbial interaction.Ecological Monographs, 76, 151-174. |
28 | Phillips RP, Bernhardt ES, Schlesinger WH (2009). Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.Tree Physiology, 29, 1513-1523. |
29 | Phillips RP, Finzi AC, Bernhardt ES (2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation.Ecology Letters, 14, 187-194. |
30 | Ramirez KS, Craine JM, Fierer N (2012). Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes.Global Change Biology, 18, 1918-1927. |
31 | Rovira P, Vallejo VR (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: An acid hydrolysis approach.Geoderma, 107, 109-141. |
32 | Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property.Nature, 478, 49-56. |
33 | Shi SJ, Condron L, Larsen S, Richardson AE, Jones E, Jiao J, O’Callaghan M, Stewart A (2011). In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus radiata) grown in a rhizotron system.Environmental and Experimental Botany, 70, 131-142. |
34 | Strickland MS, Rousk J (2010). Considering fungal: Bacterial dominance in soils-Methods, controls, and ecosystem implications.Soil Biology & Biochemistry, 42, 1385-1395. |
35 | Sullivan BW, Hart SC (2013). Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient.Soil Biology & Biochemistry, 58, 293-301. |
36 | Sun Y, Xu XL, Kuzyakov Y (2014). Mechanisms of rhizos- phere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 38, 62-75.(in Chinese with English abstract) |
[孙悦, 徐兴良, Kuzyakov Y (2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.] | |
37 | Wu LK, Lin XM, Lin WX (2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates.Chinese Journal of Plant Ecology, 38, 298-310.(in Chinese with English abstract) |
[吴林坤, 林向民, 林文雄 (2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.] | |
38 | Xu ZF, Wan C, Xiong P, Tang Z, Hu R, Cao G, Liu Q (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosys- tems, Eastern Tibetan Plateau, China.Plant and Soil, 336, 183-195. |
39 | Yin HJ, Li YF, Xiao J, Xu ZF, Cheng XY, Liu Q (2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.Global Change Biology, 19, 2158-2167. |
40 | Yin HJ, Wheeler E, Phillips RP (2014). Root-induced changes in nutrient cycling in forests depend on exudation rates.Soil Biology & Biochemistry, 78, 213-221. |
41 | Zhang WD, Wang XF, Wang SL (2013). Addition of external organic carbon and native soil organic carbon decomposi- tion: A meta-analysis.PLoS ONE, 8, e54779. |
42 | Zhao Q, Zeng DH, Fan ZP (2010). Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil.Applied Soil Ecology, 46, 341-346. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4062
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2968
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn