Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (8): 841-848.DOI: 10.3724/SP.J.1258.2012.00841
Special Issue: 青藏高原植物生态学:生理生态学
• Research Articles • Previous Articles Next Articles
HU Xiao-Wen, WANG Juan, WANG Yan-Rong*()
Received:
2012-03-16
Accepted:
2012-06-27
Online:
2012-03-16
Published:
2012-08-21
Contact:
WANG Yan-Rong
HU Xiao-Wen, WANG Juan, WANG Yan-Rong. Thermal time model analysis for seed germination of four Vicia species[J]. Chin J Plant Ecol, 2012, 36(8): 841-848.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00841
种名 Species | 采收时间 Harvest time | 产地 Collection site | 生活型 Life form | 硬实率 Hardseededness (%) | 千粒重 1 000 seeds weight (g) |
---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 91 | 20.5 |
山野豌豆 V. amoena | 2011 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 20.3 |
歪头菜 V. unijuga | 2010 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 10.3 |
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 0 | 68.5 |
Table 1 Basic information of testing seed
种名 Species | 采收时间 Harvest time | 产地 Collection site | 生活型 Life form | 硬实率 Hardseededness (%) | 千粒重 1 000 seeds weight (g) |
---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 91 | 20.5 |
山野豌豆 V. amoena | 2011 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 20.3 |
歪头菜 V. unijuga | 2010 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 10.3 |
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 0 | 68.5 |
Fig. 1 Linear regression of germination rate (1/tg) as a function of temperature. A, Vicia angustifolia. B, V. amoena. C, V. unijuga. D, V. sativa cv. ‘Lanjian 3’.
种 Species | Tb (℃) | To (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.43 | 19.64 | 30.53 | y = 0.0315x - 0.0134(Tb) | 1.00 | 0.72 | 31.70 |
y = -0.0556x + 1.6975(Tc) | 0.95 | 6.95 | 16.30 | ||||
山野豌豆 V. amoena | 3.29 | 19.84 | 37.17 | y = 0.0287x - 0.0944(Tb) | 1.00 | 1.23 | 34.88 |
y = -0.0274x + 1.0184(Tc) | 0.99 | 0.95 | 35.62 | ||||
歪头菜 V. unijuga | 2.44 | 20.09 | 37.37 | y = 0.028x - 0.0684(Tb) | 0.99 | 1.26 | 35.88 |
y = -0.0286x + 1.0687(Tc) | 0.98 | 2.00 | 35.37 | ||||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -0.48 | 16.05 | 31.66 | y = 0.0281x + 0.0135(Tb) | 0.93 | 5.06 | 35.67 |
y = -0.0297x + 0.941(Tc) | 0.94 | 4.43 | 35.14 |
Table 2 Estimation of temperature threshold value with a linear regression of seed germination rate 1/t50 as a function of temperature in four Vicia species
种 Species | Tb (℃) | To (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.43 | 19.64 | 30.53 | y = 0.0315x - 0.0134(Tb) | 1.00 | 0.72 | 31.70 |
y = -0.0556x + 1.6975(Tc) | 0.95 | 6.95 | 16.30 | ||||
山野豌豆 V. amoena | 3.29 | 19.84 | 37.17 | y = 0.0287x - 0.0944(Tb) | 1.00 | 1.23 | 34.88 |
y = -0.0274x + 1.0184(Tc) | 0.99 | 0.95 | 35.62 | ||||
歪头菜 V. unijuga | 2.44 | 20.09 | 37.37 | y = 0.028x - 0.0684(Tb) | 0.99 | 1.26 | 35.88 |
y = -0.0286x + 1.0687(Tc) | 0.98 | 2.00 | 35.37 | ||||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -0.48 | 16.05 | 31.66 | y = 0.0281x + 0.0135(Tb) | 0.93 | 5.06 | 35.67 |
y = -0.0297x + 0.941(Tc) | 0.94 | 4.43 | 35.14 |
种 Species | Tb (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.0 | 32.5 | y = 2.2063lnx - 7.7004(Tb) | 0.84 | 0.45 | 32.8 |
y = 0.7734lnx - 2.4399(Tc) | 0.79 | 1.29 | 23.4 | |||
山野豌豆 V. amoena | 3.0 | 37.0 | y = 3.6854lnx - 13.428(Tb) | 0.89 | 0.27 | 38.2 |
y = 2.8209lnx - 10.105(Tc) | 0.91 | 0.35 | 35.0 | |||
歪头菜 V. unijuga | 2.0 | 37.0 | y = 4.3563lnx - 16.095(Tb) | 0.91 | 0.23 | 40.2 |
y = 3.2947lnx - 11.701(Tc) | 0.95 | 0.30 | 34.9 | |||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -2.0 | 31.0 | y = 1.2441lnx - 4.5295(Tb) | 0.93 | 0.80 | 38.1 |
y = 0.9857lnx - 3.2453(Tc) | 0.97 | 1.02 | 26.9 |
Table 3 Estimation of temperature threshold value with repeated Probit analysis in four Vicia species
种 Species | Tb (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.0 | 32.5 | y = 2.2063lnx - 7.7004(Tb) | 0.84 | 0.45 | 32.8 |
y = 0.7734lnx - 2.4399(Tc) | 0.79 | 1.29 | 23.4 | |||
山野豌豆 V. amoena | 3.0 | 37.0 | y = 3.6854lnx - 13.428(Tb) | 0.89 | 0.27 | 38.2 |
y = 2.8209lnx - 10.105(Tc) | 0.91 | 0.35 | 35.0 | |||
歪头菜 V. unijuga | 2.0 | 37.0 | y = 4.3563lnx - 16.095(Tb) | 0.91 | 0.23 | 40.2 |
y = 3.2947lnx - 11.701(Tc) | 0.95 | 0.30 | 34.9 | |||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -2.0 | 31.0 | y = 1.2441lnx - 4.5295(Tb) | 0.93 | 0.80 | 38.1 |
y = 0.9857lnx - 3.2453(Tc) | 0.97 | 1.02 | 26.9 |
Fig. 2 Effect of temperature on observed (symbols) and fitted (lines) for four Vicia species germination. A, Vicia angustifolia. B, V. amoena. C, V. unijuga. D, V. sativa cv. ‘Lanjian 3’.
[1] | Al-Ahmadi MJ, Kafi M (2007). Cardinal temperatures for germination of Kochia scoparia (L.). Journal of Arid Environments, 68, 308-314. |
[2] | Alvarado V, Bradford KJ (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment, 25, 1061-1069. |
[3] |
Angus JF, Cunningham RB, Moncur MW, Mackenzie DH (1981). Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Research, 3, 365-378.
DOI URL |
[4] | Baskin CC, Baskin JM (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, USA. |
[5] | Bewley JD, Black M (1994). Seeds: Physiology of Development and Germination 2nd edn. Plenum Press, New York. |
[6] |
Bradford KJ (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248-260.
DOI URL |
[7] |
Brown RF, Mayer DG (1988). Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals of Botany, 61, 127-138.
DOI URL |
[8] | Cheng ZY, Bradford KJ (1999). Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany, 50, 89-99. |
[9] | Colbach N, Chauvel B, Dürr C, Richard G (2002). Effect of environmental conditions on Alopecurus myosuroides germination. I. Effect of temperature and light. Weed Research, 42, 210-221. |
[10] | Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986). The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany, 37, 705-715. |
[11] |
Ellis RH, Butcher PD (1988). The effects of priming and ‘natural’ differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. Journal of Experimental Botany, 39, 935-950.
DOI URL |
[12] | Ellis RH, Covell S, Roberts EH, Summerfield RJ (1986). The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany, 37, 1503-1515. |
[13] | Ellis RH, Simon G, Covell S (1987). The influence of temperature on seed germination rate in grain legumes. III. A comparison of five faba bean genotypes at constant temperatures using a new screening method. Journal of Experimental Botany, 38, 1033-1043. |
[14] | Garcia-Huidobro J, Monteith JL, Squire GR (1982). Time, temperature and germination of Pearl Millet (Pennisetum typhoides S. & H.) I. Constant temperature. Journal of Experimental Botany, 33, 288-296. |
[15] | Hardegree SP (2006). Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany, 97, 1115-1125. |
[16] | Hardegree SP, Winstral AH (2006). Predicting germination response to temperature. II. Three-dimensional regression, statistical gridding and iterative-probit optimization using measured and interpolated-subpopulation data. Annals of Botany, 98, 403-410. |
[17] | Phelps K, Finch-Savage WE (1997). A statistical perspective on threshold type germination models. In: Ellis RH, Black M, Murdoch AJ, Hong TD eds. Basic and Applied Aspects of Seed Biology. Kluwer Academic Publishers, London. 361-368. |
[18] | Qiu J, Bai YG, Fu YB, Wilmshurst JF (2010). Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian Prairie. Environmental and Experimental Botany, 67, 479-486. |
[19] |
Steadman KJ, Pritchard HW (2003). Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature-dependent reduction in base temperature (Tb) and thermal time. New Phytologist, 161, 415-425.
DOI URL |
[20] | Steinmaus SJ, Prather TS, Holt JS (2000). Estimation of base temperatures for nine weeds species. Journal of Experimental Botany, 51, 275-286. |
[21] | Trudgill DL, Squire GR, Thompson K (2000). A thermal time basis for comparing the germination requirements of some British herbaceous plant. New Phytologist, 145, 107-114. |
[22] | Wang MY (王梅英), Liu W (刘文), Liu K (刘坤), Bu HY (卜海燕) (2011). The base temperature and the thermal time requirement for seed germination of 10 grass species on the eastern Qinghai-Tibet Plateau. Pratacultural Science (草业科学), 28, 983-987. (in Chinese with English abstract) |
[23] | Wang YR, Hanson J (2008). The impact of temperature on seed germination in diverse accessions of 4 wild Vigna species. In: Organizing committee of 2008 IGC/IRC Conference eds. Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (VolumeⅡ). Guangdong People’s Publishing House, Guangzhou. 557. |
[1] | Wen-bo Li Long Sun Hu Lou Cheng Yu Yu Han Tong-xin HU. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | . Difference of seed germination characteristics and dormancy release method of Schoenoplectiella mucronata [J]. Chin J Plant Ecol, 2024, 48(5): 638-650. |
[3] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[4] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[5] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[6] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[7] | LI Wei-Ying, ZHANG Zheng-Ren, XIN Ya-Xuan, WANG Fei, XIN Pei-Yao, GAO Jie. Needle phenotype variation among natural populations of Pinus yunnanensis, P. kesiya var. langbianensis and P. kesiya [J]. Chin J Plant Ecol, 2023, 47(6): 833-846. |
[8] | ZHOU Ying-Ying, LIN Hua. Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients [J]. Chin J Plant Ecol, 2023, 47(5): 733-744. |
[9] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[10] | XIA Jing-Yu, ZHANG Yang-Jian, ZHENG Zhou-Tao, ZHAO Guang, ZHAO Ran, ZHU Yi-Xuan, GAO Jie, SHEN Ruo-Nan, LI Wen-Yu, ZHENG Jia-He, ZHANG Yu-Xue, ZHU Jun-Tao, SUN Osbert Jianxin. Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(2): 183-194. |
[11] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[12] | YE Jie-Hong, YU Cheng-Long, ZHUO Shao-Fei, CHEN Xin-Lan, YANG Ke-Ming, WEN Yin, LIU Hui. Correlations of photosynthetic heat tolerance with leaf morphology and temperature niche in Magnoliaceae [J]. Chin J Plant Ecol, 2023, 47(10): 1432-1440. |
[13] | ZHU Ming-Yang, LIN Lin, SHE Yu-Long, XIAO Cheng-Cai, ZHAO Tong-Xing, HU Chun-Xiang, ZHAO Chang-You, WANG Wen-Li. Radial growth and its low-temperature threshold of Abies georgei var. smithii at different altitudes in Jiaozi Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2022, 46(9): 1038-1049. |
[14] | CHEN Yi-Zhu, LANG Wei-Guang, CHEN Xiao-Qiu. Process-based simulation of autumn phenology of trees and the regional differentiation attribution in northern China [J]. Chin J Plant Ecol, 2022, 46(7): 753-765. |
[15] | XIONG Bo-Wen, LI Tong, HUANG Ying, YAN Chun-Hua, QIU Guo-Yu. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model [J]. Chin J Plant Ecol, 2022, 46(4): 383-393. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 4485
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2537
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn