Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (7): 828-843.DOI: 10.17521/cjpe.2023.0351 cstr: 32100.14.cjpe.2023.0351
Special Issue: 植物功能性状
• Research Articles • Previous Articles Next Articles
CAI Hui-Ying, LIANG Ya-Tao, LOU Hu, YANG Guang, SUN Long*()
Received:
2023-11-28
Accepted:
2024-04-08
Online:
2024-07-20
Published:
2024-04-08
Contact:
* SUN Long(Supported by:
CAI Hui-Ying, LIANG Ya-Tao, LOU Hu, YANG Guang, SUN Long. Changes of fine root functional traits and rhizosphere bacterial community of Betula platyphylla after fire[J]. Chin J Plant Ecol, 2024, 48(7): 828-843.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0351
Fig. 2 Variation of root traits of Betula platyphylla with the time since fire (mean ± SD). Different lowercase letters indicate significant differences in absorptive root traits between different years since fire (p < 0.05); different uppercase letters indicate significant differences in transport root traits between different years since fire (p < 0.05). The asterisk indicates that there is a significant difference between absorptive roots and transport roots (*, p < 0.05; **, p < 0.01). 1, 4, 9, 17, 30, Un represents fire after 1, 4, 9, 17, 30 years and unburned, respectively. C, carbon; N, nitrogen; P, phosphorus.
土壤性质 Soil property | 火后恢复时间 Time since fire (a) | 未火烧样地 Unburned | ||||
---|---|---|---|---|---|---|
1 | 4 | 9 | 17 | 30 | ||
土壤pH Soil pH | 4.02 ± 0.11c | 4.58 ± 0.36b | 3.77 ± 0.06c | 3.91 ± 0.35c | 4.66 ± 0.11b | 5.71 ± 0.32a |
土壤有机碳含量 SOC content (g·kg-1) | 35.30 ± 10.70a | 41.10 ± 7.87a | 57.50 ± 13.90a | 55.80 ± 19.90a | 48.50 ± 19.20a | 47.90 ± 18.80a |
有效磷含量 AP content (mg·kg-1) | 11.30 ± 3.50c | 51.70 ± 23.70a | 10.80 ± 2.66c | 7.21 ± 1.91c | 17.00 ± 11.80bc | 29.60 ± 10.90b |
铵态氮含量 NH4+-N content (mg·kg-1) | 10.90 ± 5.85a | 3.63 ± 1.88b | 5.81 ± 3.41b | 3.34 ± 1.44b | 1.79 ± 0.60b | 3.16 ± 1.60b |
硝态氮含量 NO-3-N content (mg·kg-1) | 0.55 ± 0.04b | 0.37 ± 0.09d | 0.40 ± 0.05cd | 0.56 ± 0.14ab | 0.68 ± 0.09a | 0.51 ± 0.06bc |
Table 1 Variation trend of rhizosphere soil properties of Betula platyphylla with recovery time after fire (mean ± SD)
土壤性质 Soil property | 火后恢复时间 Time since fire (a) | 未火烧样地 Unburned | ||||
---|---|---|---|---|---|---|
1 | 4 | 9 | 17 | 30 | ||
土壤pH Soil pH | 4.02 ± 0.11c | 4.58 ± 0.36b | 3.77 ± 0.06c | 3.91 ± 0.35c | 4.66 ± 0.11b | 5.71 ± 0.32a |
土壤有机碳含量 SOC content (g·kg-1) | 35.30 ± 10.70a | 41.10 ± 7.87a | 57.50 ± 13.90a | 55.80 ± 19.90a | 48.50 ± 19.20a | 47.90 ± 18.80a |
有效磷含量 AP content (mg·kg-1) | 11.30 ± 3.50c | 51.70 ± 23.70a | 10.80 ± 2.66c | 7.21 ± 1.91c | 17.00 ± 11.80bc | 29.60 ± 10.90b |
铵态氮含量 NH4+-N content (mg·kg-1) | 10.90 ± 5.85a | 3.63 ± 1.88b | 5.81 ± 3.41b | 3.34 ± 1.44b | 1.79 ± 0.60b | 3.16 ± 1.60b |
硝态氮含量 NO-3-N content (mg·kg-1) | 0.55 ± 0.04b | 0.37 ± 0.09d | 0.40 ± 0.05cd | 0.56 ± 0.14ab | 0.68 ± 0.09a | 0.51 ± 0.06bc |
Fig. 3 α-diversity of rhizosphere bacterial community of Betula platyphylla in different years since fire (mean ± SD). Different lowercase letters indicate significant differences in the time since fire (p < 0.05). Un, unburned plot.
Fig. 4 Principal coordinate analysis (PCoA) at Operational Taxonomic Units (OTU) level of rhizosphere bacteria of Betula platyphylla in different years since fire. Permutation multivariate analysis of variance (PerMANOVA) was used to test the significance of the difference. Un, unburned plot.
火后恢复时间 Time since fire (a) | R2 | p |
---|---|---|
1 vs 4 | 0.38 | 0.013* |
1 vs 9 | 0.31 | 0.012* |
1 vs 17 | 0.52 | 0.008** |
1 vs 30 | 0.48 | 0.008** |
1 vs Un | 0.61 | 0.010** |
4 vs 9 | 0.39 | 0.010** |
4 vs 17 | 0.19 | 0.074 |
4 vs 30 | 0.18 | 0.131 |
4 vs Un | 0.46 | 0.008** |
9 vs 17 | 0.53 | 0.014* |
9 vs 30 | 0.53 | 0.006** |
9 vs Un | 0.64 | 0.009** |
17 vs 30 | 0.21 | 0.008** |
17 vs Un | 0.56 | 0.008* |
30 vs Un | 0.35 | 0.007** |
Table 2 PerMANOVA analysis based on weighted Unifrac distance was used to test the difference between groups
火后恢复时间 Time since fire (a) | R2 | p |
---|---|---|
1 vs 4 | 0.38 | 0.013* |
1 vs 9 | 0.31 | 0.012* |
1 vs 17 | 0.52 | 0.008** |
1 vs 30 | 0.48 | 0.008** |
1 vs Un | 0.61 | 0.010** |
4 vs 9 | 0.39 | 0.010** |
4 vs 17 | 0.19 | 0.074 |
4 vs 30 | 0.18 | 0.131 |
4 vs Un | 0.46 | 0.008** |
9 vs 17 | 0.53 | 0.014* |
9 vs 30 | 0.53 | 0.006** |
9 vs Un | 0.64 | 0.009** |
17 vs 30 | 0.21 | 0.008** |
17 vs Un | 0.56 | 0.008* |
30 vs Un | 0.35 | 0.007** |
Fig. 5 Community composition of the top 10 phylum levels (A) and the top 10 genus levels (B) of rhizosphere bacterial abundance of Betula platyphylla at different years since fire (mean ± SD). Different lowercase letters represent significant differences in different years since fire. In B, bacteria genera labeled as unknown groups such as norank and unclassified were not shown. Un, unburned plot.
Fig. 6 Analysis of species differences in rhizosphere bacteria LEfSe (LDA Effect Size) at different years since fire. The different colors in the phylogenetic tree represent different years since fire. Un, unburned plot.
Fig. 7 Redundancy analysis (RDA) of the relationship among soil properties, fine root traits and rhizosphere bacterial phylum level (A) and genus level (B) of Betula platyphylla. The black arrows are species variables, the red arrows are environment variables. aRCC, absorptive root carbon content; aRNC, absorptive root nitrogen content; aRTD, absorptive root tissue density; pH, soil pH; NH4+-N, soil ammonium nitrogen content; SOC, soil organic carbon content; tRCC, transport root carbon content; tRNC, transport root nitrogen content; tRPC, transport root phosphorus content; tRTD, transport root tissue density.
Fig. 8 Structural equation model of root traits, soil properties, time since fire and rhizosphere bacterial α diversity. Blue and red indicated positive correlation and negative correlation, respectively, and the black dotted line indicated no significant correlation. The data on lines are standardized path coefficients (*, p < 0.05; **, p < 0.01; ***, p < 0.001). The R2 value represents the proportion of variance explained by each variable. aSRL, absorptive specific root length; aRPC, absorptive root phosphorus content; NH4+-N, soil ammonium nitrogen content; pH, soil pH; tRNC, transport root nitrogen content; tRPC, transport root phosphorus content. Chao1, Chao1 richness index; E, Pielou’s evenness index; H', Shannon-Wiener diversity index; PD, phylogenetic diversity index.
[1] |
Akatsuki M, Makita N (2020). Influence of fine root traits on in situ exudation rates in four conifers from different mycorrhizal associations. Tree Physiology, 40, 1071-1079.
DOI PMID |
[2] | Bardgett RD, Mommer L, de Vries FT (2014). Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699. |
[3] |
Bonfante P, Anca IA (2009). Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annual Review of Microbiology, 63, 363-383.
DOI PMID |
[4] |
Bouam A, Armstrong N, Levasseur A, Drancourt M (2018). Mycobacterium terramassiliense, Mycobacterium rhizamassiliense and Mycobacterium numidiamassiliense sp. nov., three new Mycobacterium simiae complex species cultured from plant roots. Scientific Reports, 8, 9309. DOI: 10.1038/s41598-018-27629-1.
PMID |
[5] | Chen LJ, Zhong QL, Li BY, Yao XM, Xu CB, Cheng DL, Zheng YF, Yu H (2019). Relationship between the main functional traits of fine root and the rhizosphere soil nutrients of different diameter classes in Zenia insignis plantation. Chinese Journal of Applied Ecology, 30, 3627-3634. |
[陈柳娟, 钟全林, 李宝银, 姚湘明, 徐朝斌, 程栋梁, 郑跃芳, 余华 (2019). 翅荚木人工林不同径阶间细根主要功能性状与根际土壤养分的关系. 应用生态学报, 30, 3627-3634.]
DOI |
|
[6] | Coban O, de Deyn GB, van der Ploeg M (2022). Soil microbiota as game-changers in restoration of degraded lands. Science, 375, abe0725. DOI: 10.1126/science.abe0725. |
[7] | Cong JX, Gao CY, Xing W, Han DX, Li YH, Wang GP (2022). Historical chemical stability of carbon pool in permafrost peatlands in northern Great Khingan Mountains (China) during the last millennium, and its paleoenvironmental implications. Catena, 209, 105853. DOI: 10.1016/j.catena.2021.105853. |
[8] | Dove NC, Taş N, Hart SC (2022). Ecological and genomic responses of soil microbiomes to high-severity wildfire: linking community assembly to functional potential. The ISME Journal, 16, 1853-1863. |
[9] | Farrar J, Hawes M, Jones D, Lindow S (2003). How roots control the flux of carbon to the rhizosphere. Ecology, 84, 827-837. |
[10] |
Fierer N, Bradford MA, Jackson RB (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
DOI PMID |
[11] | Gu JC, Wang DN, Xia XX, Wang SZ (2016). Applications of functional classification methods for tree fine root biomass estimation: advancements and synthesis. Chinese Journal of Plant Ecology, 40, 1344-1351 |
[谷加存, 王东男, 夏秀雪, 王韶仲 (2016). 功能划分方法在树木细根生物量研究中的应用: 进展与评述. 植物生态学报, 40, 1344-1351.]
DOI |
|
[12] | Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty- three Chinese temperate tree species. New Phytologist, 180, 673-683. |
[13] |
Hao F, Yu TF, Liu XJ, Gao K (2021). Relationship between nitrogen uptake and root morphology of alfalfa with different nitrogen efficiency and its response to nitrogen. Acta Agrestia Sinica, 29, 2428-2434
DOI |
[郝凤, 于铁峰, 刘晓静, 高凯 (2021). 不同氮效率型苜蓿氮素吸收差异与根系形态的关系及其对氮的响应. 草地学报, 29, 2428-2434.]
DOI |
|
[14] | Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011). Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. Journal of Ecology, 99, 954-963. |
[15] | Kersters K, de Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006). Introduction to the Proteobacteria// Rosenberg E, DeLong EE, Lory S, Stackebrandt E, Thompson F. The Prokaryotes. Springer, New York. 3-37. |
[16] | Kharuk VI, Ponomarev EI, Ivanova GA, Dvinskaya ML, Coogan SCP, Flannigan MD (2021). Wildfires in the Siberian taiga. Ambio, 50, 1953-1974. |
[17] | Knelman JE, Graham EB, Trahan NA, Schmidt SK, Nemergut DR (2015). Fire severity shapes plant colonization effects on bacterial community structure, microbial biomass, and soil enzyme activity in secondary succession of a burned forest. Soil Biology & Biochemistry, 90, 161-168. |
[18] | Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016). Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104, 1299-1310. |
[19] |
Kulichevskaya IS, Danilova OV, Tereshina VM, Kevbrin VV, Dedysh SN (2014). Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 64, 2558-2565.
DOI PMID |
[20] |
Li MJ, Li ZB, Zhou SH, Guo H, He XW, Geng B, Zhu CX (2021). Advances in the root system architecture regulated by plant rhizosphere microorganisms. Chinese Journal of Agrometeorology, 42, 895-904
DOI |
[李梦洁, 李占彪, 周思含, 国辉, 何湘伟, 耿兵, 朱昌雄 (2021). 植物根际微生物调控根系构型研究. 中国农业气象, 42, 895-904.] | |
[21] | Li X, Dong JL, Chu WY, Chen YJ, Duan ZQ (2018). The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations. Plant and Soil, 425, 415-432. |
[22] | Li XY, Jin HJ, He RX, Huang YD, Wang HW, Luo DL, Jin XY, Lü LZ, Wang LZ, Li WH, Wei CL, Chang XL, Yang SZ, Yu SP (2019). Effects of forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan) Mountains, Northeast China. Permafrost and Periglacial Processes, 30, 163-177. |
[23] | Liu B, Han F, Ning P, Li H, Rengel Z (2022). Root traits and soil nutrient and carbon availability drive soil microbial diversity and composition in a northern temperate forest. Plant and Soil, 479, 281-299. |
[24] | Liu XS, Li HR, Hu LL, Wei CL, Wang LZ (2018). Effect of severe burning on natural regeneration of Larix gmelinii- Butula platyphylla plantation. Protection Forest Science and Technology, (1), 14-15 |
[刘学爽, 李慧仁, 胡林林, 韦昌雷, 王立中 (2018). 重度火烧对兴安落叶松-白桦林自然更新的影响. 防护林科技, (1), 14-15.] | |
[25] | López-Angulo J, de la Cruz M, Chacón-Labella J, Illuminati A, Matesanz S, Pescador DS, Pías B, Sánchez AM, Escudero A (2020). The role of root community attributes in predicting soil fungal and bacterial community patterns. New Phytologist, 228, 1070-1082. |
[26] | Luo JC (2002). Influence of forest fire disaster on forest ecosystem in Great Xing’anling. Journal of Beijing Forestry University, 24(Z1), 101-107 |
[罗菊春 (2002). 大兴安岭森林火灾对森林生态系统的影响. 北京林业大学学报, 24(Z1), 101-107.] | |
[27] |
Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiology, 29, 579-585.
DOI PMID |
[28] | Makita N, Pumpanen J, Köster K, Berninger F (2016). Changes in very fine root respiration and morphology with time since last fire in a boreal forest. Plant and Soil, 402, 303-316. |
[29] |
Meier IC, Tückmantel T, Heitkötter J, Müller K, Preusser S, Wrobel TJ, Kandeler E, Marschner B, Leuschner C (2020). Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. New Phytologist, 226, 583-594.
DOI PMID |
[30] | Meng M, Wang B, Zhang QL, Tian Y (2021). Driving force of soil microbial community structure in a burned area of Daxing’anling, China. Journal of Forestry Research, 32, 1723-1738. |
[31] | Merino-Martín L, Griffiths RI, Gweon HS, Furget-Bretagnon C, Oliver A, Mao Z, Le Bissonnais Y, Stokes A (2020). Rhizosphere bacteria are more strongly related to plant root traits than fungi in temperate montane forests: insights from closed and open forest patches along an elevational gradient. Plant and Soil, 450, 183-200. |
[32] | Nikodemova M, Holzhausen EA, Deblois CL, Barnet JH, Peppard PE, Suen G, Malecki KM (2023). The effect of low-abundance OTU filtering methods on the reliability and variability of microbial composition assessed by 16S rRNA amplicon sequencing. Frontiers in Cellular and Infection Microbiology, 13, 1165295. DOI: 10.3389/fcimb.2023.1165295. |
[33] |
Ostonen I, Truu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, Lõhmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, et al. (2017). Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytologist, 215, 977-991.
DOI PMID |
[34] |
Pahalagedara ASNW, Jauregui R, MacLean P, Altermann E, Flint S, Palmer J, Brightwell G, Gupta TB (2021). Culture and genome-based analysis of four soil Clostridium isolates reveal their potential for antimicrobial production. BMC Genomics, 22, 686. DOI: 10.1186/s12864-021-08005-2.
PMID |
[35] |
Patra AK, Abbadie L, Clays-Josserand A, Degrange V, Grayston SJ, Guillaumaud N, Loiseau P, Louault F, Mahmood S, Nazaret S, Philippot L, Poly F, Prosser JI, Le Roux X (2006). Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environmental Microbiology, 8, 1005-1016.
DOI PMID |
[36] | Pérez-Jaramillo JE, Carrión VJ, Bosse M, Ferrão LFV, de Hollander M, Garcia AAF, Ramírez CA, Mendes R, Raaijmakers JM (2017). Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal, 11, 2244-2257. |
[37] | Pérez-Valera E, Verdú M, Navarro-Cano JA, Goberna M (2020). Soil microbiome drives the recovery of ecosystem functions after fire. Soil Biology & Biochemistry, 149, 107948. DOI: 10.1016/j.soilbio.2020.107948. |
[38] | Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N (2024). The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22, 226-239. |
[39] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine north American trees. Ecological Monographs, 72, 293-309. |
[40] | Qin QQ, Liu YH (2021). Forest soil function after severe fire disturbance. Chinese Journal of Applied and Environmental Biology, 27, 503-512 |
[秦倩倩, 刘艳红 (2021). 重度火烧干扰下的森林土壤功能. 应用与环境生物学报, 27, 503-512.] | |
[41] |
Reed HE, Martiny JBH (2007). Testing the functional significance of microbial composition in natural communities. FEMS Microbiology Ecology, 62, 161-170.
PMID |
[42] | Rondina ABL, Tonon BC, Lescano LEAM, Hungria M, Nogueira MA, Zangaro W (2019). Plants of distinct successional stages have different strategies for nutrient acquisition in an Atlantic rain forest ecosystem. International Journal of Plant Sciences, 180, 186-199. |
[43] | Saini A, Aggarwal NK, Sharma A, Yadav A (2015). Actinomycetes: a source of lignocellulolytic enzymes. Enzyme Research, 2015, 279381. DOI: 10.1155/2015/279381. |
[44] | Santín C, Otero XL, Doerr SH, Chafer CJ (2018). Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Science of the Total Environment, 621, 1103-1114. |
[45] | Sasaki T, Ishii NI, Makishima D, Rui S, Goto A, Kawai Y, Taniguchi H, Okano K, Matsuo A, Lochner A, Cesarz S, Suyama Y, Hikosaka K, Eisenhauer N (2022). Plant and microbial community composition jointly determine moorland multifunctionality. Journal of Ecology, 110, 2507-2521. |
[46] |
Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128, 1583-1594.
DOI PMID |
[47] |
Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I, Culham C, Eloe-Fadrosh EA, Ivanova N, Malmstrom RR, Grasby SE, Woyke T, Dunfield PF (2020). Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environmental Microbiology, 22, 3143-3157.
DOI PMID |
[48] | Song ZP (2021). Study on Leaf and Fine Root Stoichiometry Characteristic in the Burned Areas of Larix gmelinii Forests in Great Xing’an Mountains. PhD dissertation, Beijing Forestry University, Beijing. 31-43 |
[宋沼鹏 (2021). 大兴安岭兴安落叶松林火烧迹地植物叶片和细根化学计量学特征. 博士学位论文, 北京林业大学, 北京. 31-43.] | |
[49] | Song ZP, Tian HX, Li ZL, Luo YQ, Liu YH (2021). Changes in plant nutrient utilization during ecosystem recovery after wildfire. Journal of Environmental Management, 295, 112994. DOI: 10.1016/j.jenvman.2021.112994. |
[50] | Spitzer CM, Wardle DA, Lindahl BD, Sundqvist MK, Gundale MJ, Fanin N, Kardol P (2022). Root traits and soil micro- organisms as drivers of plant-soil feedbacks within the sub-arctic tundra meadow. Journal of Ecology, 110, 466-478. |
[51] | Su WQ, Tang CX, Lin JH, Yu MJ, Dai ZM, Luo Y, Li Y, Xu JM (2022). Recovery patterns of soil bacterial and fungal communities in Chinese boreal forests along a fire chrono sequence. Science of the Total Environment, 805, 150372. DOI: 10.1016/j.scitotenv.2021.150372. |
[52] | Sun L, Ataka M, Han M, Han Y, Gan D, Xu T, Guo Y, Zhu B (2021). Root exudation as a major competitive fine-root functional trait of 18 coexisting species in a subtropical forest. New Phytologist, 229, 259-271. |
[53] |
Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 111, 5266-5270.
DOI PMID |
[54] | Walsh CM, Gebert MJ, Delgado-Baquerizo M, Maestre FT, Fierer N (2019). A global survey of mycobacterial diversity in soil. Applied and Environmental Microbiology, 85, e01180-e01119. |
[55] | Wan XH, Chen XL, Huang ZQ, Chen HYH (2021). Contribution of root traits to variations in soil microbial biomass and community composition. Plant and Soil, 460, 483-495. |
[56] | Wang RC, Chen JR, Wang GL (2022). Effects of glucose addition on stoichiometric characteristics of microorganisms and enzymes in forest soils at different succession stages. Research of Soil and Water Conservation, 29, 154-162 |
[王润超, 陈佳瑞, 王国梁 (2022). 葡萄糖添加对不同演替阶段森林土壤微生物及酶化学计量特征的影响. 水土保持研究, 29, 154-162.] | |
[57] | Wang ZX, Zhou M, Zhao PW, Wang D, Shi L, Zhao W, Liu XC (2021). Relationship between soil respiration and its components, soil temperature and moisture factors in the early stage of fire interference recovery. Journal of Northeast Forestry University, 49(8), 78-83 |
[王梓璇, 周梅, 赵鹏武, 王鼎, 石亮, 赵威, 刘喜才 (2021). 火干扰恢复初期土壤呼吸及其组分与土壤温湿度关系. 东北林业大学学报, 49(8), 78-83.] | |
[58] |
Weemstra M, Mommer L, Visser EJW, van Ruijven J, Kuyper TW, Mohren GMJ, Sterck FJ (2016). Towards a multidimensional root trait framework: a tree root review. New Phytologist, 211, 1159-1169.
DOI PMID |
[59] | Willems A (2006). The taxonomy of rhizobia: an overview. Plant and Soil, 287, 3-14. |
[60] |
Xiang XJ, Shi Y, Yang J, Kong JJ, Lin XG, Zhang HY, Zeng J, Chu HY (2014). Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Scientific Reports, 4, 3829. DOI: 10.1038/srep03829.
PMID |
[61] | Xiao HL, Sheng MY, Wang LJ, Guo C, Zhang SL (2022). Effects of short-term N addition on fine root morphological features and nutrient stoichiometric characteristics of Zanthoxylum bungeanum and Medicago sativa seedlings in southwest China karst area. Journal of Soil Science and Plant Nutrition, 22, 1805-1817. |
[62] | Yang CB, Zhang XP, Ni HJ, Gai X, Huang ZC, Du XH, Zhong ZK (2021). Soil carbon and associated bacterial community shifts driven by fine root traits along a chrono sequence of Moso bamboo (Phyllostachys edulis) plantations in subtropical China. Science of the Total Environment, 752, 142333. DOI: 10.1016/j.scitotenv.2020.142333. |
[63] |
Yang T, Tedersoo L, Lin X, Fitzpatrick MC, Jia Y, Liu X, Ni Y, Shi Y, Lu P, Zhu J, Chu H (2020). Distinct fungal successional trajectories following wildfire between soil horizons in a cold-temperate forest. New Phytologist, 227, 572-587.
DOI PMID |
[64] | Zhang AP, Wang XX, Zhang DS, Dong ZJ, Ji H, Li HB (2023). Localized nutrient supply promotes maize growth and nutrient acquisition by shaping root morphology and physiology and mycorrhizal symbiosis. Soil and Tillage Research, 225, 105550. DOI: 10.1016/j.still.2022.105550. |
[65] | Zhang B, Liu MQ, Qian LB, Liang SF (2023). Resistance and resilience of soil microbial communities: progress and perspective. Acta Ecologica Sinica, 43, 5674-5685 |
[张彬, 刘满强, 钱刘兵, 梁山峰 (2023). 土壤微生物群落抵抗力和恢复力研究进展. 生态学报, 43, 5674-5685.] | |
[66] | Zhang LY, Zhang JH, Zhang L, Chen W, Han SJ (2019). Response of fine root morphology of Larix gmelinii and Betula platyphylla to environmental changes. Journal of Beijing Forestry University, 41(6), 15-23 |
[张俪予, 张军辉, 张蕾, 陈伟, 韩士杰 (2019). 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报, 41(6), 15-23.] | |
[67] |
Zhang R, Vivanco JM, Shen Q (2017). The unseen rhizosphere root-soil-microbe interactions for crop production. Current Opinion in Microbiology, 37, 8-14.
DOI PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn