Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (10): 909-920.DOI: 10.17521/cjpe.2019.0235
• Research Articles • Previous Articles Next Articles
ZHAO Xin1,WANG Wen-Juan1,WANG Pu-Chang2,3,HUANG Li-Juan1,ZHAO Li-Li1,2,*()
Online:
2019-10-20
Published:
2020-02-24
Contact:
ZHAO Li-Li
Supported by:
ZHAO Xin, WANG Wen-Juan, WANG Pu-Chang, HUANG Li-Juan, ZHAO Li-Li. Effects of different calcium concentrations on growth and physiology of Paspalum wettsteinii seedlings[J]. Chin J Plant Ecol, 2019, 43(10): 909-920.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0235
Fig. 1 Effects of different CaCl2 concentrations on the growth indices of Paspalum wettsteinii seedlings (mean ± SE). Different lowercase letters indicate significant difference among different CaCl2 concentrations (p < 0.05).
Fig. 2 Effects of different CaCl2 concentrations on the biomass of Paspalum wettsteinii seedlings (mean ± SE). Different lowercase letters indicate significant difference among different CaCl2 concentrations (p < 0.05).
渗透调节物质Osmoregulation substance | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
脯氨酸 Proline (μg·g-1) | 0 | 16.13 ± 0.84Cc | 27.24 ± 0.97Ac | 23.87 ± 0.70Bc | 10.08 ± 1.43Dc |
5 | 23.44 ± 1.17Ca | 30.91 ± 0.87Ab | 27.64 ± 0.63Bb | 13.25 ± 0.61Db | |
25 | 25.04 ± 1.41Ca | 32.82 ± 0.68Aa | 30.91 ± 0.52Ba | 16.97 ± 0.65Da | |
50 | 20.51 ± 0.95Cb | 24.46 ± 0.67Ad | 22.68 ± 0.62Bc | 12.94 ± 0.74Db | |
100 | 14.23 ± 0.57Cd | 22.98 ± 0.62Ae | 19.08 ± 0.38Bd | 8.85 ± 0.62Dd | |
200 | 9.65 ± 0.32Be | 14.66 ± 1.17Af | 15.15 ± 0.32Ae | 7.25 ± 0.68Bd | |
可溶性蛋白 Soluble protein (mg·g-1) | 0 | 10.22 ± 0.70Bd | 14.09 ± 0.41Ac | 10.73 ± 0.43Bc | 6.25 ± 0.36Cb |
5 | 11.23 ± 0.50Bc | 15.47 ± 0.31Ab | 13.16 ± 0.73Ca | 7.48 ± 0.23Db | |
25 | 12.50 ± 0.27Bb | 17.38 ± 0.54Aa | 14.11 ± 0.77Ba | 8.99 ± 0.44Ca | |
50 | 13.67 ± 0.12Ba | 18.03 ± 0.43Aa | 11.84 ± 0.34Cb | 6.13 ± 0.45Db | |
100 | 11.56 ± 0.49Bc | 16.25 ± 0.64Ab | 10.17 ± 0.57Cc | 4.93 ± 0.25Dc | |
200 | 8.05 ± 0.54Ce | 13.54 ± 0.35Ac | 8.96 ± 0.07Bd | 3.75 ± 0.11Dd | |
可溶性糖 Soluble sugar (mg·g-1) | 0 | 17.04 ± 1.22Cd | 27.07 ± 1.42Ad | 22.54 ± 0.61Bc | 12.26 ± 1.64Db |
5 | 18.60 ± 0.64Cc | 30.27 ± 0.70Ab | 23.68 ± 0.85Bb | 12.36 ± 0.80Db | |
25 | 21.25 ± 1.21Cb | 32.00 ± 1.47Aa | 25.40 ± 1.50Ba | 14.36 ± 0.95Da | |
50 | 22.23 ± 0.51Ba | 29.05 ± 1.36Ac | 20.81 ± 1.10Cd | 13.62 ± 0.49Da | |
100 | 15.82 ± 0.97Ce | 27.23 ± 1.29Ad | 19.09 ± 1.06Be | 10.45 ± 0.43Dc | |
200 | 13.92 ± 0.87Cf | 26.53 ± 0.80Ad | 19.62 ± 0.44Be | 10.50 ± 1.08Dc |
Table 1 Effects of different CaCl2 concentrations on proline content, soluble protein and soluble sugar content of Paspalum wettsteinii seedlings (mean ± SE)
渗透调节物质Osmoregulation substance | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
脯氨酸 Proline (μg·g-1) | 0 | 16.13 ± 0.84Cc | 27.24 ± 0.97Ac | 23.87 ± 0.70Bc | 10.08 ± 1.43Dc |
5 | 23.44 ± 1.17Ca | 30.91 ± 0.87Ab | 27.64 ± 0.63Bb | 13.25 ± 0.61Db | |
25 | 25.04 ± 1.41Ca | 32.82 ± 0.68Aa | 30.91 ± 0.52Ba | 16.97 ± 0.65Da | |
50 | 20.51 ± 0.95Cb | 24.46 ± 0.67Ad | 22.68 ± 0.62Bc | 12.94 ± 0.74Db | |
100 | 14.23 ± 0.57Cd | 22.98 ± 0.62Ae | 19.08 ± 0.38Bd | 8.85 ± 0.62Dd | |
200 | 9.65 ± 0.32Be | 14.66 ± 1.17Af | 15.15 ± 0.32Ae | 7.25 ± 0.68Bd | |
可溶性蛋白 Soluble protein (mg·g-1) | 0 | 10.22 ± 0.70Bd | 14.09 ± 0.41Ac | 10.73 ± 0.43Bc | 6.25 ± 0.36Cb |
5 | 11.23 ± 0.50Bc | 15.47 ± 0.31Ab | 13.16 ± 0.73Ca | 7.48 ± 0.23Db | |
25 | 12.50 ± 0.27Bb | 17.38 ± 0.54Aa | 14.11 ± 0.77Ba | 8.99 ± 0.44Ca | |
50 | 13.67 ± 0.12Ba | 18.03 ± 0.43Aa | 11.84 ± 0.34Cb | 6.13 ± 0.45Db | |
100 | 11.56 ± 0.49Bc | 16.25 ± 0.64Ab | 10.17 ± 0.57Cc | 4.93 ± 0.25Dc | |
200 | 8.05 ± 0.54Ce | 13.54 ± 0.35Ac | 8.96 ± 0.07Bd | 3.75 ± 0.11Dd | |
可溶性糖 Soluble sugar (mg·g-1) | 0 | 17.04 ± 1.22Cd | 27.07 ± 1.42Ad | 22.54 ± 0.61Bc | 12.26 ± 1.64Db |
5 | 18.60 ± 0.64Cc | 30.27 ± 0.70Ab | 23.68 ± 0.85Bb | 12.36 ± 0.80Db | |
25 | 21.25 ± 1.21Cb | 32.00 ± 1.47Aa | 25.40 ± 1.50Ba | 14.36 ± 0.95Da | |
50 | 22.23 ± 0.51Ba | 29.05 ± 1.36Ac | 20.81 ± 1.10Cd | 13.62 ± 0.49Da | |
100 | 15.82 ± 0.97Ce | 27.23 ± 1.29Ad | 19.09 ± 1.06Be | 10.45 ± 0.43Dc | |
200 | 13.92 ± 0.87Cf | 26.53 ± 0.80Ad | 19.62 ± 0.44Be | 10.50 ± 1.08Dc |
抗氧化酶和丙二醛 Antioxidative enzyme and malondialdehyde | CaCl2 浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
POD (U·g-1) | 0 | 1 034.32 ± 65.54Bb | 1 135.20 ± 29.29Ac | 827.85 ± 37.30Cc | 667.22 ± 38.99Db |
5 | 1 043.20 ± 37.77Bb | 1 240.38 ± 60.69Ab | 967.84 ± 21.11Bb | 825.57 ± 59.04Ca | |
25 | 1 173.26 ± 21.35Bb | 1 381.73 ± 35.64Aa | 1 111.83 ± 29.74Ba | 883.05 ± 54.03Ca | |
50 | 1 185.94 ± 52.78Aa | 1 158.08 ± 61.95Abc | 802.64 ± 26.22Bc | 639.95 ± 17.27Cb | |
100 | 1 048.06 ± 55.63Ab | 998.21 ± 27.68Ad | 661.87 ± 52.83Bd | 458.34 ± 31.80Cc | |
200 | 890.13 ± 24.29Ac | 726.07 ± 56.01Be | 446.48 ± 63.14Ce | 398.46 ± 13.29Cc | |
CAT (U·g-1) | 0 | 49.58 ± 5.27Ccd | 91.00 ± 4.84Ac | 66.25 ± 2.84Bc | 40.33 ± 2.02Dc |
5 | 58.18 ± 3.69Cb | 96.86 ± 3.75Abc | 75.56 ± 3.61Bb | 44.21 ± 0.98Db | |
25 | 66.18 ± 5.21Ca | 106.90 ± 3.97Aa | 81.33 ± 2.30Ba | 50.22 ± 0.99Da | |
50 | 53.87 ± 2.95Cbc | 102.75 ± 4.81Ab | 71.13 ± 2.85Bb | 37.60 ± 1.24Dd | |
100 | 44.38 ± 4.29Cd | 78.95 ± 2.41Ad | 52.96 ± 1.65Bd | 32.82 ± 1.39De | |
200 | 42.96 ± 3.79Cd | 63.27 ± 2.40Ae | 49.20 ± 2.66Bd | 30.58 ± 2.24De | |
SOD (U·g-1) | 0 | 449.72 ± 15.86Ce | 761.24 ± 19.78Ac | 511.24 ± 1.00Bd | 362.00 ± 4.92Dc |
5 | 531.29 ± 17.48Cc | 783.43 ± 7.93Ab | 566.58 ± 10.39Bb | 391.70 ± 1.45Db | |
25 | 598.90 ± 5.61Ca | 878.34 ± 3.26Aa | 626.77 ± 20.00Ba | 416.30 ± 2.84Da | |
50 | 566.31 ± 1.98Bb | 797.08 ± 3.70Ab | 545.40 ± 5.00Cc | 387.04 ± 5.43Db | |
100 | 516.22 ± 1.12Bc | 660.98 ± 10.88Ad | 431.00 ± 10.00Ce | 333.14 ± 3.22Dd | |
200 | 468.37 ± 2.77Bd | 629.66 ± 13.24Ae | 404.64 ± 4.00Cf | 219.90 ± 9.99De | |
MDA (μmol·g-1) | 0 | 5.29 ± 0.37Dbc | 8.83 ± 0.29Cab | 9.49 ± 0.23Bbc | 12.68 ± 0.20Abc |
5 | 5.19 ± 0.17Dc | 8.00 ± 0.62Cbc | 9.04 ± 0.33Bcd | 11.77 ± 0.16Acd | |
25 | 5.04 ± 0.41Dc | 7.50 ± 0.75Cc | 8.47 ± 0.14Bd | 11.29 ± 0.44Ad | |
50 | 5.81 ± 0.53Dbc | 8.59 ± 0.30Cab | 10.40 ± 0.56Bb | 13.66 ± 0.35Ab | |
100 | 6.00 ± 0.41Dab | 8.94 ± 0.63Cab | 11.12 ± 0.75Ba | 15.22 ± 0.46Aa | |
200 | 6.60 ± 0.45Da | 9.64 ± 0.61Ca | 11.58 ± 0.27Ba | 15.53 ± 0.34Aa |
Table 2 Effects of different CaCl2 concentrations on peroxidase, catalase, superoxide dismutase activity and malondialdehyde content of Paspalum wettsteinii seedlings (mean ± SE)
抗氧化酶和丙二醛 Antioxidative enzyme and malondialdehyde | CaCl2 浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
POD (U·g-1) | 0 | 1 034.32 ± 65.54Bb | 1 135.20 ± 29.29Ac | 827.85 ± 37.30Cc | 667.22 ± 38.99Db |
5 | 1 043.20 ± 37.77Bb | 1 240.38 ± 60.69Ab | 967.84 ± 21.11Bb | 825.57 ± 59.04Ca | |
25 | 1 173.26 ± 21.35Bb | 1 381.73 ± 35.64Aa | 1 111.83 ± 29.74Ba | 883.05 ± 54.03Ca | |
50 | 1 185.94 ± 52.78Aa | 1 158.08 ± 61.95Abc | 802.64 ± 26.22Bc | 639.95 ± 17.27Cb | |
100 | 1 048.06 ± 55.63Ab | 998.21 ± 27.68Ad | 661.87 ± 52.83Bd | 458.34 ± 31.80Cc | |
200 | 890.13 ± 24.29Ac | 726.07 ± 56.01Be | 446.48 ± 63.14Ce | 398.46 ± 13.29Cc | |
CAT (U·g-1) | 0 | 49.58 ± 5.27Ccd | 91.00 ± 4.84Ac | 66.25 ± 2.84Bc | 40.33 ± 2.02Dc |
5 | 58.18 ± 3.69Cb | 96.86 ± 3.75Abc | 75.56 ± 3.61Bb | 44.21 ± 0.98Db | |
25 | 66.18 ± 5.21Ca | 106.90 ± 3.97Aa | 81.33 ± 2.30Ba | 50.22 ± 0.99Da | |
50 | 53.87 ± 2.95Cbc | 102.75 ± 4.81Ab | 71.13 ± 2.85Bb | 37.60 ± 1.24Dd | |
100 | 44.38 ± 4.29Cd | 78.95 ± 2.41Ad | 52.96 ± 1.65Bd | 32.82 ± 1.39De | |
200 | 42.96 ± 3.79Cd | 63.27 ± 2.40Ae | 49.20 ± 2.66Bd | 30.58 ± 2.24De | |
SOD (U·g-1) | 0 | 449.72 ± 15.86Ce | 761.24 ± 19.78Ac | 511.24 ± 1.00Bd | 362.00 ± 4.92Dc |
5 | 531.29 ± 17.48Cc | 783.43 ± 7.93Ab | 566.58 ± 10.39Bb | 391.70 ± 1.45Db | |
25 | 598.90 ± 5.61Ca | 878.34 ± 3.26Aa | 626.77 ± 20.00Ba | 416.30 ± 2.84Da | |
50 | 566.31 ± 1.98Bb | 797.08 ± 3.70Ab | 545.40 ± 5.00Cc | 387.04 ± 5.43Db | |
100 | 516.22 ± 1.12Bc | 660.98 ± 10.88Ad | 431.00 ± 10.00Ce | 333.14 ± 3.22Dd | |
200 | 468.37 ± 2.77Bd | 629.66 ± 13.24Ae | 404.64 ± 4.00Cf | 219.90 ± 9.99De | |
MDA (μmol·g-1) | 0 | 5.29 ± 0.37Dbc | 8.83 ± 0.29Cab | 9.49 ± 0.23Bbc | 12.68 ± 0.20Abc |
5 | 5.19 ± 0.17Dc | 8.00 ± 0.62Cbc | 9.04 ± 0.33Bcd | 11.77 ± 0.16Acd | |
25 | 5.04 ± 0.41Dc | 7.50 ± 0.75Cc | 8.47 ± 0.14Bd | 11.29 ± 0.44Ad | |
50 | 5.81 ± 0.53Dbc | 8.59 ± 0.30Cab | 10.40 ± 0.56Bb | 13.66 ± 0.35Ab | |
100 | 6.00 ± 0.41Dab | 8.94 ± 0.63Cab | 11.12 ± 0.75Ba | 15.22 ± 0.46Aa | |
200 | 6.60 ± 0.45Da | 9.64 ± 0.61Ca | 11.58 ± 0.27Ba | 15.53 ± 0.34Aa |
叶绿素 Chlorophyll (chl) (mg·g-1) | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
Chl a (mg·g-1) | 0 | 3.81 ± 0.34Aa | 4.41 ± 0.19Aab | 3.65 ± 0.32Aa | 2.43 ± 0.06Aabc |
5 | 4.38 ± 0.34ABa | 4.57 ± 0.20Aab | 3.75 ± 0.13ABa | 2.74 ± 0.31Bab | |
25 | 5.23 ± 0.15Aa | 5.00 ± 0.19Aa | 4.34 ± 0.11Aa | 3.20 ± 0.19Aa | |
50 | 4.08 ± 0.16Aa | 4.03 ± 0.13Aab | 2.89 ± 0.12ABab | 2.47 ± 0.13Bab | |
100 | 3.46 ± 0.13Aa | 3.33 ± 0.11Aab | 2.48 ± 0.08Aab | 2.20 ± 0.07Abc | |
200 | 2.26 ± 0.04Aa | 2.06 ± 0.14Ab | 1.94 ± 0.24Ab | 1.72 ± 0.11Ac | |
Chl b (mg·g-1) | 0 | 1.06 ± 0.08Aab | 1.24 ± 0.03Aa | 1.41 ± 0.06Aab | 1.26 ± 0.04Aa |
5 | 1.33 ± 0.05Aa | 1.71 ± 0.09Aa | 2.05 ± 0.07Aa | 1.67 ± 0.02Aa | |
25 | 1.19 ± 0.06Aa | 1.57 ± 0.03Aa | 1.75 ± 0.03Aab | 1.59 ± 0.02Aa | |
50 | 1.12 ± 0.10Aab | 1.31 ± 0.06Aa | 1.74 ± 0.02Aab | 1.45 ± 0.06Aa | |
100 | 0.87 ± 0.06Aab | 1.20 ± 0.06Aa | 1.38 ± 0.09Ab | 1.23 ± 0.12Aa | |
200 | 0.65 ± 0.04Bb | 1.13 ± 0.09Aa | 1.20 ± 0.06Ab | 0.84 ± 0.13ABa | |
Chl a+b (mg·g-1) | 0 | 4.74 ± 0.47Aabc | 5.92 ± 0.15Aab | 6.48 ± 0.24Aab | 5.00 ± 0.30Aab |
5 | 5.95 ± 0.09Aa | 7.09 ± 0.08Aa | 7.85 ± 0.31Aa | 6.51 ± 0.17Aa | |
25 | 5.44 ± 0.17Aab | 6.23 ± 0.37Aab | 7.23 ± 0.17Aab | 5.77 ± 0.32Aab | |
50 | 4.65 ± 0.17Aabc | 5.55 ± 0.35Aab | 6.19 ± 0.59Aab | 5.04 ± 0.33Aab | |
100 | 3.69 ± 0.38Bbc | 5.05 ± 0.46Abc | 5.37 ± 0.18Aab | 4.74 ± 0.15Ab | |
200 | 3.08 ± 0.65Bc | 3.78 ± 0.77ABc | 4.24 ± 0.18Ab | 3.15 ± 0.15Bc |
Table 3 Effects of different CaCl2 concentrations on the chlorophyll content of Paspalum wettsteinii seedlings (mean ± SE)
叶绿素 Chlorophyll (chl) (mg·g-1) | CaCl2浓度 CaCl2 concentrations (mmol·L-1) | 时间处理 Time treatment (d) | |||
---|---|---|---|---|---|
7 | 14 | 21 | 28 | ||
Chl a (mg·g-1) | 0 | 3.81 ± 0.34Aa | 4.41 ± 0.19Aab | 3.65 ± 0.32Aa | 2.43 ± 0.06Aabc |
5 | 4.38 ± 0.34ABa | 4.57 ± 0.20Aab | 3.75 ± 0.13ABa | 2.74 ± 0.31Bab | |
25 | 5.23 ± 0.15Aa | 5.00 ± 0.19Aa | 4.34 ± 0.11Aa | 3.20 ± 0.19Aa | |
50 | 4.08 ± 0.16Aa | 4.03 ± 0.13Aab | 2.89 ± 0.12ABab | 2.47 ± 0.13Bab | |
100 | 3.46 ± 0.13Aa | 3.33 ± 0.11Aab | 2.48 ± 0.08Aab | 2.20 ± 0.07Abc | |
200 | 2.26 ± 0.04Aa | 2.06 ± 0.14Ab | 1.94 ± 0.24Ab | 1.72 ± 0.11Ac | |
Chl b (mg·g-1) | 0 | 1.06 ± 0.08Aab | 1.24 ± 0.03Aa | 1.41 ± 0.06Aab | 1.26 ± 0.04Aa |
5 | 1.33 ± 0.05Aa | 1.71 ± 0.09Aa | 2.05 ± 0.07Aa | 1.67 ± 0.02Aa | |
25 | 1.19 ± 0.06Aa | 1.57 ± 0.03Aa | 1.75 ± 0.03Aab | 1.59 ± 0.02Aa | |
50 | 1.12 ± 0.10Aab | 1.31 ± 0.06Aa | 1.74 ± 0.02Aab | 1.45 ± 0.06Aa | |
100 | 0.87 ± 0.06Aab | 1.20 ± 0.06Aa | 1.38 ± 0.09Ab | 1.23 ± 0.12Aa | |
200 | 0.65 ± 0.04Bb | 1.13 ± 0.09Aa | 1.20 ± 0.06Ab | 0.84 ± 0.13ABa | |
Chl a+b (mg·g-1) | 0 | 4.74 ± 0.47Aabc | 5.92 ± 0.15Aab | 6.48 ± 0.24Aab | 5.00 ± 0.30Aab |
5 | 5.95 ± 0.09Aa | 7.09 ± 0.08Aa | 7.85 ± 0.31Aa | 6.51 ± 0.17Aa | |
25 | 5.44 ± 0.17Aab | 6.23 ± 0.37Aab | 7.23 ± 0.17Aab | 5.77 ± 0.32Aab | |
50 | 4.65 ± 0.17Aabc | 5.55 ± 0.35Aab | 6.19 ± 0.59Aab | 5.04 ± 0.33Aab | |
100 | 3.69 ± 0.38Bbc | 5.05 ± 0.46Abc | 5.37 ± 0.18Aab | 4.74 ± 0.15Ab | |
200 | 3.08 ± 0.65Bc | 3.78 ± 0.77ABc | 4.24 ± 0.18Ab | 3.15 ± 0.15Bc |
Fig. 3 Effects of different CaCl2 concentrations on photosynthetic parameters of Paspalum wettsteinii seedlings (mean ± SE). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate. Different uppercase letters indicate significant difference between treatments at different times of the same concentration (p < 0.05); different lowercase letters indicate significant difference between different concentrations at the same time (p < 0.05).
隶属函数值 Sobordinative function | ||||||
---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | |
I1 | 0.459 | 0.513 | 0.333 | 0.536 | 0.636 | 0.553 |
I2 | 0.400 | 0.478 | 0.635 | 0.519 | 0.523 | 0.404 |
I3 | 0.456 | 0.370 | 0.656 | 0.593 | 0.667 | 0.467 |
I4 | 0.412 | 0.563 | 0.664 | 0.617 | 0.606 | 0.619 |
I5 | 0.556 | 0.667 | 0.600 | 0.444 | 0.583 | 0.407 |
I6 | 0.667 | 0.556 | 0.500 | 0.500 | 0.556 | 0.500 |
I7 | 0.500 | 0.444 | 0.556 | 0.500 | 0.333 | 0.556 |
I8 | 0.667 | 0.500 | 0.417 | 0.583 | 0.500 | 0.583 |
I9 | 0.333 | 0.333 | 0.400 | 0.504 | 0.502 | 0.403 |
I10 | 0.600 | 0.646 | 0.378 | 0.476 | 0.400 | 0.611 |
I11 | 0.467 | 0.548 | 0.417 | 0.567 | 0.556 | 0.667 |
I12 | 0.522 | 0.422 | 0.500 | 0.398 | 0.664 | 0.447 |
I13 | 0.475 | 0.351 | 0.470 | 0.595 | 0.662 | 0.339 |
I14 | 0.519 | 0.655 | 0.485 | 0.529 | 0.364 | 0.560 |
I15 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |
I16 | 0.526 | 0.468 | 0.634 | 0.459 | 0.445 | 0.364 |
I17 | 0.391 | 0.597 | 0.362 | 0.500 | 0.372 | 0.364 |
I18 | 0.491 | 0.500 | 0.625 | 0.436 | 0.481 | 0.347 |
I19 | 0.587 | 0.499 | 0.557 | 0.370 | 0.411 | 0.593 |
I20 | 0.583 | 0.657 | 0.567 | 0.556 | 0.333 | 0.600 |
I21 | 0.437 | 0.541 | 0.636 | 0.513 | 0.557 | 0.360 |
I22 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.457 |
综合评价值 Comprehansive evaluation | 0.502 | 0.514 | 0.518 | 0.509 | 0.507 | 0.486 |
Table 5 Sobordinative function among all growth and physiological indices of Paspalum wettsteinii seedlings under different CaCl2 concentrations
隶属函数值 Sobordinative function | ||||||
---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | |
I1 | 0.459 | 0.513 | 0.333 | 0.536 | 0.636 | 0.553 |
I2 | 0.400 | 0.478 | 0.635 | 0.519 | 0.523 | 0.404 |
I3 | 0.456 | 0.370 | 0.656 | 0.593 | 0.667 | 0.467 |
I4 | 0.412 | 0.563 | 0.664 | 0.617 | 0.606 | 0.619 |
I5 | 0.556 | 0.667 | 0.600 | 0.444 | 0.583 | 0.407 |
I6 | 0.667 | 0.556 | 0.500 | 0.500 | 0.556 | 0.500 |
I7 | 0.500 | 0.444 | 0.556 | 0.500 | 0.333 | 0.556 |
I8 | 0.667 | 0.500 | 0.417 | 0.583 | 0.500 | 0.583 |
I9 | 0.333 | 0.333 | 0.400 | 0.504 | 0.502 | 0.403 |
I10 | 0.600 | 0.646 | 0.378 | 0.476 | 0.400 | 0.611 |
I11 | 0.467 | 0.548 | 0.417 | 0.567 | 0.556 | 0.667 |
I12 | 0.522 | 0.422 | 0.500 | 0.398 | 0.664 | 0.447 |
I13 | 0.475 | 0.351 | 0.470 | 0.595 | 0.662 | 0.339 |
I14 | 0.519 | 0.655 | 0.485 | 0.529 | 0.364 | 0.560 |
I15 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 |
I16 | 0.526 | 0.468 | 0.634 | 0.459 | 0.445 | 0.364 |
I17 | 0.391 | 0.597 | 0.362 | 0.500 | 0.372 | 0.364 |
I18 | 0.491 | 0.500 | 0.625 | 0.436 | 0.481 | 0.347 |
I19 | 0.587 | 0.499 | 0.557 | 0.370 | 0.411 | 0.593 |
I20 | 0.583 | 0.657 | 0.567 | 0.556 | 0.333 | 0.600 |
I21 | 0.437 | 0.541 | 0.636 | 0.513 | 0.557 | 0.360 |
I22 | 0.500 | 0.500 | 0.500 | 0.500 | 0.500 | 0.457 |
综合评价值 Comprehansive evaluation | 0.502 | 0.514 | 0.518 | 0.509 | 0.507 | 0.486 |
[1] | .Bai XS (2019). Adaptive responses of soybean leaves to osmotic retion under drought and salt stress.Modern Agricultural Sciences and Technology, (10), 5-6. |
[柏新盛 (2019). 旱盐胁迫下大豆叶片渗透调节的适应性响应. 现代农业科技, (10), 5-6.] | |
[2] | .Bor M, Özdemir F, Türkan I (2003). The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beetBeta vulgaris L. and wild beet Beta maritima L. Plant Science, 164, 77-84. |
[3] |
.Celik Ö, Atak C (2012). The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties.Turkish Journal of Biology, 36, 339-356.
DOI URL |
[4] | .Chen SY, Zhao YM, Li ZX, Han H, Hou XL, Cai LP (2018). Effects of Pb, Cd and acid stress on seed germination, seedling growth and antioxidant enzyme activities ofPaspalum wettsteinii. Acta Agrestia Sinica, 26, 1173-1180. |
[陈顺钰, 赵雅曼, 李宗勋, 韩航, 侯晓龙, 蔡丽平 (2018). Pb、Cd和酸胁迫对宽叶雀稗种子萌发、幼苗生长及抗氧化酶活性的影响. 草地学报, 26, 1173-1180.] | |
[5] | .Cheng GL, Zhang HJ, Zhao JR, Liu CG, Wang YD, Wang XG, Wang RH, Chen CY, Xu TJ (2015). Vigor and physiological changes of different genotypes of maize seed (Zea mays L.) under critical stress storage conditions. Scientia Agricultura Sinica, 48, 33-42. |
[成广雷, 张海娇, 赵久然, 刘春阁, 王元东, 王晓光, 王荣焕, 陈传永, 徐田军 (2015). 临界胁迫贮藏条件下不同基因型玉米种子活力及生理变化. 中国农业科学, 48, 33-42.] | |
[6] | .Doganlar ZB, Demir K, Basak H, Gul IH (2010). Effects of salt stress on pigment and total soluble protein contents of three different tomato cultivars.African Journal of Agricultural Research, 15, 2056-2065. |
[7] |
.Farhangi-Abriz S, Torabian S (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress.Ecotoxicology and Environmental Safety, 137, 64-70.
DOI URL PMID |
[8] | .Ferit Sönmez, Füsun Gülser (2016). Effects of humic acid and CaNO32 on nutrient contents in pepper (Apsicum annuum) seedling under salt stress. Acta Agriculturae Scandinavica, 66, 1-6. |
[9] | .Gabara B, Krajewska M, Stecka E (1995). Calcium effect on number, dimension and activity of nucleoli in cortex cells of pea (Pisum sativum L.) roots after treatment with heavy metals. Plant Science, 111, 153-161. |
[10] |
.Grotkopp E, Rejmánek M, Rost TL (2002). Toward a causal explanation of plant invasiveness: Seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist, 159, 396-419.
DOI URL PMID |
[11] | .Guo YY, Yu HY, Yang MM, Kong DS, Zhang YJ (2018). Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots ofLycium ruthenicum Murr. seedling. Russian Journal of Plant Physiology, 65, 244-250. |
[12] | .Jia PY, Tian FP, Liu YF, Liu Y, Wu GL, Hu Y, Lu Y (2017). Response of leaf physiological indexes to short-term salinity stress for seedlings ofSonchus oleraceus L. Acta Botanica Boreali-Occidentalia Sinica, 37, 1303-1311. |
[贾鹏燕, 田福平, 刘一帆, 刘玉, 武高林, 胡宇, 路远 (2017). 短期盐胁迫对苦苣菜幼苗叶片抗逆生理指标的影响. 西北植物学报, 37, 1303-1311.] | |
[13] | .Jia XP, Deng YM, Sun XB, Liang LJ (2015). Impacts of salt stress on the growth and physiological characteristics ofPaspalum vaginatum. Acta Prataculturae Sinica, 24, 204-212. |
[贾新平, 邓衍明, 孙晓波, 梁丽建 (2015). 盐胁迫对海滨雀稗生长和生理特性的影响. 草业学报, 24, 204-212.] | |
[14] | .Jiang ZC, Luo WQ, Deng Y, Cao JH, Qin XM, Li YQ, Yang QY (2014). The leakage of water and soil in the karst peak cluster depression and its prevention and treatment.Acta Geoscientica Sinica, 35, 535-542. |
[蒋忠诚, 罗为群, 邓艳, 曹建华, 覃星铭, 李衍青, 杨奇勇 (2014). 岩溶峰丛洼地水土漏失及防治研究. 地球学报, 35, 535-542.] | |
[15] |
.Jose AM, Maria O, Agustina BV, Pedro DV, Maria SB, Jose H (2017). Plant responses to salt stress: Adaptive mechanisms.Agronomy, 7, 18. DOI: 10.3390/agronomy7010018.
DOI URL |
[16] |
.Killi D, Haworth M (2017). Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress.Plants, 6, 49. DOI: 10.3390/plants6040049.
DOI URL PMID |
[17] | .Lai ZQ (1989). Studies on tropical and subtropical fine grassPaspalum wettsteiini. Grassland of China, 11, 60-63. |
[赖志强 (1989). 热带亚热带优良牧草宽叶雀稗的研究. 中国草地, 11, 60-63.] | |
[18] | .Li HS (2000). Principles and Techniques of Plant Physiological and Biochemical Experiments. Higher Education Press, Beijing. |
[李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[19] | .Li XF (2006). Speciation of Calcium in Soil and Plants’ Leaves in Karst Ecosystem and Its Ecological Significance. Master degree dissertation, Guangxi Normal University, Guilin, Guangxi. |
[李小方 (2006). 岩溶环境中土壤-植物系统钙元素形态分析及其生态意义. 硕士学位论文, 广西师范大学, 广西桂林.] | |
[20] |
.Li XG, Meng QW, Jiang GQ, Zou Q (2003). The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle.Photosynthetica, 41, 259-265.
DOI URL |
[21] |
.Li Z, Tan XF, Lu K, Liu ZM, Wu LL (2017). The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions.Photosynthetica, 55, 553-560.
DOI URL |
[22] |
.Li ZW, Xu XL, Zhu JX, Xu CH, Wang KL (2019). Effects of lithology and geomorphology on sediment yield in karst mountainous catchments. Geomorphology, 343, 119-128.
DOI URL |
[23] |
.Liang WJ, Wang ML, Ai XZ (2009). The role of calcium in regulating photosynthesis and related physiological indexes of cucumber seedlings under low light intensity and suboptimal temperature stress.Scientia Horticulturae, 123, 34-38.
DOI URL |
[24] | .Long JM, Li XG (2016). Effects of different sowing date on the growth and agronomic traits ofPaspalum auriculatum. Journal of Anhui Agricultural Sciences, 44, 124-126. |
[龙金梅, 李显刚 (2016). 不同播种期对宽叶雀稗生长发育和农艺性状的影响. 安徽农业科学, 44, 124-126.] | |
[25] | .Luo D, Shi YJ, Song FH, Li JC (2019). Effects of salt stress on growth, photosynthetic and fluorescence characteristics, and root architecture ofCorylus heterophylla × C. avellan seedlings. Journal of Applied Ecology, 30, 3376-3384. |
[罗达, 史彦江, 宋锋惠, 李嘉诚 (2019). 盐胁迫对平欧杂种榛幼苗生长、光合荧光特性及根系构型的影响. 应用生态学报, 30, 3376-3384.] | |
[26] | .Mi YW, Wang GX, Gong CW, Cai ZP, Wu WG (2018). Effects of salt stress on growth and physiology ofIsatis indigotica seedlings. Acta Prataculturae Sinica, 27, 43-51. |
[米永伟, 王国祥, 龚成文, 蔡子平, 武伟国 (2018). 盐胁迫对菘蓝幼苗生长和抗性生理的影响. 草业学报, 27, 43-51.] | |
[27] |
.Mittler R, Vanderauwera S, Gollery M, van Breusegem F (2004). Reactive oxygen gene network of plants.Trends in Plant Science, 9, 490-498.
DOI URL |
[28] | .Ning MQ, Zhao J (2013). The dynamic evolution of rocky desertification in Guizhou during 2005-2010.Guizhou Agricultural Science, (9), 75-78. |
[宁茂岐, 赵佳 (2013).“十一五”期间贵州省石漠化的变化情况. 贵州农业科学, (9), 75-78.] | |
[29] | .Pushpam R, Rangasamy SRS (2000). Variations in chlorophyll contents of rice in relation to salinity.Crop Research, 20, 197-200. |
[30] | .Qu XH, Zhao LL, Wang PC, Chen C, Tang HJ, Zeng HX (2017). Drought resistance of sixPaspalum wettsteinii materials during germination period. Seed, 36, 24-27. |
[屈兴红, 赵丽丽, 王普昶, 陈超, 唐华江, 曾洪学 (2017). 6个宽叶雀稗材料种子萌发期抗旱性研究. 种子, 36, 24-27.] | |
[31] | .Shen LH, Chen JP, Huang YH (2001). Research on characters ofPaspalum wettsteinii. Fujian Science & Technology of Tropical Crops, (2), 1-8. |
[沈林洪, 陈晶萍, 黄炎和 (2001). 宽叶雀稗的性状研究. 福建热作科技, (2), 1-8.] | |
[32] |
.Sneha S, Rishi A, Chandra S (2014). Effect of short term salt stress on chlorophyll content, protein and activities of catalase and ascorbate peroxidase enzymes in pearl millet.American Journal of Plant Physiology, 9, 32-37.
DOI URL |
[33] | .Sun CC, Zhao HY, Zheng CX (2017). Effects of NaCl stress on osmolyte and proline metabolism inGinkgo biloba seedling. Plant Physiology Journal, 53, 470-476. |
[孙聪聪, 赵海燕, 郑彩霞 (2017). NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 53, 470-476.] | |
[34] | .Wang B, Yu MK, Sun HJ, Cheng XR, Shan QH, Fang YM (2009). Photosynthetic characters ofQuercus acutissima from different provenances under effects of salt stress. Journal of Applied Ecology, 20, 1817-1824. |
[王标, 虞木奎, 孙海菁, 成向荣, 单奇华, 方炎明 (2009). 盐胁迫对不同种源麻栎叶片光合特征的影响. 应用生态学报, 20, 1817-1824.] | |
[35] | .Wang JY, Ao H, Zhang J (2003). Experimental Techniques and Principles of Plant Physiology and Biochemistry. Northeast Forestry University Press, Harbin. 135-136. |
[王晶英, 敖红, 张杰 (2003). 植物生理生化实验技术与原理. 东北林业大学出版社, 哈尔滨. 135-136.] | |
[36] | .Wang SJ, Li YB (2007). Problems and development trends about researches on karst rocky desertification.Advances in Earth Science, 22, 573-582. |
[王世杰, 李阳兵 (2007). 喀斯特石漠化研究存在的问题与发展趋势. 地球科学进展, 22, 573-582.] | |
[37] | .Wang WJ, Zhao LL, Wang PC, Chen C, Yu QQ, Zhang YJ (2019). Effect of different nitrogen levels on the physiology and ecology ofPaspalum wettsteinii. Pratacultural Science, 36, 744-753. |
[王文娟, 赵丽丽, 王普昶, 陈超, 余青青, 张宇君 (2019). 氮素水平对宽叶雀稗生理生态的影响. 草业科学, 36, 744-753.] | |
[38] | .Xie YG, Liu JM, Liao XF, Li P (2017). Effects of calcium stress on physiological and biochemical characteristics of honeysuckle. Jiangsu Agricultural Science, 45, 144-146. |
[谢元贵, 刘济明, 廖小锋, 李鹏 (2017). 钙胁迫对金银花生理生化特性的影响. 江苏农业科学, 45, 144-146.] | |
[39] | .Xu DH, Wang WY, Gao TP, Fang XW, Gao XG, Li JH, Bu HY, Mu J (2017). Calcium alleviates decreases in photosynthesis under salt stress by enhancing antioxidant metabolism and adjusting solute accumulation in Calligonum mongolicum. Conservation Physiology, 5, cox060. DOI: 10.1093/conphys/cox060. |
[40] | .Yang FR, Liu WY, Huang J, Wei YM, Jin Q (2017). Physiological responses of different quinoa varieties to salt stress and evaluation of salt tolerance.Acta Prataculturae Sinica, 26, 77-88. |
[杨发荣, 刘文瑜, 黄杰, 魏玉明, 金茜 (2017). 不同藜麦品种对盐胁迫的生理响应及耐盐性评价. 草业学报, 26, 77-88.] | |
[41] |
.Yang YQ, Guo Y (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses.New Phytologist, 217, 523-539.
DOI URL PMID |
[42] |
.Zeng C, Wang SJ, Bai XY, Li YB, Tian YC, Li Y, Wu LH, Luo GJ (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS.Solid Earth, 8, 721-736.
DOI URL |
[43] |
.Zhang HH, Zhang XL, Li X, Ding JN, Zhu WX, Qi F, Zhang T, Tian Y, Sun GY (2012). Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics ofMorus alba seedlings. Journal of Applied Ecology, 23, 625-631.
URL PMID |
[张会慧, 张秀丽, 李鑫, 丁俊男, 朱文旭, 齐飞, 张婷, 田野, 孙广玉 (2012). NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响. 应用生态学报, 23, 625-631.]
URL PMID |
|
[44] | .Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance.Chinese Bulletin of Botany, 34, 444-448. |
[张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 34, 444-448.] | |
[45] | .Zhao SJ, Shi GA, Dong XC (2002). Experimental Guidance on Crop Physiology. Science Press, Beijing. |
[赵世杰, 史国安, 董新纯 (2002). 作物生理学实验指导. 科学出版社, 北京.] | |
[46] | .Zhao YM, Chen SY, Zhang Y, Jiang Y, Hou XL, Cai LP (2019). Effects of acid and cadmium stresses on seed germination, seedling growth, and subcellular structure ofPaspalum wettsteinii. Journal of Agro-Environment Science, 38, 60-69. |
[赵雅曼, 陈顺钰, 张韵, 姜云, 侯晓龙, 蔡丽平 (2019). 酸、Cd胁迫对宽叶雀稗种子萌发、幼苗生长及亚细胞结构的影响. 农业环境科学学报, 38, 60-69.] | |
[47] | .Zhou Y, Zhao YJ, Huang LJ, Tang NY, Tang XQ, Wang KC (2019). Physiological responses ofSchizonepeta tenuifolia Briq. seedlings to salt stress. Journal of Nuclear Agricultural Sciences, 33, 166-175. |
[周莹, 赵永娟, 黄丽瑾, 唐楠煜, 唐晓清, 王康才 (2019). 荆芥幼苗对盐胁迫的生理响应. 核农学报, 33, 166-175.] |
[1] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Bei DENG feng XiaoWANG. Meta-analysis analysis the effects of environmental stress on the physiological and ecological characteristics of herbaceous and woody plants in the hydro-fluctuation belt of the Three Gorges Reservoir area [J]. Chin J Plant Ecol, 2024, 48(5): 623-637. |
[3] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[4] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[5] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[6] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[7] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
[8] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[9] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[10] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[11] | ZHANG Hong-Xiang, WEN Zhi-Bin, WANG Qian. Population genetic structure of Malus sieversii and environmental adaptations [J]. Chin J Plant Ecol, 2022, 46(9): 1098-1108. |
[12] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[13] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[14] | WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 642-655. |
[15] | HUANG Dong-Liu, XIANG Wei, LI Zhong-Guo, ZHU Shi-Dan. Hydraulic architecture and safety margin in ten afforestation species in a lower subtropical region [J]. Chin J Plant Ecol, 2022, 46(5): 602-612. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1397
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 917
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn