Chin J Plant Ecol ›› 2009, Vol. 33 ›› Issue (5): 936-949.DOI: 10.3773/j.issn.1005-264x.2009.05.013
Special Issue: 生态系统碳水能量通量
• Research Articles • Previous Articles Next Articles
ZHANG Li-Hua(), CHEN Ya-Ning*(
), ZHAO Rui-Feng, LI Wei-Hong
Received:
2008-10-13
Revised:
2008-10-13
Online:
2009-10-13
Published:
2009-09-30
Contact:
CHEN Ya-Ning
ZHANG Li-Hua, CHEN Ya-Ning, ZHAO Rui-Feng, LI Wei-Hong. IMPACT OF TEMPERATURE AND SOIL WATER CONTENT ON SOIL RESPIRATION IN TEMPERATE DESERTS, CHINA[J]. Chin J Plant Ecol, 2009, 33(5): 936-949.
群落 Community | 有机碳 Organic carbon (g·kg-1) | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 速效氮Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | pH 1:5 | 电导率 Electric conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 3.153 | 5.436 | 0.278 | 0.687 | 19.166 | 11.385 | 3.670 | 241.000 | 9.090 | 0.616 | 2.157 |
假木贼 Anabasis aphylla | 3.037 | 5.236 | 0.290 | 0.663 | 19.218 | 11.183 | 2.039 | 132.900 | 8.341 | 0.784 | 3.295 |
盐穗木 Halostachys caspica | 3.361 | 5.795 | 0.326 | 0.758 | 20.692 | 9.869 | 5.901 | 129.100 | 8.125 | 1.923 | 6.788 |
Table 1 Soil nutrient and salinity properties at three communities
群落 Community | 有机碳 Organic carbon (g·kg-1) | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 全钾 Total K (g·kg-1) | 速效氮Available N (mg·kg-1) | 速效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) | pH 1:5 | 电导率 Electric conductivity (ms·cm-1) | 全盐 Total salinity (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 3.153 | 5.436 | 0.278 | 0.687 | 19.166 | 11.385 | 3.670 | 241.000 | 9.090 | 0.616 | 2.157 |
假木贼 Anabasis aphylla | 3.037 | 5.236 | 0.290 | 0.663 | 19.218 | 11.183 | 2.039 | 132.900 | 8.341 | 0.784 | 3.295 |
盐穗木 Halostachys caspica | 3.361 | 5.795 | 0.326 | 0.758 | 20.692 | 9.869 | 5.901 | 129.100 | 8.125 | 1.923 | 6.788 |
Fig. 2 Diurnal variations of soil respiration rate (Rs) and temperature (T5: soil temperature at 5 cm depth, Ta: air temperature) of Haloxylon ammodendron (a, b), Anabasis aphylla (c, d) and Halostachys caspica community (e, f) in June and September, 2006. Error bars represent means±SE (n=5 for soil respiration rate, n=3 for temperature)
Fig. 3 Seasonal variations of (a) air temperature (Ta), (b) soil water content over 0-5 cm depth (Ws) and (c) soil respiration rate (Rs) (mean±SE, n=7)
群落 Community | 样本数 n | Rs-Ws (实测土壤呼吸 For all measured efflux) | R2 | p | Rs10-Ws (标准化到10℃的土壤呼吸 For efflux at 10 °C) | R2 | p |
---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 12 | Rs=0.528+0.04Ws | 0.08 | 0.373 | Rs=0.175+0.05Ws | 0.50 | 0.010 |
12 | Rs=0.439Ws0.276 | 0.07 | 0.412 | Rs=0.154Ws0.624 | 0.55 | 0.006 | |
12 | Rs=0.185+0.16Ws-0.009Ws2 | 0.09 | 0.642 | Rs=0.022+0.104Ws-0.004Ws2 | 0.51 | 0.040 | |
假木贼 Anabasis aphylla | 12 | Rs=0.416+0.011Ws | 0.11 | 0.300 | Rs=0.197+0.011Ws | 0.57 | 0.004 |
12 | Rs=0.302Ws0.227 | 0.11 | 0.291 | Rs=0.141Ws0.341 | 0.51 | 0.010 | |
12 | Rs=0.126+0.077Ws-0.003Ws2 | 0.24 | 0.294 | Rs=0.165+0.018Ws-0.0003Ws2 | 0.58 | 0.020 | |
盐穗木 Halostachys caspica | 12 | Rs=0.415+0.004Ws | 0.02 | 0.680 | Rs=0.184+0.003Ws | 0.15 | 0.206 |
12 | Rs=0.292Ws0.165 | 0.05 | 0.507 | Rs=0.122Ws0.246 | 0.28 | 0.075 | |
12 | Rs=-0.182+0.11Ws-0.004Ws2 | 0.63 | 0.012 | Rs=0.045+0.028Ws-0.001Ws2 | 0.48 | 0.053 | |
综合 Total | 36 | Rs=0.62-0.005Ws | 0.01 | 0.576 | Rs=0.349-0.001Ws | 0.002 | 0.764 |
36 | Rs=0.579Ws-0.045 | 0.003 | 0.744 | Rs=0.318Ws-0.012 | 0.000 3 | 0.922 | |
36 | Rs=0.419+0.04Ws-0.002Ws2 | 0.05 | 0.400 | Rs=0.25+0.021Ws-0.001Ws2 | 0.04 | 0.538 |
Table 2 Fitted equations of Rs and Rs10 (normalized soil respiration using the fit of Q10 function at 10 °C Ts) against W0-5 cm, respectively
群落 Community | 样本数 n | Rs-Ws (实测土壤呼吸 For all measured efflux) | R2 | p | Rs10-Ws (标准化到10℃的土壤呼吸 For efflux at 10 °C) | R2 | p |
---|---|---|---|---|---|---|---|
梭梭 Haloxylon ammodendron | 12 | Rs=0.528+0.04Ws | 0.08 | 0.373 | Rs=0.175+0.05Ws | 0.50 | 0.010 |
12 | Rs=0.439Ws0.276 | 0.07 | 0.412 | Rs=0.154Ws0.624 | 0.55 | 0.006 | |
12 | Rs=0.185+0.16Ws-0.009Ws2 | 0.09 | 0.642 | Rs=0.022+0.104Ws-0.004Ws2 | 0.51 | 0.040 | |
假木贼 Anabasis aphylla | 12 | Rs=0.416+0.011Ws | 0.11 | 0.300 | Rs=0.197+0.011Ws | 0.57 | 0.004 |
12 | Rs=0.302Ws0.227 | 0.11 | 0.291 | Rs=0.141Ws0.341 | 0.51 | 0.010 | |
12 | Rs=0.126+0.077Ws-0.003Ws2 | 0.24 | 0.294 | Rs=0.165+0.018Ws-0.0003Ws2 | 0.58 | 0.020 | |
盐穗木 Halostachys caspica | 12 | Rs=0.415+0.004Ws | 0.02 | 0.680 | Rs=0.184+0.003Ws | 0.15 | 0.206 |
12 | Rs=0.292Ws0.165 | 0.05 | 0.507 | Rs=0.122Ws0.246 | 0.28 | 0.075 | |
12 | Rs=-0.182+0.11Ws-0.004Ws2 | 0.63 | 0.012 | Rs=0.045+0.028Ws-0.001Ws2 | 0.48 | 0.053 | |
综合 Total | 36 | Rs=0.62-0.005Ws | 0.01 | 0.576 | Rs=0.349-0.001Ws | 0.002 | 0.764 |
36 | Rs=0.579Ws-0.045 | 0.003 | 0.744 | Rs=0.318Ws-0.012 | 0.000 3 | 0.922 | |
36 | Rs=0.419+0.04Ws-0.002Ws2 | 0.05 | 0.400 | Rs=0.25+0.021Ws-0.001Ws2 | 0.04 | 0.538 |
Fig. 5 Relationships between the normalized soil respiration rate (Rs10) using the fit of the Q10 function with 10 ℃ Ts and soil water content (Ws) at the depth of 0-5 cm
Fig. 6 Soil respiration rate, soil water content at 0-10 cm and soil temperature at 5 cm depth following rainfall additions in Anabasis aphylla (a, c, e) and Halostachys caspica communities (b, d, f) (mean±SE, n=3)
Fig. 7 Diurnal variations of soil respiration rate, air temperature and soil temperature at 0 cm depth on rainy days in 2006 in Haloxylon ammodendron (a) and Anabasis aphylla communities (b and c)
[1] |
Adu JK, Oades JM (1978). Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biology & Biochemistry, 10, 109-115.
DOI URL |
[2] |
Appel T (1998). Non-biomass soil organic N: the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying. Soil Biology & Biochemistry, 30, 1445-1456.
DOI URL |
[3] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
DOI URL |
[4] |
Betts RA (2000). Offset of the potential carbon sink from boreal forestation by decrease in surface albedo. Nature, 408, 187-190.
DOI URL PMID |
[5] |
Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE (2003). Drying and wetting effects on carbon dioxide release from organic horizons. Soil Science Society of America Journal, 67, 1888-1896.
DOI URL |
[6] |
Borken W, Xu YJ, Davidson EA, Beese F (2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8, 1205-1216.
DOI URL |
[7] |
Buchmann N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32, 1625-1635.
DOI URL |
[8] |
Casals P, Romanyà J, Cortina J, Bottner P, Coûteaux MM, Ramon-Vallejo V (2000). CO2 efflux from a Mediterranean semi-arid forest soil. I. Seasonality and effects of stoniness. Biogeochemistry, 48, 261-281.
DOI URL |
[9] |
Cavelier J, Peñuela MC (1990). Soil respiration in the cloud forest and dry deciduous forest of Serrania de Macuria, Colombia. Biotropica, 22, 346-352.
DOI URL |
[10] | Chang XX (常学向), Zhao AF (赵爱芬), Zhao WZ (赵文智), Chen HS (陈怀顺) (2003). Status of soil moisture in oasis and desert unirrigated vegetation regional along middle reaches of Heihe River Basin. Journal of Soil and Water Conservation (水土保持学报), 17, 126-129. (in Chinese with English abstract) |
[11] |
Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon- cycle feedbacks in a coupled climate model. Nature, 408, 184-187.
DOI URL PMID |
[12] |
Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217-227.
DOI URL |
[13] |
Davidson EA, Janssens IA, Luo Y (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164.
DOI URL |
[14] |
Davidson EA, Verchot LV, Cattânio JH, Ackerman IL, Carvalho JEM (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69.
DOI URL |
[15] |
Degens BP, Sparling GP (1995). Repeated wet-dry cycles do not accelerate the mineralization of organic C involved in the macro-aggregation of a sandy loam soil. Plant and Soil, 175, 197-203.
DOI URL |
[16] | Dilustro JJ, Collins B, Duncan L, Crawford C (2005). Moisture and soil texture effects on soil CO2 efflux components in southeastern mixed pine forests. Forest Ecology and Management, 204, 85-95. |
[17] |
Emmerich WE (2003). Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agricultural and Forest Meteorology, 116, 91-102.
DOI URL |
[18] |
Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33, 155-165.
DOI URL |
[19] |
Fernandez DP, Neff JC, Belnap J, Reynolds RL (2006). Soil respiration in the cold desert environment of the Colorado Plateau (USA): abiotic regulators and thresholds. Biogeochemistry, 78, 247-265.
DOI URL |
[20] | Fierer N, Schimel JP (2003). A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67, 789-805. |
[21] |
Franzluebbers AJ, Haney RL, Honeycutt CW, Schomberg HH, Hons FM (2000). Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Science Society of America Journal, 64, 613-623.
DOI URL |
[22] |
Gaumont-Guay D, Black TA, Griffis TJ, Barr AG, Jassal RS, Nesic Z (2006). Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology, 140, 220-235.
DOI URL |
[23] |
Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15-26.
DOI URL |
[24] | Huang X (黄湘), Chen YN (陈亚宁), Li WH (李卫红), Liu JZ (刘加珍), Chen YP (陈亚鹏) (2006). Daily variation of carbon flux in soils of Populus euphratica forests in the middle and lower reaches of the Tarim River. Progress in Natural Science (自然科学进展), 16, 1405-1410. (in Chinese) |
[25] |
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
DOI URL |
[26] |
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology, 14, 1-14.
DOI URL |
[27] |
Jia B, Zhou G, Wang Y, Wang F, Wang X (2006). Effects of temperature and soil water content on soil respiration of grazed and ungrazedLeymus chinensis steppes, Inner Mongolia. Journal of Arid Environments, 67, 60-67.
DOI URL |
[28] |
Kang S, Doh S, Lee D, Jin VL, Kimball JS (2003). Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Global Change Biology, 9, 1427-1437.
DOI URL |
[29] |
Kirschbaum MUF (2006). The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biology & Biochemistry, 38, 2510-2518.
DOI URL |
[30] |
Li HJ, Yan JX, Yue XF, Wang MB (2008). Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agricultural and Forest Meteorology, 148, 490-503.
DOI URL |
[31] |
Liang NS, Nakadai T, Hirano T, Qu LY, Takayoshi K, Yasumi F, Gen I (2004). In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch(Larix kaempferi Sarg.) forest. Agricultural and Forest Meteorology, 123, 97-117.
DOI URL |
[32] |
Maestre FT, Cortina J (2003). Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23, 199-209.
DOI URL |
[33] | Noy-Meir I (1980). Structure and function of desert ecosystems. Israel Journal of Botany, 28, 1-19. |
[34] | Qian YB (钱亦兵), Zhou HR (周华荣), Xu M (徐曼), Jiang J (蒋进), Wang XQ (王雪芹), Li DM (李东梅), Zhao CJ (赵从举) (2004). Relationship between water-soil properties and desert plant diversities in Agricultural Development Area of Kelamayi. Journal of Soil and Water Conservation (水土保持学报), 18, 186-189. (in Chinese with English abstract) |
[35] |
Sánchez ML, Ozores MI, López MJ, Colle R, de Torre B, Garia MA, Perez I (2003). Soil CO2 fluxes beneath barley on the central Spanish plateau. Agricultural and Forest Meteorology, 118, 85-95.
DOI URL |
[36] |
Sponseller RA (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology, 13, 426-436.
DOI URL |
[37] | Sun HL (孙鸿烈) (2005). Ecosystems in China (中国生态系统). Science Press, Beijing, 653. (in Chinese) |
[38] |
Tang JW, Baldocchi DD (2005). Spatial-temporal variation in soil respiration in an oak-grass savanna ecosystem in California and its partitioning into autotrophic and heterotrophic components. Biogeochemistry, 73, 183-207.
DOI URL |
[39] |
West NE, Stark JM, Johnson DW, Abrams MM, Wight JR, Heggem D, Peck S (1994). Effects of climatic change on the edaphic features of arid and semiarid lands of western North America. Arid Soil Research Rehabilitation, 8, 307-351.
DOI URL |
[40] | Xie JX (谢静霞), Zhai CX (翟翠霞), Li Y (李彦) (2008). Contrasting analysis on soil CO2 efflux between saline desert and farmland. Progress in Natural Science (自然科学进展), 18, 262-268. (in Chinese) |
[41] |
Xie JX, Li Y, Zhai CX, Li CH, Lan ZD (2008). CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environment Geology, doi: 10.1007/s00254-008-1197-0
URL PMID |
[42] |
Xu M, Qi Y (2001). Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in Northern California. Global Change Biology, 7, 667-677.
DOI URL |
[43] |
Yuste JC, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003). Interactive effects of temperature and precipitation on soil respiration in a temperate maritime forest. Tree Physiology, 23, 1263-1270.
DOI URL PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn