Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (9): 1118-1127.DOI: 10.17521/cjpe.2023.0121 cstr: 32100.14.cjpe.2023.0121
• Research Articles • Previous Articles Next Articles
TONG Yu-Qiang1,2, WU Meng-Ge1,2, WANG Ling3, ZHAO Shi3, HAN Xu1,2, ZHANG Tong1,2, LIU Jing1,2, QIN Sheng-Jin1,2, DONG Ying-Hao1,2, WEI Ya-Wei1,2,*(), ZHOU Yong-Bin2,4,*(
)
Received:
2023-05-04
Accepted:
2024-06-20
Online:
2024-09-20
Published:
2024-06-24
Contact:
(Wei YW, Supported by:
TONG Yu-Qiang, WU Meng-Ge, WANG Ling, ZHAO Shi, HAN Xu, ZHANG Tong, LIU Jing, QIN Sheng-Jin, DONG Ying-Hao, WEI Ya-Wei, ZHOU Yong-Bin. Transpiration estimates in Pinus sylvestris var. mongolica plantation based on the radial pattern of sap flow and its influencing factors[J]. Chin J Plant Ecol, 2024, 48(9): 1118-1127.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0121
编号 No. | 胸径 Diameter at breast height (cm) | 树高 Height (m) | 枝下高 Crown height (m) | 冠幅 Crown breadth (m) | 边材半径 Sapwood radius (cm) |
---|---|---|---|---|---|
P1 | 26.2 | 11.8 | 5.5 | 6.2 × 7.8 | 7.1 |
P2 | 25.5 | 11.4 | 5.3 | 6.8 × 6.1 | 7.0 |
P3 | 26.8 | 12.2 | 5.8 | 6.8 × 6.1 | 7.2 |
Table 1 Major parameters of sample trees of Pinus sylvestris var. mongolica
编号 No. | 胸径 Diameter at breast height (cm) | 树高 Height (m) | 枝下高 Crown height (m) | 冠幅 Crown breadth (m) | 边材半径 Sapwood radius (cm) |
---|---|---|---|---|---|
P1 | 26.2 | 11.8 | 5.5 | 6.2 × 7.8 | 7.1 |
P2 | 25.5 | 11.4 | 5.3 | 6.8 × 6.1 | 7.0 |
P3 | 26.8 | 12.2 | 5.8 | 6.8 × 6.1 | 7.2 |
Fig. 1 Diurnal variation of sap flux density at different sapwood depths of Pinus sylvestris var. mongolica in August (A) and October (B) (mean ± SE).
Fig. 2 Mean diurnal sap flux density at different sapwood depths of Pinus sylvestris var. mongolica in August and October (mean ± SE). * indicates the significant difference in mean diurnal sap flux density between different months at the same depth; different lowercase letters indicate significant differences between different depths in the same month (p < 0.05).
编号 No. | 月份 Month | 多点估算日蒸腾量 Estimated transpiration by multi point (kg) | 单点估算日蒸腾量 Estimated transpiration by single-point (kg) | |||||
---|---|---|---|---|---|---|---|---|
5 mm | 误差 Error (%) | 15 mm | 误差 Error (%) | 25 mm | 误差 Error (%) | |||
P1 | 8 | 25.32 ± 0.93C | 35.65 ± 0.39B | 40.79 | 57.63 ± 1.68A | 127.61 | 21.42 ± 3.00C | -15.42 |
10 | 16.21 ± 1.92B | 27.50 ± 4.22A | 69.65 | 18.26 ± 1.69B | 12.65 | 20.38 ± 2.48AB | 25.73 | |
P2 | 8 | 27.45 ± 0.51B | 34.38 ± 0.87B | 25.25 | 63.98 ± 8.74A | 133.08 | 25.60 ± 3.09B | -6.73 |
10 | 14.05 ± 3.16A | 21.03 ± 6.54A | 49.70 | 20.75 ± 3.76A | 47.69 | 16.94 ± 3.91A | 20.57 | |
P3 | 8 | 27.33 ± 6.06B | 35.61 ± 11.20AB | 30.29 | 63.74 ± 12.84A | 133.22 | 24.46 ± 3.87B | -10.49 |
10 | 16.49 ± 3.48B | 30.49 ± 3.64A | 84.90 | 22.45 ± 4.08AB | 36.14 | 21.96 ± 5.05AB | 33.18 |
Table 2 Comparison of the daily mean transpiration of Pinus sylvestris var. mongolica single tree estimated by single-point and multipoint sap flux densities (mean ± SE)
编号 No. | 月份 Month | 多点估算日蒸腾量 Estimated transpiration by multi point (kg) | 单点估算日蒸腾量 Estimated transpiration by single-point (kg) | |||||
---|---|---|---|---|---|---|---|---|
5 mm | 误差 Error (%) | 15 mm | 误差 Error (%) | 25 mm | 误差 Error (%) | |||
P1 | 8 | 25.32 ± 0.93C | 35.65 ± 0.39B | 40.79 | 57.63 ± 1.68A | 127.61 | 21.42 ± 3.00C | -15.42 |
10 | 16.21 ± 1.92B | 27.50 ± 4.22A | 69.65 | 18.26 ± 1.69B | 12.65 | 20.38 ± 2.48AB | 25.73 | |
P2 | 8 | 27.45 ± 0.51B | 34.38 ± 0.87B | 25.25 | 63.98 ± 8.74A | 133.08 | 25.60 ± 3.09B | -6.73 |
10 | 14.05 ± 3.16A | 21.03 ± 6.54A | 49.70 | 20.75 ± 3.76A | 47.69 | 16.94 ± 3.91A | 20.57 | |
P3 | 8 | 27.33 ± 6.06B | 35.61 ± 11.20AB | 30.29 | 63.74 ± 12.84A | 133.22 | 24.46 ± 3.87B | -10.49 |
10 | 16.49 ± 3.48B | 30.49 ± 3.64A | 84.90 | 22.45 ± 4.08AB | 36.14 | 21.96 ± 5.05AB | 33.18 |
月份 Month | 各深度蒸腾占比 Ratio of transpiration at each depth | ||
---|---|---|---|
0-10 mm (%) | 10-20 mm (%) | 20-30 mm (%) | |
8 | 24.8-26.9 | 38.9-42.5 | 14.1-14.4 |
10 | 32.2-43.9 | 21.8-27.1 | 19.8-23.2 |
Table 3 Contribution of transpiration at different depths on sapwood to transpiration of Pinus sylvestris var. mongolica
月份 Month | 各深度蒸腾占比 Ratio of transpiration at each depth | ||
---|---|---|---|
0-10 mm (%) | 10-20 mm (%) | 20-30 mm (%) | |
8 | 24.8-26.9 | 38.9-42.5 | 14.1-14.4 |
10 | 32.2-43.9 | 21.8-27.1 | 19.8-23.2 |
深度 Depth (mm) | 8月 August | R² | 10月 October | R² |
---|---|---|---|---|
5 | y = 0.7489x - 0.0091 | 0.974 | y = 0.5831x - 0.2689 | 0.960 |
15 | y = 0.3846x + 0.9657 | 0.989 | y = 0.6933x + 0.2491 | 0.971 |
25 | y = 1.1645x - 0.3805 | 0.995 | y = 0.6960x + 0.4089 | 0.977 |
Table 4 Relationship between sap flux density at 5, 15 and 25 mm (x) and the average sap flux density (y) (g·m-2·s-1) of Pinus sylvestris var. mongolica
深度 Depth (mm) | 8月 August | R² | 10月 October | R² |
---|---|---|---|---|
5 | y = 0.7489x - 0.0091 | 0.974 | y = 0.5831x - 0.2689 | 0.960 |
15 | y = 0.3846x + 0.9657 | 0.989 | y = 0.6933x + 0.2491 | 0.971 |
25 | y = 1.1645x - 0.3805 | 0.995 | y = 0.6960x + 0.4089 | 0.977 |
Fig. 4 Relationship between sap flux density at different depths of Pinus sylvestris var. mongolica and photosynthetically active radiation (PAR), vapor pressure deficit (VPD), wind speed (WS), air temperature (Ta) and relative humidity (RH). A, D, G, J, M, sap flux density at 5 mm. B, E, H, K, N, sap flux density at 15 mm. C, F, I, L, O, sap flux density at 25 mm.
深度 Depth | 回归方程 Regression equation | R2 |
---|---|---|
5 mm | y = 2.093 + 0.017PAR + 3.937VPD - 1.023WS | 0.847 |
15 mm | y = - 4.181 + 0.029PAR + 5.981VPD - 9.911WS | 0.758 |
25 mm | y = 0.614 + 0.01PAR + 5.64VPD - 1.457WS | 0.857 |
Table 5 Regression equation between sap flux density at different depths of Pinus sylvestris var. mongolica and meteorological factors
深度 Depth | 回归方程 Regression equation | R2 |
---|---|---|
5 mm | y = 2.093 + 0.017PAR + 3.937VPD - 1.023WS | 0.847 |
15 mm | y = - 4.181 + 0.029PAR + 5.981VPD - 9.911WS | 0.758 |
25 mm | y = 0.614 + 0.01PAR + 5.64VPD - 1.457WS | 0.857 |
气温 Ta (℃) | 光合有效 辐射 PAR (µmol·s-1·m-2) | 空气相 对湿度 RH (%) | 饱和水 汽压差 VPD (kPa) | 风速 WS (m·s-1) | |
---|---|---|---|---|---|
相关系数 Pearson correlation | 0.640** | 0.881** | -0.403** | 0.639** | 0.203** |
双尾检验 Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
样本数 N | 288 | 288 | 288 | 288 | 288 |
Table 6 Pearson correlation of transpiration in Pinus sylvestris var. mongolica with meteorological factors
气温 Ta (℃) | 光合有效 辐射 PAR (µmol·s-1·m-2) | 空气相 对湿度 RH (%) | 饱和水 汽压差 VPD (kPa) | 风速 WS (m·s-1) | |
---|---|---|---|---|---|
相关系数 Pearson correlation | 0.640** | 0.881** | -0.403** | 0.639** | 0.203** |
双尾检验 Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
样本数 N | 288 | 288 | 288 | 288 | 288 |
[1] | Alvarado-Barrientos MS, Hernández-Santana V, Asbjornsen H (2013). Variability of the radial profile of sap velocity in Pinus patula from contrasting stands within the seasonal cloud forest zone of Veracruz, Mexico. Agricultural and Forest Meteorology, 168, 108-119. |
[2] |
Asbjornsen H, Goldsmith GR, Alvarado-Barrientos MS, Rebel K, van Osch FP, Rietkerk M, Chen J, Gotsch S, Tobón C, Geissert DR, Gómez-Tagle A, Vache K, Dawson TE (2011). Ecohydrological advances and applications in plant-water relations research: a review. Journal of Plant Ecology, 4, 3-22.
DOI |
[3] |
Berdanier AB, Miniat CF, Clark JS (2016). Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiology, 36, 932-941.
DOI PMID |
[4] | Bodo AV, Arain MA (2021). Radial variations in xylem sap flux in a temperate red pine plantation forest. Ecological Processes, 10, 24. DOI: 10.1186/s13717-021-00295-4. |
[5] | Cao GX, Wang YN, Guo Z, Ji M, Wang YH, Xu LH (2020). Responses of transpiration to variation in evaporative demands and soil water in a larch plantation at the south side of Liupan Mountains, China. Chinese Journal of Applied Ecology, 31, 3376-3384. |
[曹恭祥, 王云霓, 郭中, 季蒙, 王彦辉, 徐丽宏 (2020). 六盘山南侧华北落叶松人工林蒸腾对土壤水分和潜在蒸散的响应. 应用生态学报, 31, 3376-3384.]
DOI |
|
[6] | Chang XX, Zhao WZ, He ZB (2014). Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 187, 14-21. |
[7] | Chen B, Chen LX, Liu QQ, Liu PS, Zhang ZQ (2015). Transpiration of Pinus sylvestris var. mongolica and its response to urban environmental factors in semi-arid area. Acta Ecologica Sinica, 35, 5076-5084. |
陈彪, 陈立欣, 刘清泉, 刘平生, 张志强 (2015). 半干旱地区城市环境下樟子松蒸腾特征及其对环境因子的响应. 生态学报, 35, 5076-5084.] | |
[8] | Dang HZ, Feng JC, Han H (2020). Characteristics of azimuthal variation of sap flux density in Pinus sylvestris var. mongolica grown in sandy land. Scientia Silvae Sinicae, 56(1), 29-37. |
党宏忠, 冯金超, 韩辉 (2020). 沙地樟子松边材液流速率的方位差异特征. 林业科学, 56(1), 29-37.] | |
[9] | Dang HZ, Han H, Chen S, Li MY (2021). A fragile soil moisture environment exacerbates the climate change- related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: long-term observations. Agricultural Water Management, 251, 106857. DOI: 10.1016/j.agwat.2021.106857. |
[10] | Dang HZ, Que XE, Feng JC, Wang MM, Zhang JX (2019). Response of sap flow rate of apple trees to environmental factors in Loess Platea of Western Shanxi Province, China. Chinese Journal of Applied Ecology, 30, 823-831. |
党宏忠, 却晓娥, 冯金超, 王檬檬, 张金鑫 (2019). 晋西黄土区苹果树边材液流速率对环境驱动的响应. 应用生态学报, 30, 823-831.]
DOI |
|
[11] | Dang HZ, Zha TS, Zhang JS, Li W, Liu SZ (2014). Radial profile of sap flow velocity in mature Xinjiang poplar (Populus alba L. var. pyramidalis) in Northwest China. Journal of Arid Land, 6, 612-627. |
[12] | Du MG, Wang SJ, Fan J, Ge HY (2022). Low sap flow of Picea crassifolia and its influencing factors in Qilian Mountains, China. Chinese Journal of Applied Ecology, 33, 931-938. |
[杜梦鸽, 王善举, 樊军, 葛红元 (2022). 祁连山青海云杉低液流特征及其影响因素. 应用生态学报, 33, 931-938.]
DOI |
|
[13] | Eliades M, Bruggeman A, Djuma H, Lubczynski MW (2018). Tree water dynamics in a semi-arid, Pinus brutia forest. Water, 10, 1039. DOI: 10.3390/w10081039. |
[14] | Fan J, Guyot A, Ostergaard KT, Lockington DA (2018). Effects of earlywood and latewood on sap flux density-based transpiration estimates in conifers. Agricultural and Forest Meteorology, 249, 267-274. |
[15] | Ford CR, Hubbard RM, Kloeppel BD, Vose JM (2007). A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agricultural and Forest Meteorology, 145, 176-185. |
[16] | Ford CR, McGuire MA, Mitchell RJ, Teskey RO (2004). Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiology, 24, 241-249. |
[17] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI PMID |
[18] | Granier A, Huc R, Barigah ST (1996). Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and Forest Meteorology, 78, 19-29. |
[19] |
Hatton TJ, Catchpole EA, Vertessy RA (1990). Integration of sap flow velocity to estimate plant water use. Tree Physiology, 6, 201-209.
PMID |
[20] | Hayat M, Zha T, Jia X, Iqbal S, Qian D, Bourque CPA, Khan A, Tian Y, Bai Y, Liu P, Yang R (2020). A multiple- temporal scale analysis of biophysical control of sap flow in Salix psammophila growing in a semiarid shrubland ecosystem of Northwest China. Agricultural and Forest Meteorology, 288-289, 107985. DOI: 10.1016/j.agrformet.2020.107985. |
[21] | Hernandez-Santana V, Fernández JE, Rodriguez-Dominguez CM, Romero R, Diaz-Espejo A (2016). The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air water deficit. Agricultural and Forest Meteorology, 218- 219, 92-101. |
[22] | Korakaki E, Fotelli MN (2021). Sap flow in aleppo pine in greece in relation to sapwood radial gradient, temporal and climatic variability. Forests, 12, 2. DOI: 10.3390/f12010002. |
[23] | Kume T, Otsuki K, Du S, Yamanaka N, Wang Y, Liu G (2012). Spatial variation in sap flow velocity in semiarid region trees: its impact on stand-scale transpiration estimates. Hydrological Process, 26, 1161-1168. |
[24] | Link RM, Fuchs S, Arias Aguilar DA, Leuschner C, Castillo Ugalde MC, Valverde Otarola JCV, Schuldt B (2020). Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agricultural and Forest Meteorology, 287, 107913. DOI: 10.1016/j.agrformet.2020.107913. |
[25] |
Nadezhdina N, Čermák J, Ceulemans RJ (2002). Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 22, 907-918.
PMID |
[26] |
Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP (1999). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337-347.
PMID |
[27] | Qin HP, Liu ZB, Guo JB, Wang YH, Yu SP, Wang L (2021). Effects of environment and canopy structure on stem sap flow in a Larix principis-rupprechtii plantation. Chinese Journal of Applied Ecology, 32, 1681-1689. |
[秦颢萍, 刘泽彬, 郭建斌, 王彦辉, 于松平, 王蕾 (2021). 环境和冠层结构对华北落叶松林树干液流的影响. 应用生态学报, 32, 1681-1689.]
DOI |
|
[28] | Schneider T, Teixeira J, Bretherton C, Brient F, Pressel KG, Schär C, Siebesma AP (2017). Climate goals and computing the future of clouds. Nature Climate Change, 7, 3-5. |
[29] | Shinohara Y, Iida S, Oda T, Katayama A, Tsuruta K, Sato T, Tanaka N, Su M, Laplace S, Kijidani Y, Kume T (2022). Are calibrations of sap flow measurements based on thermal dissipation needed for each sample in Japanese cedar and cypress trees. Trees, 36, 1219-1229. |
[30] | Urban J, Rubtsov AV, Urban AV, Shashkin AV, Benkova VE (2019). Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agricultural and Forest Meteorology, 271, 64-72. |
[31] | Wei Z, Yoshimura K, Wang L, Miralles DG, Jasechko S, Lee X (2017). Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44, 2792-2801. |
[32] | William H, Schlesinger SJ (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189- 190, 115-117. |
[33] | Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001). A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 2, 153-168. |
[34] |
Xu F, Yang FT, Wang HM, Dai XQ (2012). Review of advances in radial patterns of stem sap flow. Chinese Journal of Plant Ecology, 36, 1004-1014.
DOI |
[徐飞, 杨风亭, 王辉民, 戴晓琴 (2012). 树干液流径向分布格局研究进展. 植物生态学报, 36, 1004-1014.]
DOI |
|
[35] | Zhang J, He Q, Shi W, Otsuki K, Yamanaka N, Du S (2015). Radial variations in xylem sap flow and their effect on whole-tree water use estimates. Hydrological Process, 29, 4993-5002. |
[36] | Zhang L, Sun PS, Liu SR (2009). A review on water use responses of tree/forest stand to environmental changes by using sap flow techniques. Acta Ecologica Sinica, 29, 5600-5610. |
[张雷, 孙鹏森, 刘世荣 (2009). 树干液流对环境变化响应研究进展. 生态学报, 29, 5600-5610.] | |
[37] | Zhao CY, Si JH, Feng Q, Yu TF, Li W (2015). Stem sap flow research: progress and prospect. Journal of Northwest Forestry University, 30(5), 98-105. |
[赵春彦, 司建华, 冯起, 鱼腾飞, 李炜 (2015). 树干液流研究进展与展望. 西北林学院学报, 30(5), 98-105.] | |
[38] | Zhao FF, Ma X, Di N, Wang Y, Liu Y, Li GD, Jia LM, Xi BY (2020). Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa. Chinese Journal of Plant Ecology, 44, 864-874. |
[赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野 (2020). 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子. 植物生态学报, 44, 864-874.] |
[1] | FU Zhao-Qi, HU Xu, TIAN Qin-Rui, GE Yan-Ling, ZHOU Hong-Juan, WU Xiao-Yun, CHEN Li-Xin. Nocturnal sap flow characteristics of two typical forest tree species and responses to environmental factors in the loess region of West Shanxi, China [J]. Chin J Plant Ecol, 2024, 48(9): 1128-1142. |
[2] | ZHANG Xiao-Yu, JIA Guo-Dong, YU Xin-Xiao, SUN Li-Bo, JIANG Tao. Characteristics of canopy stomatal conductance of Populus simonii stands with different degradation degrees and its responses to environmental factors [J]. Chin J Plant Ecol, 2024, 48(9): 1143-1156. |
[3] | HAN Yu-Qing, XIONG Wei, WU Bo, LU Qi, YANG Wen-Bin, LIU Ya-Li, ZHANG Jing-Bo, XIN Zhi-Ming, MA Ying-Bin, LIAN Hong-Lin, WANG Si-Han. Responses of stem sap flow of Haloxylon ammodendron to rainfall pulses in Ulan Buh Desert [J]. Chin J Plant Ecol, 2024, 48(9): 1172-1179. |
[4] | WANG Yin, TONG Xiao-Juan, ZHANG Jin-Song, LI Jun, MENG Ping, LIU Pei-Rong, ZHANG Jing-Ru. Impact of drought on carbon and water fluxes and their coupling in a Quercus variabilis plantation [J]. Chin J Plant Ecol, 2024, 48(9): 1157-1171. |
[5] | LIU Shi-Ling, YANG Bao-Guo, ZHENG Lu, SHU Wei-Wei, MIN Hui-Lin, ZHANG Pei, LI Hua, YANG Kun, ZHOU Bing-Jiang, TIAN Zu-Wei. Seasonal stem radial growth of Castanopsis hystrix plantation and its response to climatic factors in Guangxi, China [J]. Chin J Plant Ecol, 2024, 48(8): 1021-1034. |
[6] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[7] | XU Ze-Hai, ZHAO Yan-Dong. Interpretation of sequence characteristics and influencing factors of stem water content for Acer pictum subsp. mono in its growing season [J]. Chin J Plant Ecol, 2024, 48(6): 794-808. |
[8] | YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees [J]. Chin J Plant Ecol, 2024, 48(4): 496-507. |
[9] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[10] | ZHANG Min, SANG Ying, SONG Jin-Feng. Root pressure of hydroponic Dracaena sanderiana and its determinants [J]. Chin J Plant Ecol, 2023, 47(7): 1010-1019. |
[11] | WANG Xiu-Ying, CHEN Qi, DU Hua-Li, ZHANG Rui, MA Hong-Lu. Evapotranspiration interpolation in alpine marshes wetland on the Qingzang Plateau based on machine learning [J]. Chin J Plant Ecol, 2023, 47(7): 912-921. |
[12] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[13] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[14] | LIN Shao-Ying, ZENG Yu, YANG Wen-Wen, CHEN Bin, RUAN Min-Min, YIN Xiao-Lei, YANG Xiang, WANG Wei-Qi. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil [J]. Chin J Plant Ecol, 2023, 47(4): 530-545. |
[15] | ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(3): 404-417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn