Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (10): 1220-1226.DOI: 10.3773/j.issn.1005-264x.2010.10.011
• Research Articles • Previous Articles Next Articles
WU Fu-Zhong, YANG Wan-Qin*(), ZHANG Jian, ZHOU Li-Qiang
Received:
2009-12-21
Accepted:
2010-03-01
Online:
2010-12-21
Published:
2010-10-31
Contact:
YANG Wan-Qin
WU Fu-Zhong, YANG Wan-Qin, ZHANG Jian, ZHOU Li-Qiang. Effects of cadmium stress on growth and nutrient accumulation, distribution and utilization in Osmanthus fragrans var. thunbergii[J]. Chin J Plant Ecol, 2010, 34(10): 1220-1226.
叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 根生物量 Root biomass (g) | 凋落叶生物量 Litter leave biomass (g) | 总生物量 Total biomass (g) | 根/茎比 Ratio of root to stem | |
---|---|---|---|---|---|---|
CK | 17.96 ± 1.46a 27.35% | 25.38 ± 3.99a 38.65% | 20.72 ± 4.06a 31.55% | 1.61 ± 0.60a 2.45% | 65.67 ± 4.58a 100% | 0.82 ± 0.08a |
I | 14.82 ± 2.08a 25.11% | 22.28 ± 4.44ab 37.74% | 20.65 ± 3.75a 34.98% | 1.28 ± 0.44a 2.17% | 59.03 ± 5.12a 100% | 0.93 ± 0.09b |
II | 5.62 ± 2.97b 29.94% | 5.83 ± 1.53bc 31.06% | 6.05 ± 1.79b 32.23% | 1.27 ± 0.54a 6.77% | 18.77 ± 3.43b 100% | 1.04 ± 0.09b |
III | 4.70 ± 2.10b 27.50% | 5.53 ± 1.76bc 32.36% | 5.60 ± 0.96b 32.77% | 1.26 ± 0.31a 7.37% | 17.09 ± 3.54b 100% | 1.01 ± 0.12b |
IV | 3.61 ± 1.73b 36.35% | 2.52 ± 0.52c 25.38% | 2.55 ± 1.11c 25.68% | 1.25 ± 0.47a 12.59% | 9.93 ± 2.18c 100% | 1.01 ± 0.11b |
Table 1 Biomass and its components of Osmanthus fragrans var. thunbergii under different Cd concentration treatments (means ± SD, n = 5)
叶生物量 Leaf biomass (g) | 茎生物量 Stem biomass (g) | 根生物量 Root biomass (g) | 凋落叶生物量 Litter leave biomass (g) | 总生物量 Total biomass (g) | 根/茎比 Ratio of root to stem | |
---|---|---|---|---|---|---|
CK | 17.96 ± 1.46a 27.35% | 25.38 ± 3.99a 38.65% | 20.72 ± 4.06a 31.55% | 1.61 ± 0.60a 2.45% | 65.67 ± 4.58a 100% | 0.82 ± 0.08a |
I | 14.82 ± 2.08a 25.11% | 22.28 ± 4.44ab 37.74% | 20.65 ± 3.75a 34.98% | 1.28 ± 0.44a 2.17% | 59.03 ± 5.12a 100% | 0.93 ± 0.09b |
II | 5.62 ± 2.97b 29.94% | 5.83 ± 1.53bc 31.06% | 6.05 ± 1.79b 32.23% | 1.27 ± 0.54a 6.77% | 18.77 ± 3.43b 100% | 1.04 ± 0.09b |
III | 4.70 ± 2.10b 27.50% | 5.53 ± 1.76bc 32.36% | 5.60 ± 0.96b 32.77% | 1.26 ± 0.31a 7.37% | 17.09 ± 3.54b 100% | 1.01 ± 0.12b |
IV | 3.61 ± 1.73b 36.35% | 2.52 ± 0.52c 25.38% | 2.55 ± 1.11c 25.68% | 1.25 ± 0.47a 12.59% | 9.93 ± 2.18c 100% | 1.01 ± 0.11b |
Fig. 1 Variations of C, N and P concentrations of Osmanthus fragrans var. thunbergii under different Cd concentration treatments. Different letters indicate significant differences among the treatments (p < 0.05) (mean ± SD, n = 5). CK, I, II, III, IV, see Table 1.
新鲜叶积累量 Fresh leaf accumulation (mg) | 茎积累量 Stem accumulation (mg) | 根积累量 Root accumulation (mg) | 凋落叶积累量 Litter leaves accumulation (mg) | 总积累量 Total accumulation (mg) | ||
---|---|---|---|---|---|---|
C | CK | 8 471.24 ± 256.38a | 12 092.25 ± 523.24a | 8605.03 ± 486.77a | 741.21 ± 65.21a | 29 909.73 ± 1 125.96a |
I | 8 272.35 ± 367.24a | 8 621.32 ± 124.67b | 8483.74 ± 256.45a | 560.17 ± 74.16b | 25 937.58 ± 968.75b | |
II | 2 541.27 ± 185.69b | 2 592.14 ± 186.75c | 2342.23 ± 212.33b | 532.38 ± 55.65bc | 8 008.02 ± 582.65c | |
III | 2 430.74 ± 205.36b | 2 483.27 ± 109.01c | 2264.45 ± 156.67b | 476.32 ± 85.21c | 7 654.78 ± 610.20c | |
IV | 1 881.35 ± 212.12c | 1 116.25 ± 213.55d | 2041.02 ± 274.14b | 481.14 ± 58.85c | 5 519.76 ± 498.12d | |
N | CK | 183.02 ± 26.75a | 47.11 ± 5.69a | 65.14 ± 11.25a | 16.25 ± 4.35a | 311.52 ± 41.11a |
I | 131.42 ± 33.21b | 33.23 ± 7.32b | 57.71 ± 9.82a | 14.63 ± 2.19a | 236.99 ± 23.55b | |
II | 32.55 ± 6.75c | 11.14 ± 2.65c | 21.37 ± 4.56b | 11.16 ± 3.12b | 76.22 ± 11.26c | |
III | 31.43 ± 7.14c | 9.72 ± 3.17c | 17.15 ± 3.25b | 10.02 ± 2.14c | 68.32 ± 10.75c | |
IV | 19.28 ± 5.12d | 5.31 ± 1.20d | 15.36 ± 3.33b | 10.31 ± 3.15c | 50.26 ± 8.95d | |
P | CK | 18.37 ± 2.35a | 19.07 ± 2.85a | 15.12 ± 2.15a | 1.74 ± 0.56a | 54.30 ± 9.12a |
I | 17.14 ± 2.78a | 17.46 ± 4.56a | 14.23 ± 4.13a | 0.96 ± 0.12b | 49.79 ± 5.50a | |
II | 5.34 ± 1.96b | 5.12 ± 1.41b | 4.15 ± 1.15b | 1.32 ± 0.15c | 15.93 ± 4.86b | |
III | 4.63 ± 1.56b | 4.47 ± 1.52b | 3.80 ± 1.16b | 1.25 ± 0.10c | 14.15 ± 3.25b | |
IV | 2.91 ± 0.82c | 1.74 ± 0.68c | 3.21 ± 1.12b | 0.67 ± 0.09d | 8.53 ± 2.18c |
Table 2 C, N and P accumulations of Osmanthus fragrans var. thunbergii under different Cd concentration treatments (means ± SD, n = 5)
新鲜叶积累量 Fresh leaf accumulation (mg) | 茎积累量 Stem accumulation (mg) | 根积累量 Root accumulation (mg) | 凋落叶积累量 Litter leaves accumulation (mg) | 总积累量 Total accumulation (mg) | ||
---|---|---|---|---|---|---|
C | CK | 8 471.24 ± 256.38a | 12 092.25 ± 523.24a | 8605.03 ± 486.77a | 741.21 ± 65.21a | 29 909.73 ± 1 125.96a |
I | 8 272.35 ± 367.24a | 8 621.32 ± 124.67b | 8483.74 ± 256.45a | 560.17 ± 74.16b | 25 937.58 ± 968.75b | |
II | 2 541.27 ± 185.69b | 2 592.14 ± 186.75c | 2342.23 ± 212.33b | 532.38 ± 55.65bc | 8 008.02 ± 582.65c | |
III | 2 430.74 ± 205.36b | 2 483.27 ± 109.01c | 2264.45 ± 156.67b | 476.32 ± 85.21c | 7 654.78 ± 610.20c | |
IV | 1 881.35 ± 212.12c | 1 116.25 ± 213.55d | 2041.02 ± 274.14b | 481.14 ± 58.85c | 5 519.76 ± 498.12d | |
N | CK | 183.02 ± 26.75a | 47.11 ± 5.69a | 65.14 ± 11.25a | 16.25 ± 4.35a | 311.52 ± 41.11a |
I | 131.42 ± 33.21b | 33.23 ± 7.32b | 57.71 ± 9.82a | 14.63 ± 2.19a | 236.99 ± 23.55b | |
II | 32.55 ± 6.75c | 11.14 ± 2.65c | 21.37 ± 4.56b | 11.16 ± 3.12b | 76.22 ± 11.26c | |
III | 31.43 ± 7.14c | 9.72 ± 3.17c | 17.15 ± 3.25b | 10.02 ± 2.14c | 68.32 ± 10.75c | |
IV | 19.28 ± 5.12d | 5.31 ± 1.20d | 15.36 ± 3.33b | 10.31 ± 3.15c | 50.26 ± 8.95d | |
P | CK | 18.37 ± 2.35a | 19.07 ± 2.85a | 15.12 ± 2.15a | 1.74 ± 0.56a | 54.30 ± 9.12a |
I | 17.14 ± 2.78a | 17.46 ± 4.56a | 14.23 ± 4.13a | 0.96 ± 0.12b | 49.79 ± 5.50a | |
II | 5.34 ± 1.96b | 5.12 ± 1.41b | 4.15 ± 1.15b | 1.32 ± 0.15c | 15.93 ± 4.86b | |
III | 4.63 ± 1.56b | 4.47 ± 1.52b | 3.80 ± 1.16b | 1.25 ± 0.10c | 14.15 ± 3.25b | |
IV | 2.91 ± 0.82c | 1.74 ± 0.68c | 3.21 ± 1.12b | 0.67 ± 0.09d | 8.53 ± 2.18c |
Fig. 2 Percentages of C, N and P in each organ to total plant of Osmanthus fragrans var. thunbergii under different Cd concentration treatments. CK, I, II, III, IV, see Table 1.
叶C/N Leaf C/N | 叶N/P Leaf N/P | C/N | N/P | N利用效率 NUEN (g mass·g-1) | P利用效率 NUEP (g mass·g-1)s | |
---|---|---|---|---|---|---|
CK | 46.29 ± 6.25a | 9.96 ± 2.51a | 96.01 ± 8.92a | 5.74 ± 1.35a | 210.81 ± 36.45ab | 1209.39 ± 98.85a |
I | 62.95 ± 10.17b | 7.67 ± 1.704b | 109.45 ± 15.26b | 4.76 ± 2.06a | 249.08 ± 29.16a | 1185.58 ± 78.52a |
II | 78.07 ± 9.18c | 6.10 ± 3.25ab | 105.06 ± 10.71b | 4.78 ± 1.72a | 246.26 ± 33.18a | 1178.28 ± 109.46a |
III | 77.34 ± 8.28c | 6.79 ± 1.05b | 112.04 ± 9.10b | 4.83 ± 1.36a | 250.15 ± 42.10a | 1207.77 ± 115.55a |
IV | 97.58 ± 6.40d | 6.63 ± 2.10b | 109.82 ± 10.11b | 5.89 ± 2.33a | 197.57 ± 28.55b | 1164.13 ± 153.68a |
Table 3 Leaf C/N, leaf N/P, C/N, N/P, N use efficiency (NUEN) and P use efficiency (NUEP) of Osmanthus fragrans var. thunbergii under different treatments with different Cd concentrations (means ± SD, n = 5)
叶C/N Leaf C/N | 叶N/P Leaf N/P | C/N | N/P | N利用效率 NUEN (g mass·g-1) | P利用效率 NUEP (g mass·g-1)s | |
---|---|---|---|---|---|---|
CK | 46.29 ± 6.25a | 9.96 ± 2.51a | 96.01 ± 8.92a | 5.74 ± 1.35a | 210.81 ± 36.45ab | 1209.39 ± 98.85a |
I | 62.95 ± 10.17b | 7.67 ± 1.704b | 109.45 ± 15.26b | 4.76 ± 2.06a | 249.08 ± 29.16a | 1185.58 ± 78.52a |
II | 78.07 ± 9.18c | 6.10 ± 3.25ab | 105.06 ± 10.71b | 4.78 ± 1.72a | 246.26 ± 33.18a | 1178.28 ± 109.46a |
III | 77.34 ± 8.28c | 6.79 ± 1.05b | 112.04 ± 9.10b | 4.83 ± 1.36a | 250.15 ± 42.10a | 1207.77 ± 115.55a |
IV | 97.58 ± 6.40d | 6.63 ± 2.10b | 109.82 ± 10.11b | 5.89 ± 2.33a | 197.57 ± 28.55b | 1164.13 ± 153.68a |
[1] | Benavides MP, Gallego SM, Tomaro ML (2005). Cadmium toxicity in plants. Brazil Journal of Plant Physiology, 17, 21-34. |
[2] |
Boussama N, Ouariti O, Ghorbal MH (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22, 731-752.
DOI URL |
[3] |
Broadley MR, Escobar-Gutiérrez AJ, Burns A (2000). What are the effects of nitrogen deficiency on growth components of lettuce? New Phytologist, 147, 519-526.
DOI URL |
[4] | Cao L (曹玲), Wang QC (王庆成), Cui DH (崔东海) (2006). Impact of soil cadmium contamination on chlorophyll fluorescence characters and biomass accumulation of four broad-leaved tree species seedlings. Chinese Journal of Applied Ecology (应用生态学报), 17, 769-772. (in Chinese with English abstract) |
[5] | Chen HG (陈洪国), Zhou KB (周开兵), Zhang HY (张红艳) (2008). Studies on the increment, flower and mineral nutrient change of three cultivars of Osmanthus fragrans Lout. Journal of Wuhan Botanical Research (武汉植物学研究), 26, 108-112. (in Chinese with English abstract) |
[6] |
Chien HF, Kao CH (2000). Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science, 156, 111-115.
URL PMID |
[7] | Feng L (冯丽), Zhang JG (张景光), Zhang ZS (张志山), Guo Q (郭群), Li XR (李新荣) (2009). Growth and biomass allocation dynamics of Artemisia ordosica in sand fixing vegetation of the Tengger desert of China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1132-1139. (in Chinese with English abstract) |
[8] |
Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
[9] | Liu ZH (刘志华), Yi XY (伊晓云), Zeng QL (曾其龙), Wang HY (王火焰), Shen RF (沈仁芳) (2008). Study on growth and accumulation of nutrient elements in Chinese cabbage at seedling stage under low Cd stress. Soils (土壤), 40, 630-634. (in Chinese with English abstract) |
[10] | Liu ZL (刘周莉), He XY (何兴元), Chen W (陈玮) (2009). Effects of cadmium stress on the growth and physiological characteristics of Lonicera japonica. Chinese Journal of Applied Ecology (应用生态学报), 20, 40-44. (in Chinese with English abstract) |
[11] | Lu RK (鲁如坤) (2000). Soil and Agro-Chemical Analytical Methods (土壤农业化学分析方法). China Agricultural Science and Technology Press, Beijing. 318-379. (in Chinese) |
[12] |
Nedjimi B, Daoud Y (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora, 204, 316-324.
DOI URL |
[13] |
Patterson TB, Guy RD, Dang QL (1997). Whole-plant nitrogen- and water-relations traits, and their associated trade-offs, in adjacent muskeg and upland boreal spruce species. Oecologia, 110, 160-168.
URL PMID |
[14] | Ren HY (任海彦), Zheng SX (郑淑霞), Bai YF (白永飞) (2009). Effects of grazing on foliage biomass allocation of grassland communities in Xilin River Basin, Inner Mongolia. Chinese Journal of Plant Ecology (植物生态学报), 33, 1065-1074. (in Chinese with English abstract) |
[15] | Wang X (王欣), Liu YG (刘云国), Aibibu N (艾比布·努扎艾提), Zhang DM (张东梅), Xu WH (徐卫华), Zhou M (周鸣), Chai LY (柴立元) (2007). Endurance mechanism of ramie to Cd and the alleviating effect of exogenous spermine. Journal of Agro-Environment Science (农业环境科学学报), 26, 487-493. (in Chinese with English abstract) |
[16] | Wu FZ (吴福忠), Bao WK (包维楷), Wu N (吴宁) (2008). Growth, accumulation and partitioning of biomass, C, N and P of Sophora davidii seedlings in response to N supply in dry valley of upper Minjiang River. Acta Ecologica Sinica (生态学报), 28, 3817-3824. (in Chinese with English abstract) |
[17] | Wu FZ (吴福忠), Wang KY (王开运), Yang WQ (杨万勤), Lu YJ (鲁叶江), Qiao YZ (乔匀周) (2005). Effects of Fargesia denudata density on seasonal changes in litter nutrient concentrations and their potential retranslocation. Acta Phytoecologica Sinica (植物生态学报), 29, 537-542. (in Chinese with English abstract) |
[18] |
Wu FZ, Yang WQ, Wang KY, Wu N, Lu YJ (2009a). Effect of stem density on leaf nutrient dynamics and nutrient use efficiency of dwarf bamboo. Pedosphere, 19, 496-504.
DOI URL |
[19] |
Wu FZ, Yang WQ, Zhang J, Zhou LQ (2009b). Cadmium accumulation and growth responses of a poplar (Populus deltoids× Populus nigra) in cadmium contaminated purple soil and alluvial soil. Journal of Hazardous Material, 177, 268-273.
DOI URL |
[20] | Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air & Soil Pollution, 197, 23-34. |
[21] | Zhang J (张健) (2009). Integrated Management on Soil and Water Loss in the Hilly Area and Regional Sustainable Development in Sichuan Province (四川盆地低山丘陵区水土流失综合治理及区域可持续发展). Sichuan Science & Technology Press, Chengdu. 105. (in Chinese) |
[22] | Zhou QX (周启星), Song YF (宋玉芳) (2004). Principles and Methods of Contaminated Soil Remediation (污染土壤修复原理与方法). Science Press, Beijing. 76. (in Chinese) |
[1] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[3] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[4] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[5] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[6] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[7] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[8] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[9] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[10] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[11] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[12] | WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 642-655. |
[13] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
[14] | LI Si-Yuan, ZHANG Zhao-Xin, RAO Liang-Yi. Responses of non-structural carbohydrates and growth hormone in Morus alba seedlings to flooding stress [J]. Chin J Plant Ecol, 2022, 46(3): 311-320. |
[15] | XIONG Ying-Jie, YU Guo, WEI Kai-Lu, PENG Juan, GENG Hong-Ru, YANG Dong-Mei, PENG Guo-Quan. Relationships between lamina size, vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain, southeastern China [J]. Chin J Plant Ecol, 2022, 46(2): 136-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn