Chin J Plant Ecol ›› 2017, Vol. 41 ›› Issue (9): 972-984.DOI: 10.17521/cjpe.2017.0105

Special Issue: 遥感生态学

• Research Articles • Previous Articles     Next Articles

Characteristics of normalized difference vegetation index of biological soil crust during the succession process of artificial sand-fixing vegetation in the Tengger Desert, Northern China

Yun ZHAO1,2, Rong-Liang JIA1,*(), Yan-Hong GAO1, Yuan-Yuan ZHOU1,2, Jia-Ling TENG1,2   

  1. 1Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

    2University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-05-24 Revised:2017-08-26 Online:2017-09-10 Published:2017-10-23
  • Contact: Rong-Liang JIA

Abstract:

Aims Biological soil crust (hereafter crust) affects normalized difference vegetation index (NDVI) values in arid desert ecosystems. This study aimed to demonstrate the feasibility of combining crust NDVI values with meteorological data to distinguish the crust successional stage at the regional scale. Meanwhile, the characteristics of crust NDVI could provide the basis for the error analysis of NDVI-based surface ecological parameters estimation in desert ecosystems. We also suggested the optimum periods for crust observation based on the multi-temporal remote sensing images.Methods NDVI values of five types of dominant crusts, three typical sand-fixing shrubs and bare sand were collected by spectrometer in the field. Crusts and shrubs were randomly selected in revegetated areas established in 1956, 1964, and 1973 at Shapotou, which is on the southeastern edge of the Tengger Desert. We used the space-for-time method to study the characteristics of crust NDVI values and their responses to precipitation and temperature during the succession process of artificial sand-fixing vegetation. Additionally, we evaluated the contribution of crust NDVI values to the whole ecosystem NDVI values by comparing the NDVI values of crusts, shrubs and bare sand.Important findings 1) With succession process of the artificial sand-fixing vegetation, the crust NDVI values significantly increased. Among different crust types, we found the following order of NDVI values: Didymodon vinealis crust > Bryum argenteum crust > mixed crust > lichen crust > algae crust. 2) Crust NDVI values were significantly affected by precipitation, temperature and their interaction, and the influences showed significant seasonal differences. Furthermore, we found significantly linear correlations between crust NDVI value and precipitation, and between crust NDVI value and the shallow soil moisture content covered by crust. A significantly negative linear correlation between daily mean temperature and crust NDVI value, and a significantly exponential correlation between the surface temperature of crust and its NDVI value. With the succession process of artificial sand-fixing vegetation, the response of crust NDVI value to precipitation and temperature became more sensitive. In addition, the response of crust NDVI value to temperature was more sensitive in spring than in summer, while that to precipitation was less sensitive in spring than in summer. 3) Moss crust NDVI value was significantly higher than that of shrubs and bare sand after the rainfall event in spring, while shrubs NDVI value was significantly higher than that of crust after the rainfall event in summer. Considering the coverage weights of different ground features in sand-fixing areas, crust NDVI values contributed 90.01% and 82.53% in spring and summer, respectively, to the regional NDVI values, which were higher than those of shrubs (9.99% and 17.47% in spring and in summer, respectively). Additionally, with the succession process of artificial sand-fixing vegetation, crust NDVI values contributed more, while shrubs contributed less to regional NDVI values.

http://jtp.cnki.net/bilingual/detail/html/ZWSB201709005

Key words: normalized difference vegetation index, biological soil crust, vegetation succession, precipitation, temperature