Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (2): 159-166.doi: 10.17521/cjpe.2015.0015

• Orginal Article • Previous Articles     Next Articles

Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China

MA Yu-Zhu1,2, ZHONG Quan-Lin1,2, JIN Bing-Jie1,2, LU Hong-Dian1,2, GUO Bing-Qiao1,2, ZHENG Yuan1,2, LI Man1,2, CHENG Dong-Liang1,2,*()   

  1. 1Geography Institute of Fujian Normal University, Fuzhou 350007, China
    2State Key Laboratory Breeding Base of Humid Subtropical Mountain Ecology, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
  • Received:2014-09-16 Accepted:2014-12-17 Online:2015-03-10 Published:2015-02-01
  • Contact: Dong-Liang CHENG E-mail:chengdl02@aliyun.com
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

Fine roots and leaves are important below- and above-ground functional organs. It is widely recognized that leaf nitrogen (N) and phosphorus (P) stoichiometry displays significant latitudinal variations, and two competing theories (i.e. Temperature-Plant Physiological Hypothesis and Growth Rate Hypothesis) have been proposed to explain this phenomenon. Although considerable efforts have been made to test these theories, comparatively few data have been reported for the plants in China to examine the latitudinal and longitudinal variations in fine root carbon (C), N and P stoichiometry. Accordingly, we compiled an extensive data set of root C, N and P stoichiometry, our objective was to address three main issues: (1) whether the C, N and P stoichiometric latitudinal patterns for roots conform to those reported for leaves, (2) how exactly does root C, N and P stoichiometry changes as a function of longitude, and (3) whether the Temperature-Plant Physiological Hypothesis or Growth Rate Hypothesis can account for the latitudinal patterns observed for fine root stoichiometry.

<i>Methods</i>

We compiled data on fine root C, N and P contents, climate, and geographic location, and analyzed the correlations among these variables.

<i>Important findings</i>

The N and P contents were higher in fine roots as opposed to coarse roots. The N and P contents in fine roots increased with increasing latitude. P content in fine roots declined with increasing longitude, whereas the N:P of fine roots increased with increasing longitude. The N and P contents in fine roots were negatively correlated with mean annual temperature and mean annual precipitation, but positively correlated with soil nutrient. Among the three abiotic factors (i.e. soil N and P contents, temperature and precipitation), soil N and P levels had the greatest effect on the N and P contents in fine roots . The variations observed in fine and coarse root C:P and N:P were inconsistent with the Growth Rate Hypothesis, whereas the positive correlations between root N and P contents and latitude were the same as those observed for leaves, which support Temperature-Plant Physiological Hypothesis, reflecting an adaptive strategy to environmental conditions.

Key words: latitude, longitude, soil nutrient, temperature, precipitation

Table 1

Summary of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in fine roots and coarse roots"

因变量
Dependent variable
n 最小值
Min (%)
最大值
Max (%)
平均值
Mean (%)
标准差
Standard deviation
细根
Fine root
C 33 37.09 58.91 47.39 5.07
N 146 0.24 2.97 0.92 0.43
P 123 0.01 0.47 0.10 0.08
N:P 123 1.63 63.87 14.27 9.88
C:N 33 23.09 116.02 59.15 27.11
C:P 17 166.08 1 118.00 522.10 289.86
粗根
Coarse root
C 59 34.80 54.49 45.65 4.42
N 182 0.07 2.18 0.59 0.33
P 149 0.01 0.54 0.06 0.05
N:P 149 1.58 35.07 11.67 6.86
C:N 55 24.27 560.00 121.98 95.50
C:P 41 318.15 2 407.22 957.27 551.18

Table 2

Latitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in roots"

因变量
Dependent variable
截距
Intercept
斜率
Slope
R2 p n
细根
Fine root
C 1.74 -0.002 0.102 0.070 33
N -0.36 0.009 0.133 <0.001 146
P -1.54 0.013 0.097 <0.001 123
N:P 1.21 -0.005 0.016 0.161 123
C:N 2.20 -0.015 0.259 0.003 33
C:P 2.95 -0.009 0.085 0.256 17
粗根
Coarse root
C 1.71 -0.002 0.099 0.015 59
N -0.21 -0.003 0.006 0.316 182
P -1.45 0.005 0.020 0.084 149
N:P 1.37 -0.012 0.095 <0.001 149
C:N 2.13 -0.004 0.015 0.373 55
C:P 2.89 0.001 0.001 0.863 41
细根+粗根
Fine root +
coarse root
C 1.71 -0.002 0.081 0.006 92
N -0.29 0.003 0.008 0.101 328
P -1.50 0.009 0.051 <0.001 272
N:P 1.29 -0.008 0.047 <0.001 272
C:N 2.26 -0.012 0.097 0.003 88
C:P 3.04 -0.007 0.034 0.167 58

Table 3

Longitudinal patterns of carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in roots"

因变量
Dependent variable
截距
Intercept
斜率
Slope
R2 p n
细根
Fine root
C 1.76 -0.000 7 0.024 0.386 33
N -0.60 0.004 5 0.028 0.042 146
P 0.35 -0.013 0 0.059 0.007 123
N:P -0.46 0.013 4 0.078 0.002 123
C:N 2.44 -0.006 3 0.098 0.075 33
C:P 2.15 0.004 7 0.037 0.462 17
粗根
Coarse root
C 1.81 -0.001 3 0.097 0.016 59
N -1.24 0.008 4 0.125 <0.001 182
P -1.27 -0.000 2 <0.001 0.932 149
N:P 0.13 0.007 6 0.083 <0.001 149
C:N 2.76 -0.006 9 0.060 0.071 55
C:P 2.19 0.006 8 0.056 0.138 41
细根+粗根
Fine root + coarse root
C 1.78 -0.001 1 0.057 0.021 92
N -1.13 0.008 2 0.090 <0.001 328
P -0.94 -0.002 5 0.005 0.232 272
N:P -0.01 0.009 0 0.077 <0.001 272
C:N 2.80 -0.008 2 0.084 0.006 88
C:P 2.24 0.005 6 0.033 0.172 58

Table 4

Linear regression relationship between fine root nitrogen (N) and phosphorus (P) contents and the influencing factors"

N P
斜率 Slope R2 n 斜率 Slope R2 n
年平均气温 MAT -6.8E-3 0.105*** 146 -8.3E-3 0.056** 123
年降水量 MAP -8.4E-5 0.061** 146 -1.6E-4 0.077** 123
年平均气温+年降水量 MAT + MAP 0.109*** 146 0.077** 123
土壤N Soil N 0.17 0.112** 80
土壤P Soil P 0.36 0.154** 65
气候+土壤N Climate + soil N 0.154** 80
气候+土壤P Climate + soil P 0.250** 65

Table 5

Table of partial correlation coefficients of factors influencing fine root nitrogen (N) and phosphorus (P) contents"

年平均气温 MAT 年降水量 MAP 土壤N Soil N 土壤P Soil P n R2 p
细根N Fine root N -0.047 -0.106 0.283 80 0.154 0.005
细根P Fine root P -0.336 0.228 0.419 65 0.250 0.001
细根N Fine root N -0.226 0.062 146 0.109 <0.001
细根P Fine root P -0.008 -0.147 123 0.077 0.008
1 Ågren GI (2004). The C:N:P stoichiometry of autotrophs- theory and observations.Ecology Letters, 7, 185-191.
2 Beyer F, Hertel D, Leuschner C (2013). Fine root morphological and functional traits in Fagus sylvatica and Fraxinus excelsior saplings as dependent on species, root order and competition.Plant and Soil, 373, 143-156.
3 Bloom AJ, Chapin F III, Mooney HA (1985). Resource limitation in plants: An economic analogy.Annual Review of Ecology and Systematics, 16, 363-392.
4 Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests.Oecologia, 125, 389-399.
5 Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999). Changing sources of nutrients during four million years of ecosystem development.Nature, 397, 491-497.
6 Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995). Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii.Ecology, 76, 1407-1424.
7 Dipesh KC, Schuler JL (2013). Estimating fine-root production and mortality in the biomass plantations.Communications in Soil Science and Plant Analysis, 44, 2514-2523.
8 Eissenstat DM, Yanai RD (1997). The ecology of root lifespan.Advances in Ecological Research, 27, 1-60.
9 Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996). Organism size, life history, and N:P stoichiometry: Towards a unified view of cellular and ecosystem processes.Bioscience, 46, 674-684.
10 Elser JJ, Sterner RW, Corokhova E, Fngan WF, Markow TA, Conter JB, Hanrrison JF, Hobbie SE, Odell GM, Weider LW (2000). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550.
11 Foulds W (1993). Nutrient concentrations of foliage and soil in South-western Australia.New Phytologist, 125, 529-546.
12 Geng Y, Wang L, Jin DM, Liu HY, He JS (2014). Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits.Oecologia, 175, 445-455.
13 Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots.Ecology, 81, 275-280.
14 Guo LB, Halliday MJ, Gifford RM (2006). Fine root decomposition under grass and pine seedlings in controlled environmental conditions.Applied Soil Ecology, 33, 22-29.
15 Han WX, Fang JX, Reich PB, Ian Woodward F, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796.
16 Hao YR, Peng SL (2009). Roots of different dominant tree species in zonal vegetation in southern subtropical China.Journal of Beijing Forestry University, 31(2), 25-30.(in Chinese with English abstract)
[郝艳茹, 彭少麟 (2009). 南亚热带地带性植被优势树种根系的研究, 北京林业大学学报, 31(2), 25-30.]
17 He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310.
18 Hedin LO, Vitousek PM, Matson PA (2003). Nutrient losses over four million years of tropical forest development.Ecology, 84, 2231-2255.
19 Hendrick RL, Pregitzer KS (1993). The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems.Canadian Journal of Forest Research, 23, 2507-2520.
20 Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems.Ecosystems, 3, 57-69.
21 Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents.Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
22 Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary production.Global Ecology and Biogeography Letters, 14, 585-598.
23 Kitajima K, Anderson KE, Allen MF (2010). Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem.Journal of Geophysical Research, 115, G04032, doi: 10.1029/2009JG001210.
24 Kochsiek A, Tan S, Russo SE (2013). Fine root dynamics in relation to nutrients in oligotrophic Bornean rain forest soils.Plant Ecology, 214, 869-882.
25 Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
26 Korner C, Diemer M (1987). In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude.Functional Ecology, 1, 179-194.
27 Lin CF, Yang YS, Guo JF, Chen GS, Xie JS (2011). Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: Dynamics of dry mass, nutrient and organic fractions.Plant and Soil, 338, 311-327.
28 Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013). Enhanced nitrogen deposition over China.Nature, 494, 459-462.
29 Lu HZ, Sha LQ (2009). A decomposition dynamics study of different-size roots between a tropical rainforest and a rubber plantation in Xishuangbanna, Yunnan, SW China. Journal of Yunnan University (Natural Science Edition), 31, 528-533.(in Chinese with English abstract)
[卢华正, 沙丽清 (2009). 西双版纳热带季节雨林与橡胶林不同径级根分解. 云南大学学报(自然科学版), 31, 528-533.]
30 Makino W, Cotner JB (2004). Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: Implications for growth- and resource-dependent variations.Aquatic Microbial Ecology, 34, 33-41.
31 Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y (2009). Fine root morphological traits determine variation in root respiration of Quercus serrata.Tree Physiology, 29, 579-585.
32 McCormack ML, Guo DL (2014). Impacts of environmental factors on fine root lifespan.Frontiers in Plant Science, 5, 205.
33 Montagnoli A, Terzaghi M, Iorio AD, Stefania G, Scippa S, Chiatante D (2012). Fine-root morphological and growth traits in a Turkey-oak stand in relation to seasonal changes in soil moisture in the Southern Apennines, Italy.Ecological Research, 27, 1015-1025.
34 Nadelhoffer KJ (2000). The potential effects of nitrogen deposition on fine-root production in forest ecosystems.New Phytologist, 147, 131-139.
35 Odum HT, Pinkerton RC (1955). Time’s speed regulator: The optimum efficiency for maximum power output in physical and biological systems.The American Naturalist, 43, 331-343.
36 Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
37 Ruess RW, Hendriek RL, Burton AJ, Pregitzer KS, Sveinbjornssön B, Allen MF, Maurer GE (2003). Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska.Ecological Monographs, 73, 643-662.
38 Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. 145-177.
39 Sun T, Mao ZJ, Han YY (2013). Slow decomposition of very fine roots and some factors controlling the process: A 4-year experiment in four temperate tree species.Plant and Soil, 372, 445-458.
40 Tjoelker MG, Reich PB, Oleksyn J (1999). Changes in leaf nitrogen and carbohydrates underlie temperature and CO2 acclimation of dark respiration in five boreal tree species.Plant, Cell & Environment, 22, 767-778.
41 Trumbore SE, Gaudinski JB (2003). The secret lives of roots.Science, 302, 1344-1345.
42 Uriankhai T, Liu MS, Huang Z, Chen B, Zhang MJ, Xu C (2009). Distribution pattern of root biomass and inter- specific relationship in Achnatherum splendens-sophora alopecuroides community in Northwest China.Chinese Journal of Plant Ecology, 33, 748-754.(in Chinese with English abstract)
[晨乐木格, 刘茂松, 黄峥, 陈斌, 张明娟, 徐驰 (2009). 我国西北地区芨芨草-苦豆子群落根系分布与种间关系. 植物生态学报, 33, 748-754.]
43 Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests.Advances in Ecological Research, 15, 303-377.
44 Wang QC (2004). Fine roots responses of manchurian ash and Korean larch to soil nutrients heterogeneity. PhD dissertation, College of Forestry, Northeast Forestry University, Harbin.(in Chinese)
[王庆成 (2004). 水曲柳落叶松细根对土壤养分空间异质性的反应. 博士学位论文, 东北林业大学林学院, 哈尔滨.]
45 Weih M, Karlsson PS (2001). Growth response of mountain birch to air and soil temperature: Is increasing leaf-nitro- gen content an acclimation to lower air temperature?New Phytologist, 150, 147-155.
46 Wilcox CS, Ferguson JW, Fernandez GCJ, Nowak RS (2004). Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite.Journal of Arid Environments, 56, 129-148.
47 Woods HA, Makino W, Cotner JB, Hobbie SE, Harrison JF, Acharya K, Elser JJ (2003). Temperature and the chemical composition of poikilothermic organisms.Functional Ecology, 17, 237-245.
48 Yuan ZY, Chen HYH (2012). A global analysis of fine root production as affected by soil nitrogen and phosphorus.Proceedings of the Royal Society B: Biological Sciences, 279, 3796-3802.
49 Yuan ZY, Chen HYH, Reich PB (2011). Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.Nature Communications, 2, 344.
50 Zhang XQ, Wu KH (2001). Fine-root production and turnover for forest ecosystems.Scientia Silvae Sinicae, 37(3), 126-138.
[张小全, 吴可红 (2001). 森林细根生产和周转研究. 林业科学, 37(3), 126-138.]
[1] Yang Bai,Shengwen Chen,Haiyuan Qian,Shunhai Yu,Yiming Xu,Zhixin Zhang,Chao Shen,Yuqi Chen,Meiqi Zhang,Jianping Yu,Ruiliang Zhu. Species diversity of epiphyllous liverworts in Qianjiangyuan National Park, Zhejiang [J]. Biodiv Sci, 2020, 28(2): 231-237.
[2] Xu Chongyi. Pull-down and Co-immunoprecipitation Assays of Interacting Proteins in Plants [J]. Chin Bull Bot, 2020, 55(1): 62-68.
[3] WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92.
[4] Yang Xiaoqing,Huang Xiaoqin,Han Xiaoyang,Liu Tengfei,Yue Xiaowei,Yi Ran. Effect of Exogenous Substances on Cold Tolerance and Key Sucrose Metabolic Gene Expression in Camellia sinensis [J]. Chin Bull Bot, 2020, 55(1): 21-30.
[5] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests [J]. Biodiv Sci, 2019, 27(9): 970-983.
[6] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2019, 43(7): 557-565.
[7] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[8] LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164.
[9] Sun Lulong,Duan Qiuyan,Zhai Heng,Du Yuanpeng. Analysis of Temperature and Light Factors during Frost Events and Establishing Conditions for Simulated Frost [J]. Chin Bull Bot, 2019, 54(2): 237-244.
[10] WANG Jing-Xu, HUANG Hua-Guo, LIN Qi-Nan, WANG Bing, HUANG Kan. Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale [J]. Chin J Plant Ecol, 2019, 43(11): 959-968.
[11] ZHANG Zhen-Zhen, YANG Ke-Jia, GU Yu-Lu, ZHAO Ping, OUYANG Lei. Effects of simulated changes in precipitation pattern on sap flux in two tree species in subtropical region [J]. Chin J Plant Ecol, 2019, 43(11): 988-998.
[12] DIAO Li-Wei,LI Ping,LIU Wei-Xing,XU Shan,QIAO Chun-Lian,ZENG Hui,LIU Ling-Li. Response of plant biomass to nitrogen addition and precipitation increasing under different climate conditions and time scales in grassland [J]. Chin J Plant Ecol, 2018, 42(8): 818-830.
[13] ZHANG Yun, YIN Ding-Cai, TIAN Kun, ZHANG Wei-Guo, HE Rong-Hua, HE Wen-Qing, SUN Jiang-Mei, LIU Zhen-Ya. Radial growth responses of Picea likiangensis to climate variabilities at different altitudes in Yulong Snow Mountain, southwest China [J]. Chin J Plan Ecolo, 2018, 42(6): 629-639.
[14] Mei Zhang,Mashui Lin,Xiuxiu Cao,Shumin Zhao,Daqing Jiang,Bingxuan Wang,Shiying Wang,Yandi Fan,Ming Guo,Haiping Lin. Difference in pH value and nutrient and bacterial diversity in the Carya cathayensis forest soil under different management models [J]. Biodiv Sci, 2018, 26(6): 611-619.
[15] Chen Jianquan, Cheng Chen, Zhang Mengtian, Zhang Xiangqian, Zhang Yao, Wang Aiying, Zhu Jianbo. Cold-tolerance Analysis of Tobacco Plants Transformed with Saussurea involucrata SiSAD and Arabidopsis thaliana AtFAB2 Gene [J]. Chin Bull Bot, 2018, 53(5): 603-611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2000, 17(06): 572 .
[2] Zhao yu-jin;Wang Tai and Tong Zhe. A Simplified Method for Extraction of Endogenous IAA ABA and GAs from Rice Leave[J]. Chin Bull Bot, 1994, 11(04): 52 -55 .
[3] Ni Jian and Wu Ji-you. Prospection of Hidden Deposit Using Spectral Reflectance of Plant Leaves Surface[J]. Chin Bull Bot, 1997, 14(01): 36 -40 .
[4] . Analysis of Wild Lotus with RAPD Markers[J]. Chin Bull Bot, 2005, 22(增刊): 64 -67 .
[5] Lin Peng, Lu Chang-yi, Wang Gong-li, Chen Huan-Xiong. Study on Dynamics of Litter Fall of Bruguiera sexangula Mangrove in Hainan Island,China[J]. Chin J Plan Ecolo, 1990, 14(1): 69 -74 .
[6] MA Yang, WANG Xue-Qin, ZHANG Bo, LIU Jin-Hui, HAN Zhang-Yong, and TANG Gang-Liang. Effects of wind erosion and sand burial on water relations and photosynthesis in Alhagi sparsifolia in the southern edge of the Taklimakan Desert[J]. Chin J Plan Ecolo, 2014, 38(5): 491 -498 .
[7] Jie Ming. Biosphere Project at the International Institute for Applied Systems Analysis[J]. Chin J Plan Ecolo, 1990, 14(1): 93 -94 .
[8] Zhi-Cheng CHEN, Xian-Chong WAN. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees[J]. Chin J Plan Ecolo, 2016, 40(9): 958 -968 .
[9] Fan Li,Huanjun Zhang,Zhenbo Lü,Bingqing Xu,Liang Zheng. Species composition and community diversity of nekton in Laizhou Bay, China[J]. Biodiv Sci, 2013, 21(5): 537 -546 .
[10] Chunfa Zhou, Daqing Zhou, Xiangkun Kong, Wenhong Deng. Differentiating nest sites characteristics of four sympatric cavity-nesting birds[J]. Biodiv Sci, 2012, 20(6): 716 -724 .